
On Interference-aware Provisioning for Cloud-based
Big Data Processing

Yi YUAN∗, Haiyang WANG†, Dan Wang∗, Jiangchuan LIU†

∗The Hong Kong Polytechnic University, †Simon Fraser University

Abstract—Recent advances in cloud-based big data analysis
offers a convenient mean for providing an elastic and cost-
efficient exploration of voluminous data sets. Following such
a trend, industry leaders as Amazon, Google and IBM deploy
various of big data systems on their cloud platforms, aiming
to occupy the huge market around the globe. While these cloud
systems greatly facilitate the implementation of big data analysis,
their real-world applicability remains largely unclear.

In this paper, we take the first steps towards a better
understanding of the big data system on the cloud platforms.
Using the typical MapReduce framework as a case study, we
find that its pipeline-based design intergrades the computational-
intensive operations (such as mapping/reducing) together with the
I/O-intensive operations (such as shuffling). Such computational-
intensive and I/O-intensive operations will seriously affect the
performance of each other and largely reduces the system effi-
ciency especially on the low-end virtual machines (VMs). To make
the matter worse, our measurement also indicates that more than
90% of the task-lifetime is in the shadow of such interference.
This unavoidably reduces the applicability of cloud-based big
data processing and makes the overall performance hard to
predict. To address this problem, we re-model the resource
provisioning problem in the cloud-based big data systems and
present an interference-aware solution that smartly allocates the
MapReduce jobs to different VMs. Our evaluation result shows
that our new model can accurately predict the job completion
time across different configurations and significantly improve the
user experience for this new generation of data processing service.

I. INTRODUCTION

Nowadays, big data systems have already formed the core

of technologies powering enterprises like IBM, Yahoo! and

Facebook. To address the costly system deployment and man-

agement problem faced by small enterprises, who also want

to enjoy big data technique, cloud-based big data analysis has

been widely suggested. It enables elastic services framework

to the users in a pay-as-you-go manner, and largely reduces

their deployment and management costs.

The cloud systems were initially designed to provide re-

mote and virtualized services (accomplished by virtual ma-

chines (VMs)), where the resources and capacities are speci-

fied by the users). To accommodate the increasing number of

applications and workloads to be settled on cloud, the design

of cloud is intrinsically distributed to promote parallelism, i.e.,

scaling out (add more servers) rather than scaling up (upgrade

the servers). In addition, providing stable virtualized services

is critically important for cloud providers, i.e., having the

same payment and the same amount of resources/capacities,

the users expect similar services (e.g., finishing time for their

jobs). While the cloud is providing satisfactory services for

current applications such as web services etc, it remains

largely unclear whether a straightforward application of big

data systems on cloud will be satisfactory.

In this paper, we take the first steps towards a comprehensive

understanding of the big data systems on the cloud platform.

Using the typical MapReduce framework[1] as a case study,

our real-world experiment shows that a few high-end VMs

can, achieve better performance comparing to a number of

low-end VMs with identical lease cost (also with the same

total capacity). In particular, while processing a 35.7 Gigabytes

data on Amazon EC2, 2 extra large instances can complete

the MapReduce job more than 10% faster than that of 16
small ones. To better understand such an observation, we

take a closer look into the cloud-based MapReduce systems.

We find that the pipeline-based design of MapReduce inter-

grades the computational-intensive operations (such as map-

ping/reducing) together with the I/O-intensive operations (such

as shuffling). Unfortunately, such computational-intensive and

I/O-intensive operations will seriously affect the performance

of each other and largely reduces the system efficiency espe-

cially on the smaller VMs. In the case of MapReduce, when

the EC2 VMs are generating and shuffling the intermediates,

such computational-intensive operations as mapping and re-

ducing will also be invoked; the great amount of input data

will only enlarge their mutual-interference, potentially leading

to longer job completion time. This will introduce serious

problems to the cloud-based big data systems such as service

maintenance. To make the matter worse, our measurement also

indicates that more than 90% of the job-lifetime is in the

shadow of such interference. This unavoidably reduces the

applicability of cloud-based big data processing and makes

the overall performance hard to predict.

