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Abstract—We are in an age where people are paying increasing
attention to energy conservation around the world. The heating
and air-conditioning systems of buildings introduce one of the
largest chunk of energy expenses. In this paper, we make a key
observation that after a meeting or a class ends in a room, the
indoor temperature will not immediately increase to the outdoor
temperature. We call this phenomenon Thermal Inertia. Thus, if
we arrange subsequent meetings in the same room; than a room
that has not been used for some time, we can take advantage of
such un-dissipated cool or heated air and conserve energy.

We develop a green room management system with three
main components. First, it has a wireless sensor network to
collect indoor, outdoor temperature and electricity expenses
of the air-conditioning devices. Second, we build an energy-
temperature correlation model for the energy expenses and
the corresponding room temperature. Third, we develop room
scheduling algorithms. Our system is validated with real deploy-
ment of a sensor network for data collection and thermodynamics
model calibration. We conduct a comprehensive evaluation with
synthetic room and meeting configurations. We observe a 30%
energy saving as compared with the current schedules.

I. INTRODUCTION

There is a huge interest in building a green world recently.

The key focus is energy conservation and energy efficiency.

Computer scientists are actively contributing our effort in two

directions, 1) improve energy efficiency of computing systems,

and 2) apply computing systems (e.g., sensor networks) for

energy conservation in broader disciplines.

For the first category, many studies are working on ener-

gy efficiency for data centers [5][10][11][13], a top energy

consumer among all computing devices. While the energy

expenses of computing industry are increasing fast in recen-

t years, the largest portion of energy consumption is still

dominated by such areas as commercial buildings, residential

usage, transportation, manufactory industry [14]. Especially,

for regions where the Industrial sector is small, the electricity

consumption by commercial buildings can be more dominat-

ing; for example in Hong Kong, 65% of electricity in 2008

goes to the commercial sector [3].

The heating and air conditioning of commercial buildings

has the largest chunk in energy expenses. In 2008 the Office

Segment of Hong Kong, 54% electricity goes to space condi-

tioning (i.e., air-conditioning), 14% goes to lighting, 13% goes

to office equipments such as computers [3]. Monitoring the

conditions of the buildings and efficient utilization of heating,

ventilation, and air conditioning (HVAC) have been a long

time topic[6][8][9]; and advanced commercial buildings can

automatically turn off lights and HVAC systems of rooms

when humans are not in presence. Nevertheless, we notice

that even if the heating or air-conditioning of a room is turned

off, the heat or the cool air will not immediately dissipate.

We call this phenomenon Thermal Inertia. We consider the

un-dissipated cool or heated air a valuable resource that can

be utilized, so that future usage of this room can take this

advantage without re-heating or re-cooling the room.

Based on this observation, we develop an energy conser-

vation room management system, such that the allocation of

the rooms of a building (or classrooms in campus) is based

not only on a schedule (e.g., meeting time, room capacity),

but also on the existing heating or air-conditioning conditions

of the rooms. In the rest of the paper, we will only use air-

conditioning as an example to ease our presentation.

Clearly, our room management system falls into an opti-

mization problem. It is not straightforward, however to know

how much energy will be saved if a room is scheduled. As

an example, consider a recommended office temperature to be

26◦C (79◦F). Assume a room was used 20 minutes ago, and its

current temperature is 29◦C (84◦F). The outdoor temperature

is 37◦C (99◦F). If we schedule a meeting 5 minutes later in

this room, how much electricity is needed to re-cool it to the

targeted temperature 26◦C (79◦F)?

This is affected by such factors as the room specifics

(size, wall materials, etc), indoor and outdoor temperature,

the targeted temperature etc. A key difficulty is to build a

correlation among these factors. The more accurate this corre-

lation model is, the better the scheduling algorithm we can run

on top of it. Building this model does not solely fall into the

computer science domain. Advanced thermodynamics theories

may be needed. We believe that in the sensor network research

today, it is very common that cross-discipline understandings

are required; for example, it is shown that knowledge on

sensor placement quality in the sense of civil engineering

can make the structural health monitoring system built by

computer scientists more plausible [4]. A careful management

on the degree of understanding on different disciplines is

very important. In our work, we choose to apply rudimental

thermodynamics theory to build an initial energy-temperature

model. We then use sensor data to calibrate this model. We

validate the effectiveness of such design by a real experiment.

Another difficulty is that we do not have off-the-shelf

components for our sensor network. We thus extend Imote2 to

an electricity-meter in order to record electricity usage of air-

conditioners. On top of these, we develop room scheduling

algorithms. We first develop an optimal algorithm for a special

case where all rooms are equal. For the general case, we

develop two efficient heuristics.