The cloud rarely faces such problem previously as there

is seldom task that is both computational-intensive and I/O-

intensive (we observe that for a typical big data task with

an input of 35.7GB, the intermediate data generated can be

as much as 70GB+). 1 As such, existing solutions fails to

provide satisfactory resource provisioning for cloud-based big

data applications. To address this problem, we re-model the

resource provisioning problem and present an interference-

aware solution that smartly allocates the MapReduce jobs to

different VMs. Our evaluation results show that our solution

can effectively reduce the job completion time for the new big

data processing service.

1This interference also does not exist (or to a much lower degree) if
MapReduce runs on conventional physical machines. This is because if run-
ning on physical machines, MapReduce tasks are stand-alone and intrinsically
distributed; a sharp contrast to the virtualized cloud environment.



2

2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Job Completion Time (second)

C
D

F

 

 

Small−16
XLarge−2

Fig. 1: The cumulative distribution of processing time for same MapReduce
job under different cluster configuration on our clusters built with EC2
instances. All configurations have same computing capacity.

II. CLOUD DEPLOYMENT OF MAPREDUCE

We will first discuss MapReduce in details and how it can

be applied to the cloud environment. We then show that VM

selection can become a challenging task.

A. MapReduce and Cloud Deployment

The process of a MapReduce job consists of three phases:

map, shuffle and reduce. There are two program functions:

mapper and reducer. In the map phase, the input data is split

into blocks; the mappers then scan the data blocks and pro-

duce intermediate data. In the shuffle phase, the MapReduce

framework shuffles intermediate data and move them to the

correct node for reducing. After that, the reducers process the

shuffled intermediate data and generate results in reduce phase.

We call the operations in each phase as mapping, shuffling and

reducing. In a given MapReduce system, these operations are

invoked in different tasks/processes. For example, in Hadoop,

there are two types of tasks: map task and reduce task where

the mapping is done by map tasks, shuffling and reducing are

done by reduce tasks2.

To deploy a real-world MapReduce system, a dedicated

server cluster is required. A typical MapReduce cluster con-

sists of two types of machines: master and slave. There is only

one master in the cluster; this master assigns map and reduce

tasks to the slaves after the MapReduce jobs are received.

Afte that, it will further monitors the tasks on the slaves (for

example, handling possible task failures). There are multiple

slaves in the cluster. These slaves are deployed to run map

and reduce tasks assigned by the master.

B. Challenges in VM Selection

While the cloud can eliminate the load of maintenance of

physical machines, the users still need to make VM selections

for their respective big data processing tasks. Such VM

selection and renting are critical as they directly influence the

budget constraint and job completion time. Current resource

provisioning in cloud is based on workloads, where the virtu-

alized CPU capacity acts as the main factor. Such provisioning

works well for such applications as web services, etc.

2There are some supporting tasks which cooperate with map and reduce
tasks. For example, TaskTrackers monitor and schedule map and reduce tasks.

We conduct a more comprehensive experiment and show

that there are considerable interferences in big data applica-

tions on cloud platform. This indicates that VM selection may

not be a straightforward task. Our experiments are as follows.

We apply EC2 to build our experimental MapReduce clusters.

We employ Wordcount as the MapReduce program in our

experiments. Wordcount aims to count the frequency of words

appearing in a data set. It is one of the most classic MapReduce

jobs which serves as the basic component of many Internet

applications (e.g. document clustering [2], searching, etc). In

addition, most MapReduce jobs have aggregation statistics

closer to Wordcount [3]. To provide a fare comparison to the

existing studies [4][5], we apply the document package from

Wikipedia as the input data. This package contains all English

documents in Wikipedia since 30th January 2010 and the size

of uncompressed data is 35.7 GB. Moreover, we use the the

most popular version of Hadoop 1.0.3 to build the MapReduce

cluster in our experiments.