Besides a real world system deployment for model val-

idation and data collection, we evaluate our system with

comprehensive simulations with synthetic room configurations

and meeting schedules. We observe that we can save 30% of

electricity as compared to the synthetic data.

II. ROOM MANAGEMENT SYSTEM: AN OVERVIEW

We discuss some high level system choices. As a first

work, we confine our study that given the schedules, how

the classes/meetings should be arranged. We leave a detailed

investigation of online room management as future work.

To accurately schedule rooms and maximally conserve

energy, an important part of our system is that we need to build

an energy-temperature correlation model so that the room

scheduling algorithm can run on top of it. More specifically,

we need a function such that given the current temperature and

room environment configurations, the energy to be consumed

to achieve the target temperature. There are two extreme

ways for building such model. First we can apply advanced

thermodynamics theories and material sciences to explicitly

compute such function. Second, we can build a database with

entries of the environment parameters (e.g., indoor tempera-

ture, outdoor temperature, and targeted temperature) and the

corresponding energy consumptions. In the room scheduling

algorithm, whenever an estimation on the energy expenses is

needed, an entry in this database that has the most similar

environmental configuration can be extracted.

The first choice falls into the expertise of Building and

Service Engineering. We have consulted experts of BSE from

both academia and industry. While there are sophisticated tools

such as EnergyPlus [1], they admit that it is difficult to build

a model purely from theory. For the second choice, to build

the correlation database, a sensor network can be deployed

to collect such data as temperature and energy expenses. The

accuracy depends on the granularity of the data collection. The

more samples the database has, the more accurate to find the

energy expenses with a similar environmental configuration.

After some studies on physical laws on heat conduction and

some field experimental validation, our choice finally falls

into a mixture of the two extremes. We use an initial model

following rudimental Fourier’s law of heat conduction. In this

model, some parameters are difficult to compute from theory.

These parameters are invariants, however, e.g., only affected

by the materials of the room. Thus we inversely calibrate the

parameters of this model using the data collected by a sensor

network. The high-level framework of our system is in Fig. 1.

We also want to clarify that in this paper, we use electricity

expenses as our optimization objective. For end-users, having

their electricity bills cut directly means money saving.

III. SENSOR NETWORK DESIGN

For a building, or a campus, there are multiple rooms. For

each room, we need to build an energy-temperature correlation

model (detail in Section IV) to be used for the scheduling

algorithm (details in Section V). As such, a sensor network

should be deployed in each room. In this sensor network,
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there should be a sensor to record electricity usage to air-

conditioning the room. We also need to record the temperature.

As the temperature in different locations of the room may

not be uniform, a set of temperature sensors is suggested. We

would like to comment that the sensor network is only used for

the construction of the energy-temperature correlation model

for each room. After the model is built, we can predict the

energy consumption using the model. Since the sensor network

needed in each room is the same, in practice, we can deploy

a sensor network and build the energy-temperature correlation

model room-by-room.

A. Design of an Electricity-meter

Our system needs to estimate the energy consumption for

air-conditioning the room to a targeted temperature. We extend

Imote2 with a PowerBay SSC VC to record electricity current

(see Fig. 2). PowerBay SSC VC also becomes a power supply

to Imote2. In operation, PowerBay SSC VC will record the

power (in Watt) and such data will be digitized and output to

Imote2. The data can then be transmitted out by Imote2.

B. Development of Sensor Network

We implement our sensor system in TinyOS, and use Collect

Tree Protocol (CTP) [2] for data routing among sensor nodes.

The temperature and electricity data are sent to a base station

node attached to a laptop. The lifetime of our sensor system

is determined by TelosB nodes if they use battery power.

In practice, every node gets the temperature and transmits

32 bytes every 10 seconds; The projected lifetime of our

sensor network can thus reach 2000 hours. We find that this

is far enough for us to collect data and calibrate the energy-

temperature correlation model.

IV. DESIGN OF ENERGY-TEMPERATURE CORRELATION

MODEL AND EXPERIMENTAL VALIDATION

In this section, we develop a model where the electricity

is a function of (a room, current indoor/outdoor temperature,



targeted temperature). Our idea is based on the observation

that thermodynamic factors of a room are invariants. They

are determined by their physical materials and do not change

(or change ignorably) with outside factors. Therefore, for

each real-world room, we can build a virtual perfect room

to mimic it. For this virtual perfect room, we build an

energy-temperature correlation model using Fourier’s law of

heat conduction with the set of invariants undetermined. To

compute these invariants, we collect a set of electricity and

temperature data by our sensor network. We then inversely

derive these invariants. After fitting these invariants back to

the model, we can compute electricity usage in the room given

any indoor/outdoor temperature and targeted temperature.