We use two types of EC2 VMs in our experiments: Small

instance and Extra Large (XLarge) instance. The capacity as

well as the lease cost of one XLarge instance is approximately

equal to 8 Small instances. This can help us better compare

the trade-off between performance and cost. Because input

data are stored on a distributed file system, which is typically

on slaves, and these data are processed by tasks on slaves,

the performance of a MapReduce cluster is mainly decided

by the slaves. Meanwhile, master works as coordinator of

slaves and does not take CPU-intensive task, so when we

choose configuration for a cluster, we choose instance types

for master and slaves separately. We fix the type of master

as Small. After that, we adjust the type as well as the total

number of slaves. For the sake of clarity, we use the type as

well as the total number of slaves to identify each experiment.

For example, Small-16 indicants that there are 16 EC2 Small

instance running as slaves in the experiment.

We deploy two MapReduce clusters Small-16 and XLarge-2

on the EC2 platform. As we can see in Fig.1, when we employ

2 XLarge instances in our cluster, the job can be done between

2732 to 2831 seconds. On the other hand, when we use 16
Small instances, the job completion time will be increased to

around 3042 seconds. This experimental result indicates that

the users will suffer from a 10% capital loss by using VMs

with smaller capacities.

III. MEASUREMENT

To better understand the underlying reasons of job comple-

tion time difference caused by VM selection, we answer two

questions in this section: 1) what are the unique features of

big data applications such as Mapreduce; and 2) how these

features bring new challenges to the cloud deployments.

A. Analysis of MapReduce Processes

They are many existing studies dedicated on the investi-

gation of MapReduce processes [6][7][8]. These studies are

mostly focusing on the stand-alone measurements of the CPU,



3

0

50

100

T
o
t
a
l
 
I
/
O
 

R
a
t
e
 
(
M
b
p
s
)

0
0

50

100

D
i
s
k
 
I
/
O
 

R
a
t
e
 
(
M
b
p
s
)

0 500 2500 3000

0

20

40

N
e
t
w
o
r
k
 
I
/
O
 

R
a
t
e
 
(
M
b
p
s
)

0
0

50

100

150

C
P
U
 
u
s
a
g
e

(
p
e
r
c
e
n
t
a
g
e
)

(a)

(b)

(c)

(d)

����� ��� ���� �	
�	 ����

����� � ��

���� ����	 ���� �	�


�	�����
��������

�	�����
�		��	

MSMO RO

0

Fig. 2: MapReduce process. (a) CPU usage; (b) Disk I/O usage; (c) Network
I/O usage; (d) Total I/O usage. Results from 700s to 2300s are omitted.

the memory, the disk I/O and the bandwidth utilization. How-

ever, the relationships between these tasks remain unclear for

the general public. To this end, our measurements emphasize

on the interactions between mapping, shuffling and reducing

operations. We synchronize the CPU, disk I/O as well as the

network traffic based on a standardized time line to provide a

closer look into the MapReduce system.

Fig.2(a)-(d) show the CPU utilization, disk I/O, network

I/O and total I/O on one slave used in the previous discussed

Small-16 experiment. In Fig.2(a), the fine lines and the dashed

lines indicate the CPU utilization of map and reduce tasks

respectively. The dark line shows the total CPU utilization. It

is easy to see that there are three main stages in this figure: 1)

Mapping only stage (MO stage) from 90 to 215 seconds. In

this stage, only map tasks are running. 2) Mapping-Shuffling

stage (MS stage) from the end of MO stage form 215 to

2963 seconds. In this stage, map tasks and reduce tasks are

overlapped and running together. Note that the reduce task

is shuffling intermediate data in this stage. 3) Reducing only

stage (RO stage). The RO stage is from 2963 to around 3081

seconds. In this stage, map tasks are finished and only reduce

tasks are running. Beside these three stages, there are preparing

time and closing time at the head and tail of the process.

In Fig.2(a), we see that the CPU is fully utilized during MO

and MS stages. The total CPU usage reaches 100%. This is

because Hadoop enables multiple map tasks and one reduce

task on this slave. When the first map task in MO stage is

finished, reduce task will be started and runing in parallel with

the remaining map tasks.

In Fig.2(b), we see that disk reading operations start from

the beginning of the job and last until the end. Meanwhile,

disk writing operations are found shortly after map tasks start.

These operations stays at a high rate to read input data,

store/read intermediate data and store final results to disk.

Compared with disk I/O, network operations (see Fig.2(c))

are more pulsed.

Note that the disks in cloud are network-attached. As a

result, disk I/O and network I/O operations in virtualized

instance are merged into network I/O-intensive operations at

underlying cloud implementation. After we merge disk I/O and

network I/O in Fig.2(d), we see that I/O operations starts from

the very beginning and I/O rate increases in every stage. In

particular, the I/O rate starts from 10 Mbps and then increases

to about 18 Mbps in MO stage. After that, the I/O rate grows

to around 30 Mbps in MS stage. Finally, it elevates to over

100 Mbps in RO stage. From Fig.2(a) and Fig.2(d), we see

that a typical MapReduce job is both computational-intensive

and I/O-intensive at slaves.

B. Interference Between CPU-intensive and I/O-intensive

Tasks

Based on our measurements, we can see that the MapRe-

duce processes are both CPU-intensive and network I/O-

intensive. In this sub-section, we will further clarify whether

such a feature will introduce new challenges to the cloud

deployment.

To this end, we run a standard CPU benchmark [9] on a

EC2 Small instance. We adjust the traffic load on this VM

and check the running time of this benchmark. To provide

a fare comparison, we also apply same experiment on a

local physical machine (non-virtualized server). The local

machine have identical (even weaker in terms of compute

capacity) hardware configuration to the EC2 Small instance.

Fig.3 shows the comparison between EC2 Small instance and

our local server. From this figure, we can see that the traffic

load slightly increases benchmark running time on the non-

virtualized server, . e.g. When traffic load changes from 0Mbps

to 250Mbps, the running time of CPU benchmark is increased

by 20%. However, for the virtualized EC2 small instance, the

benchmark running time is increased by 45% under the same

traffic load. Furthermore, we also test the case in EC2 extra

large instances(see Fig.4). Since the XLarge instance has 8

ECUs while small instance has 1 ECU, we run 8 parallel

cpu benchmarks on XLarge instance. When traffic load is

zero, benchmark running times on both Small instance and

XLarge instance is 7.2 ms with very small standard derivation.

This means the CPU resource allocation of EC2 is accurate

when there is no traffic load. When traffic load grows, we

can see that the small instance will suffer from remarkable

performance degradation while the benchmark running of

XLarge instance is only slightly increased.

This result can be interpreted from two aspects. From the

network aspect, it is known that the network performance of

virtualized instance is unstable in cloud environment [10].

The abnormal delay variations in network communication

makes operating system spend more CPU processing time on



4

0 100 200 300 400
0

20

40

60

80

Traffic load (Mbps)

In
c
re

a
s
e

 i
n

 C
P

U
 b

e
n

c
h

m
a

rk
 

ru
n

n
in

g
 t

im
e

 (
p

e
rc

e
n

ta
g

e
)

 

 

Virtualized EC2
server (small)
Non−virtualized
server

Fig. 3: Increasing of CPU bench-
mark running time on Small in-
stance and physical machine.