A. Energy-Temperature Correlation Model

We use a virtual perfect room where 1) The room space

is enclosed, i.e., no air exchange with other spaces; 2) All

walls, ceiling and floor are made of materials with the same

thermal conductivity and have identical thickness; 3) All

outside temperature of the room is same and is constant. We

also assume 1) the electrical power P of the air conditioner

is constant when it is in operation, and is zero if it stops; and

2) the electricity-energy transformation rate r is a constant;

this indicates the effective energy Pe injected into a room per

second when an air-conditioner is in operation is constant.

Let T be the indoor temperature. Let To be the temperature

outside the room. Let Q be the heat transfer rate from outdoor

to the room. Let k be the thermal conductivity of the material.

Let A be the total area of the six walls. Let L be the thickness

of a material. According to Fourier’s law [7], we have Q =
kA
L
(To−T ). Let m be the mass of the air of the room. Let C

be the heat capacity of the air of the room. The temperature

changing rate dT
dt

of the room [12] is dT
dt

= Q+Pe

mC
. Let λ =

kA
L

. We say λ as the conductivity of this specific room. We

obtain the following function for indoor temperature change:

T (t) = To + Pe ×

1

λ
+ C0e

−

λ

mC
t

(1)

Here C0 is an initialization parameter determined by T (0),
the temperature at time 0:

C0 =

{

T (0)− To; air-conditioner not in operation

T (0)− To −
Pe

λ
; air-conditioner in operation

(2)

The energy-temperature correlation model is Eq.1 and Eq.2.

We consider λ as an invariant, because it is related to the

physical properties of the materials. Therefore, we calibrate

this parameter by sensor data. We also calibrate To. We

emphasize that To is artificial that approximates the overall

outdoor situation of all walls. Though one wall may have a

bigger change in outdoor temperature, To does not change

abruptly. We will show that this is true in our experiments.

We use the sensor data to inversely compute the invariants

λ, r and semi-invariant To. We use λ̂, T̂o and r̂ to denote them.

Then we fit λ̂, T̂o and r̂ back into Eq.1 and Eq.2 to fulfill our

model.

The operation of a room can be cut into three periods: 1)

the vacancy period (VP); 2) the re-cooling period (RP); and 3)

the maintaining period (MP). The energy-temperature function
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of VP and RP are different (see the two phases of Eq.1 and

Eq.2). MP is a combination of short periods of VP and RP.

Through the sensor network, we will collect a temperature

sequence for each sensor node i and an electricity sequence.

For each of these sequences, we identify periods of VPs,

RPs and MPs. For each node i, we then apply Algorithm

IndividualCal() to calibrate λ̂i, T̂oi and r̂i. The basic idea is

we select three points in VP to calculate λ̂i, T̂oi (See Fig.5);

then select two points in RP and put the calculated λ̂i, T̂oi into

the two equations to calculate r̂i. As λ̂i, T̂oi and r̂i computed

from each sensor i are not fully equal. We apply Algorithm

ModelCal() to get the final λ̂, T̂o and r̂. The basic idea is to

remove outliers by setting an upper error bound ε and compute

a weighted average of all λ̂i, T̂oi and r̂i.

B. Experiment Validation

We conduct a real experiment to validate our model. Our

experiment was conducted in a hotel room in Shenzhen,

China. The configuration of the room and sensor network is

shown in Fig. 3. There were ten sensors to collect temperature

and an electricity-meter connected to the air-conditioner. Our

experiment lasted one day from March 2nd to 3rd 2011. We

periodically turned on and off the air-conditioner(AC). The

result is shown in Fig. 4. The bottom part of Fig. 4 shows

the temperature of four indoor sensors and the outdoor sensor.

The upper part of Fig. 4 shows the corresponding output power

level of the AC. Fig. 4 indicates the weak connection between

the outdoor temperature (No. 10) and the indoor temperature.

After getting (λ̂, T̂o, r̂) = (58.72, 25.38,−0.32), we fit them

back to our model. We draw a predicted temperature curve in

Fig. 6 by applying the same initial temperature, the same ener-

gy sequence. Compared with the real temperature sequence of

Node 5. We see that the predicted temperature is fairly close

to the real temperature sequence. Thus we conclude that our

model can be used to estimate future room electricity usage.

V. ROOM SCHEDULING ALGORITHM

With the energy-temperature correlation model, we are

prepared to develop the room scheduling algorithm. We have



searched existing room scheduling algorithm in literature. To

the best of our knowledge, we did not find any standard

algorithm. We believe ad-hoc scheduling is used because of

two reasons: 1) the number of rooms is not always tight, 2)

there is no optimization objective, only to fit the meetings in.

As such, advanced algorithms might not be necessary.

We formally state the problem. Given a set R of n rooms

and a set M of m meetings to be scheduled. A meeting

Mi ∈ M is associated with a time interval (bi, ei) and a target

temperature Tti, where bi, ei represent the start time and the

end time of the meeting respectively. Each meeting Mi has a

capacity requirement ci. Each room Rj ∈ R has a capacity

Cj . For Rj that can hold Mi, we must have ci < Cj . Every

room Rj is associated with a function Ej(Tt, t) showing the

energy needed to maintain the target temperature Tt for t and

a function REj(Tt, t) showing the energy needed to re-cool

the room to Tt where last meeting has ended for t. Ej(Tt, t)
and REj(Tt, t) can be computed by our energy-temperature

correlation model. We want to find a schedule S consisting

a set of time intervals, one for each meeting. The objective is

to reduce the total energy of S.

We first develop an optimal algorithm when the rooms are

uniform. For the general problem with non-uniform rooms, we

develop two fast heuristics for different scenarios.

A. Rooms with Uniform Capacity

Our algorithm Energy-Aware Room Scheduling (Uniform),

Energy-RS(Uniform) for short, is a greedy-based algorithm.

We sort the meetings in ascending order based on their starting

times. We then group the meetings with the same starting time.

Our algorithm performs in iterations and in each iteration, we

handle a group of meetings with the current earliest starting

time. We allocate these meetings to the rooms that have ending

times that are closest these meetings. Due to page limits, the

pseudo-code of our algorithm is in [15].

Theorem 1: The total energy consumption by Algorithm

Energy-RS(Uniform) is minimum.

Proof: Due to page limitation, please refer to [15]

Theorem 2: The total number of rooms scheduled by Al-

gorithm Energy-RS(Uniform) is minimum.

Proof: Due to page limitation, please refer [15].

Existing ad-hoc meeting scheduling algorithms usually do

not bother if using more rooms. This theorem indicates that

Algorithm Energy-RS (Uniform) will select the smallest num-

ber of rooms. This is useful for the general algorithm with

non-uniform rooms; since we try not to schedule meetings

with small capacity requirements into oversized rooms.

B. Rooms with Non-Uniform Capacity

1) Energy-RS(): We use Algorithm Eenergy-RS (Uniform)

as a building block to develop algorithm Energy-Aware Room

Schedule (Energy-RS()). We outline our basic idea. Assume

the number of different capacities of all rooms is g. We

classify the rooms into different groups RG1,RG2, . . . ,RGg

according to their capacity. Let GCk be the room capacity

of RGk. We have ∀Rj ∈ RGk, Cj = GCk . Assume
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Fig. 7: Total energy expense for re-cooling the rooms as against to the number
of meetings; rooms with uniform capacity. (a) meeting length: option O1, (b)
meeting length: option O2.
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Fig. 8: Total energy expense for re-cooling the rooms as against to the number
of meetings; rooms with non-uniform capacity. (a) meeting length: option O1,
(b) meeting length: option O2

RG1,RG2, . . . ,RGg is sorted in ascending order according

to their capacity GCk. We classify the meeting into different

groups MG1,MG2, . . . ,MGg according to the capacity re-

quirements of the meetings. For a meeting Mi with a capacity

requirement ci, it is grouped into MGk where GCk−1 < ci ≤

GCk. As an example, assume the room capacities of all rooms

are 20, 40, 60. The meeting requirements are 17, 18, 34. We

thus classify the meetings with capacity requirements of 17

and 18 into the group of 20 and the meeting with capacity

requirement of 34 into the group of 40.

We schedule meetings of MGk into room group RGk in

ascending order. For each group pair (MGk,RGk), we apply

Algorithm Energy-RS (Uniform). From Theorem 2, we know

that Algorithm Energy-RS (Uniform) uses the smallest number

of rooms. Thus, the chance that a meeting with small capacity

requirement is pushed into an oversized room is minimized.

The complexity of Algorithm Energy-RS() is nm.