0 200 400 600 800 1000
7

8

9

10

11

12

13

Traffic load (Mbps)

C
P

U
 b

e
n

c
h

m
a

rk
ru

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

)

 

 

Small
XLarge

Fig. 4: CPU benchmark running
time on Small and XLarge in-
stances.

handling such network traffic. Therefore, the CPU time allo-

cated to other tasks will be reduced. Moreover, the virtualized

network device queuing [11] is another important factor. From

the CPU aspect, it is known that VMs are sharing physical

processors on cloud platform [12]. The smaller a VM is, the

easier it will suffer from resource competition with other VM

(located in the identical physical server). This is the reason

why large VMs have much lower probability to confront such

an interference.

IV. RESOURCE PROVISIONING OF CLOUD-BASED

MAPREDUCE

Based on the experimental results, we can see that the task

interferences do not exist in conventional physical machines

(or to a much lower degree) in Fig.3. As such, the existing

cloud-based big data studies mainly focus on the optimization

of stand-alone workloads, without considering their interfer-

ence in the virtualized environment.

A. Modeling of Interference-aware Resource Provisioning

In order to remodel resource provisioning problem with

considering interference in cloud. We remodel completion time

of a MapReduce job first. Our model is based on the existing

MapReduce model in [13] where the job completion time is

modeled in Eq.1. Note that this model is extensively evaluated

on real world MapReduce clusters.

t = M
(MO)

+ (
NM

SM

− 1)M
(MS)

+
NRR

SR

+ C0 (1)

The first part M
(MO)

is the running time of MO stage. The

second part (NM

SM
−1)M

(MS)
is the running time of MS stage.

NM is the number of map tasks determined by the size of input

data D and data block size dM . M is the average running time

of map tasks. SM is the total number of in-parallel map task

in the cluster where SM < NM . The third part, NRR
SR

, is the

running time of RO stage. NR is the number of reduce tasks

in the job. R is the average running time of reduce tasks in

RO stage. SR is the total number of in-parallel reduce task in

the cluster where SR < NR. The last part C0 is a constant. It

represents the preparing time and the closing time.

To scale the model with input data size, R is further modeled

as R = C1+C2dR. dR is the average amount of intermediate

data processed per reduce task. C1 and C2 are scaling factors

for the reduce tasks. dR can be adjusted according to total

amount of input data and NR. In particular, if NR scales up

with input data size, dR and R will not change. On the other

hand, if NR remains constant, dR will scale up with input data

size and the running time of reducer tasks will also increase.

Let K be set of virtualized instance types , and k ∈ K
denotes the index of the instance type. Let pk be the hourly

cost for renting one instance of type k. J is the set of

MapReduce jobs where j ∈ J denotes the job index. We also

use I to refer the set of clusters where i ∈ I is the cluster

index. (ni, ki) is the configuration of cluster i indicating the

cluster i is consisted of ni slave instances of type ki.

To capture the performance degradation of task interference,

we apply a cost function fk(uc, ub) where k is instance type,

uc is the CPU usage and ub is the network usage. Note that,

the disk I/O in cloud are network-based. Therefore, ub not

only contains network I/O but also includes disk I/O. To

this end, we present resource signature3 of a job j as uj =

{{uc
(MO)
j , ub

(MO)
j }, {uc

(MS)
j , ub

(MS)
j }, {uc

(RO)
j , ub

(RO)
j }}.

As we have discussed in section III, the process of a

MapReduce job can be divided into three stages: MO stage,

MS stage, and RO stage. In these three stages, cpu usage and

I/O activities are different. Our job completion time model is

shown below:

t(i, j) = t(MO) + t(MS) + t(RO) + C0j (2)

where:

t(MO) = fki
(uc

(MO)
j , ub

(MO)
j )M

(MO)

j (3)

t(MS) = fki
(uc

(MS)
j , ub

(MS)
j )(

NMj

SM (i, j)
− 1)M

(MS)

j (4)

t(RO) = fki
(uc

(RO)
j , ub

(RO)
j )

NR(i, j)Rj

SR(i, j)
(5)