2) TimeUr-RS(): In our framework, each meeting has a

capacity requirement and a meeting time requirement. This

is the case for many scenarios. For some cases, however,

the meeting time can be determined by the room scheduling

system. We conjecture this is a general case since there is no

optimization goal for many meeting schedules; only to fit all

the meetings in without meeting-meeting, room-room conflict.

We propose a simple greedy-based algorithm which allows

reassignment of meeting times, we call Time Unrestricted

Energy Aware Room Scheduling (TimeUr-RS()). TimeUr-RS()

is greedy by sorting meeting capacities in descending order

and then fitting into the rooms. This algorithm can be used

to provide suggestions for the decision makers, in case there

is no compulsory reason to have strict meeting times. In our

simulation, TimeUr-RS() is used as a performance comparison.

VI. PERFORMANCE EVALUATION

A. Simulation setup

We evaluate our system in a set of synthetic room arrange-

ments we generate semi-randomly. We consider rooms with



uniform capacity and non-uniform capacity separately.

For the uniform case, the default room capacity is 100 seats

and the total number of rooms is 150. The meeting times are

randomly generated in range [8:00, 22:00]. The lengths of the

meetings are randomly chosen from two groups of options,

O1 = [1, 1.5, 2, 2.5, 3], O2 = [1, 2, 3]. For the non-uniform

capacity case, we have eight different types of rooms.

The numbers of different types of rooms follow a poisson

distribution with a mean of 3. The capacity requirement for

the meetings follows a poisson distribution with a mean of 3.

The default values of our simulation are T̂o = 25◦C, r̂ =
−0.32 for all rooms. We set Tt = 20◦C for all meetings.

We compare our algorithm with an ad-hoc room scheduling

algorithms (denoted as RS) that can satisfy the meeting time

and room capacity requirements.

We choose our primary performance metric as the total

energy needed to re-cool the rooms to the target temperature

for all rooms and all meetings. Note that we exclude the energy

needed during the classes, which we cannot conserve. This

metric is stable for all room scheduling algorithms.

B. Simulation results

In Fig. 7, we show the total energy for re-cooling the

rooms for different algorithms. In Fig. 7 (a), we see that the

re-cooling energy needed for ad-hoc room scheduling RS is

always greater than our algorithm Energy-RS and TimeUr-RS.

This is not surprising as the RS only satisfies the meeting

requirements. When the number of meetings increases, we

can see that all three algorithms need more energy in re-

cooling the rooms. This is because there are more meetings

and more rooms to be used. RS increases much faster than our

algorithms, however; as both of our algorithms have taken the

energy conservation into consideration. More specifically, we

can see that if there are 800 meetings to schedule, the total

electricity needed by RS, Energy-RS and TimeUr-RS is 503

kWh, 214 kWh, and 141 kWh respective. We can see that we

have reduced the electricity consumption for more than half.

If the meeting time is not restricted, we can make a suggestion

on meeting times so as to reduce the electricity consumption

to less than one third.

We then see Fig. 7 (b) where the meeting time is randomly

chosen from O2. We see similar trend as that in Fig. 7(a).

We also see that the less number of choices that we have in

meeting time, the greater the benefit we gain. This is because

if there is a smaller number of meeting length options, there is

also a smaller number of small time segments that we cannot

fit the meetings in due to more irregular meeting time length.

On the contrary, we do not see improve for RS as its schedule

is ad-hoc.

We then study the general case where rooms are of non-

uniform capacity. We show the results in Fig. 8. We see that

the gain of Energy-RS is smaller. This is because, in each type

of room capacity, we have a much smaller number of meeting

choices. If one takes a closer look at Fig. 7 (a), we can see that

the best performance arrives when the number of meetings is

800. When the number of meetings is 100, or 50, the gain is

smaller. In our general case, we have 8 different types of rooms

resulting in a smaller number of meetings in each type. Thus,

the gain is smaller. We can summarize that the more meetings,

the more choices; leading to more re-cooling energy needed;

and a better performance of Energy-RS as compared to RS.

VII. CONCLUSION

In this paper, we observed Thermal Inertia; that is, after

a meeting ends in a room, the cool air will not immediately

dissipate. We took such advantage and designed a new room

management system for energy conservation. We extended

sensor hardware and designed a two tier sensor network to

monitor necessary information such as indoor/outdoor tem-

perature and electricity expenses. We developed an energy-

temperature correlation model and validate the model with

our sensor network in real-world experiment. We further de-

veloped efficient room scheduling algorithms. Comprehensive

simulations verified the effectiveness of our system.
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