Now, we re-model our resource provisioning problem. In

our model, we use A to refer the job assignment matrix, where

each component A(i, j) is a binary value denoting whether job

j is assigned to cluster i (1: job j is assigned to cluster i; 0:

otherwise). For a given cluster i, there is one master and ni

slaves. Therefore, the operating cost of cluster i is:

Ci(A) = (nipki
+ pm)I[

∑
j∈J A(i,j)>0]⌈t

(p)
i +

∑

j∈J

t(i, j)A(i, j)⌉

(6)

The first part (nipki
+ pm) is the hourly cost for operating

cluster i where pm is the hourly cost of renting the master in-

stance. Without loss of generality, we assume pm is a constant

for all clusters. In the second part I[
∑

j∈J
A(i,j)>0], I[.] is an

indicator function indicating whether there are jobs assigned

to cluster i. The third part ⌈t
(p)
i +

∑
j∈J

t(i, j)A(i, j)⌉ is the

3For a given cluster configuration, the ratio of resource requirements (CPU
processing time, disk IO size, network exchanged data size) for a specified
MapReduce program is relatively stable[14]. For example, given a cluster, if a
1GB file can be processed in 1 minutes involving 1GB disk data IO, a 10GB
file will be processed in 10 minutes with about 10GB disk data IO.



5

charged time of cluster i where t
(p)
i is the preparing time of

cluster i. Because the cloud instances are charged in hours,

we ceil the actual running time to compute the cost.

For a given budget B, our objective is to determine an

arrangement matrix A to minimize T(A), the total job com-

pletion time of jobs in J :

minimize: T(A) =
∑

i∈I

∑

j∈J

t(i, j)A(i, j) (7)

subject to:
∑

i∈I

Ci(A) ≤ B (8)

∑

i∈I

A(i, j) = 1, ∀j ∈ J (9)

where Eq.8 is the budget constrain. Eq.9 is used to ensure that

all jobs are processed for only once.

B. Interference-aware Resource Provisioning

In this subsection, we design an interference aware resource

provisioning algorithm to solve such a problem. Since the task

interference are more likely to affect the job completion time

on smaller instances, the basic principle of this algorithm is to

assign larger jobs to bigger clusters. Note that we also need to

handle possible over provisioning problems when there are lots

of small jobs. This is because a cluster with more instances can

decrease job completion time for both small jobs and large jobs

but bigger cluster contributes more to large jobs. We allocate

more budget to large jobs while taking care of small jobs.

The detailed algorithm is shown in algorithm Interfer-

enceAwareProvisioning(). We first find the cluster imin which

can finish all jobs with minimum job completion time by

SingleClusterProcessing(). After that, we group the jobs into

under-provisioned set Ju and over-provisioned set Jo. We

consider a job as over-provisioned if total processor number of

cluster imin, computed by E(imin), exceeds total blocks of the

job. Because in this case, not every processor have map tasks

in MO stage, then the cluster cannot be fully utilized. For over-

provisioned set, we apply algorithm SuppressOverProvision-

ing() to find a better provisioning strategy where we can save

budget without increasing total job completion time of Jo.

If we can save some budget by SuppressOverProvisioning(),

we will make a nested call of InterferenceAwareProvisioning()

with the leftover budget to make further provisioning for jobs

in Ju. Finally, we merge the arrangement results of Jo and

Ju. On the other hand, if we cannot save budget (or there are

no over-provisioned jobs), we arrange all jobs to cluster imin.

In SuppressOverProvisioning(), we group the jobs according

to their input data size. If a job’s input data size is smaller

than the average input data size, it is put into small group.

Otherwise it is in large group. If the total job completion time

for jobs in small group is larger than 1 hour4, we will make

a nested call of SuppressOverProvisioning() on both groups.

4This means we are able to save some budget by further grouping

V. EVALUATION

A. Evaluation Setup

We present an evaluation for our provisioning algorithm.

We simulate job sets based on real world trace result in [15],

which is measured from Facebook. Because the trace result

does not contain job type information, we randomly choose

job type from Wordcount and Grep. The sizes of input data

follow same distribution of the trace result. In the trace result,

58% of the jobs are small jobs whose input data sizes are

smaller than 1.2GB. There are also huge jobs. 3% of the jobs

have over 100GB input data. We choose instances from four

types of Amazon EC2 instances: Small, Media, Large and

XLarge. Their compute capacities, performance degradation

ratios v and hourly cost are shown in Table.I. We used a Small

instance to perform as master in the cluster. We assume cluster

preparation time t
(p)
i be in proportional to ni which means

more slave instances cost more preparation time. We set t
(p)
i =

20ni. We compare our algorithm with cost aware provisioning

algorithm in [16].

Job set and budget are two important inputs for any resource

provisioning algorithms. We first evaluate our algorithm under

different budgets with fixed job number 100 in the job set.

Then we evaluate our algorithm by adjusting job set size with

fixed 100US$ budget.

TABLE I: Detail information for different types of instances

Type info Small Median Large XLarge

ECU num 1 2 4 8
Memory 1.7GB 3.75GB 7.5GB 15GB

v 0.25 0.14 0.08 0.04
Cost (US$/Hour) 0.065 0.13 0.26 0.52

Current cost model in Amazon is linear, number of ECUs

is linear to hourly cost. For a resource provisioning algorithm,

cost model greatly affects decisions the algorithm makes. In

order to examine effects of different cost model, we evaluate

our algorithm under another two cost models: convex and

concave. The hourly cost for each type of instance is shown in

Table.II. In the convex cost model, per-ECU cost for renting

instances increase with ECU number of the instances type,

which means that when we are requiring high-end VMs, we

pay more for same compute capacity. In the concave cost

model, per-ECU cost decreases with instance’s ECU number.

TABLE II: Hourly cost for different types under different cost model (US$)

Cost model Small Median Large XLarge

Convex 0.065 0.14 0.29 0.59
Concave 0.065 0.12 0.23 0.45

B. Evaluation Results

In Fig.5, we shows the performance of different algorithms

under budget changes. We see that our algorithm outperforms

cost-aware algorithm in all cases. Cost-aware algorithm tends

to use Small instances because Small instance offers bet-

ter provisioning granularity than larger instances. We also

notice that the maximum performance difference between

interference-aware algorithm and cost-aware algorithm is 11%,



6

40 60 80 100 120 140 160
8

9

10

11

12

13

14

15

Budget (US$)

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

h
o
u
r)

 

 

Cost aware
provisioning
Interference aware
provisioning

Fig. 5: Job completion time vs bud-
get. Job number is 100. Cost model
is linear.

0 100 200 300 400
0

20

40

60

80

100

Job number

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

h
o
u
r)

 

 

Cost aware
provisioning
Interference aware
provisioning

Fig. 6: Job completion time vs job
number. Budget is 100US$. Cost
model is linear.

40 60 80 100 120 140 160
8

9

10

11

12

13

14

15

Budget (US$)

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

h
o
u
r)

 

 

Cost aware
provisioning
Interference aware
provisioning

Fig. 7: Job completion time vs bud-
get. Job number is 100. Cost model
is convex.

40 60 80 100 120 140 160
8

9

10

11

12

13

14

15

Budget (US$)

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

h
o
u
r)

 

 

Cost aware
provisioning
Interference aware
provisioning

Fig. 8: Job completion time vs bud-
get. Job number is 100. Cost model
is concave.

which is not as much as the performance degradation ratio

difference 25% − 4% between XLarge instance and Small

instance. Because 58% of the jobs is small jobs, in order to

suppress over provisioning, our algorithm chooses some Small

instance clusters for these jobs. Fig.6 shows comparison of two

algorithm with different job number under same budget. We

see that there is not obvious difference between interference-

aware algorithm and cost-aware algorithm when job number

is small because there is enough budget and all jobs can

be processed on large clusters. When job number increases,

budget becomes limited. Total job completion time increases

with job number. Note that, total job completion time does

not increase linearly with job number. Because in order to

finish all jobs within the budget, both algorithms choose less

instances to construct clusters. Thus average job completion

time increases. This situation becomes worst when job number

further increases. However, our algorithm always outperforms

cost-aware algorithm.

We then study the effect of different cost models. In Fig.7,

we see that the gap between two algorithm is smaller than

the gap in Fig.5 where cost model is linear. If we take a

closer look at Fig.7 and Fig.5, we find performance of cost-

aware algorithm does not change in two cost models while

performance of interference-aware algorithm decreases. This is

because in convex cost model, cost for renting larger instances

are increased, interference-aware algorithm has to allocate less

instances for clusters in order to finish all jobs within the

budget. But cost-aware algorithm always uses Small instances

whose cost does not change in two cost models. In Fig.8, we

see that performance of two algorithms are close and both

algorithms finish all jobs in less time. This is because larger

instances is more cost-performance effective, both algorithms

tend to employ larger instances. It is worth noting that our

algorithm still outperform cost-aware algorithm because it

chooses cluster type and numbers more accurately.

VI. CONCLUSION

In this paper, we made an observation that a straightforward

application of big data systems on cloud platform faces

serious interference problems. This poses challenges amid the

increasing popularity of using cloud platform to support big

data analytics. We conducted a systematic measurement in

real world clouds using benchmark big data applications. We

showed that the interference is mainly due to CPU-intensive

operations and I/O-intensive operations; both of which are

unique, yet common for big data systems. To this end, we

re-modeled the resource provisioning of the VMs of the cloud

platforms for big data applications; and we developed resource

provisioning algorithms to minimize job completion time for

job sets given budget constraints. We systematic evaluated our

new resource provisioning algorithms. The results confirmed

the effectiveness of our schemes.

ACKNOWLEDGMENTS

J. Liu’s work is supported in part by a Canada NSERC

Discovery Grant and a China NSFC Major Program of Inter-

national Cooperation Grant (61120106008).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[2] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, “Text classifi-
cation from labeled and unlabeled documents using em,” Mach. Learn.,
vol. 39, pp. 103–134, May 2000.

[3] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
exploiting in-network aggregation for big data applications,” in Proc.

USENIX NSDI, 2012.
[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and

R. Sears, “Mapreduce online,” in Proc. USENIX NSDI, 2010.
[5] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of processing

and shuffle phases in mapreduce systems,” in Proc. IEEE INFOCOM,
2012.

[6] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proc. ACM SIGMOD, 2009.

[7] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: friends or
foes?,” Commun. ACM, vol. 53, pp. 64–71, Jan. 2010.

[8] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapreduce:
an in-depth study,” PVLDB, vol. 3, pp. 472–483, Sept. 2010.

[9] “http://sysbench.sourceforge.net/,” 2012.
[10] G. Wang and T. S. E. Ng, “The impact of virtualization on network

performance of amazon ec2 data center,” in Proc. IEEE INFOCOM,
2010.

[11] R. Shea and J. Liu, “Network interface virtualization: challenges and
solutions,” Network, IEEE, vol. 26, no. 5, pp. 28 –34, 2012.

[12] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three cpu
schedulers in xen,” SIGMETRICS, vol. 35, no. 2, pp. 42–51, 2007.

[13] A. Verma, L. Cherkasova, and R. Campbell, “Aria: automatic resource
inference and allocation for mapreduce environments,” in Proc. ACM

ICAC, 2011.
[14] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: locality-aware

resource allocation for mapreduce in a cloud,” in Proc. ACM SC, 2011.
[15] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Job scheduling for multi-user mapreduce clusters,” EECS

Department, University of California, Berkeley, Tech. Rep., 2009.
[16] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity

provisioning system for the cloud,” in Proc. IEEE ICDCS, 2011.


