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ABSTRACT tion/delivery but also to power plant damage and fast

Energy is a global concern and the electricity bills nowa- deterioration [27]. As such, dynamic price can encour-
days are leading to unprecedented costs. Electricity price®8¢ usage in low demand time and penalize usage in
is market-based and dynamic. In this paper, we investigateligh demand time. The recent development of smart
how to cut the electricity bills of commercial buildings in a  8rids aims at diversified electricity generation and fast
dynamic power market. The building thermal systems (e.g., tesponse to demands [12][35]. A more dynamic power
air-conditioning), which dominate electricity bills, haspe- ~ market is widely expected. o
cial property of thermal storage, i.e., the energy will not ~ An important edge system of the smart grid is the
immediately dissipate from thermal air/water. Intuitijel ~ commercial building. It is one of the four dominating
with storage, the energy can be “stored" in the thermal sys- €1€rgy consuming sectors, along with transportation,
tem, making it possible to purchase electricity in low price Manufactory and residential usage [34]- For regions
and use it at appropriate time. The building thermal sup- like Hong Kong, where the Industry sector is small,
ply and electricity purchasing surely depends on human ac-65% of electricity is reported to go to the commercial
tivities that the building should support such as class and bmldmg? [4]. In .bu{ldlngsa thf! thern{lé}I systems (i.e.,
meeting schedules. To minimize electricity bills, we degel ~ the heating, ventilation and air-conditioning systems,
a holistic planning of electricity purchasing schedulehwit HVA@ .SYStems) dominate electricity bills. As an exam-
thermal storage management, and appropriate room assignPle: it is reported that for the Office Segment of Hong
ment schedules for classes/meetings usage. Kpng, 54% €.1€Ctr101ty goes to space conditioning (i.e.,
The computing algorithms require inputs of physical mod- alr'conqltlonmg)’ 14% goes to lighting, 13% goes to of-
eling on energy consumptions. We develop wireless sensingfice equipments such as computers [4]- In this paper, we
systems to collect fine-grained data which are used to as-iivestigate how to cut the electricity bills of commercial
sist the cross-disciplinary physical modeling. We conduct Puildings in a dynamic power market.
validation through real experiments. We formulate an opti- L 1e thermal system has a special property of thermal
mization problem and show that it is NP-complete. Our pri- Storage, i.e., the energy will not immediately dissipate
mary focus is to minimize electricity bills, which matches from thermal air/ water. Intuitively, with storage, the
the incentives of the commercial buildings. We show, how- €nergy can be “stored” in the thermal system for a cer-
ever, that this does not coincide with energy conservation. tai time, making it possible to purchase electricity in
We thus further investigate the relationship of minimiaati 10w price and use it at appropriate time. Certainly, the
of electricity bills and minimization of energy consumptio ~ Pattery has a wide application as a conventional energy
We develop efficient algorithms for our problem and our Storage(e.g..vehicles etc), it can get the same effect by

evaluation shows that we can achieve a 40% cost reduction, 'sing battery to store energy, but in the building, using
thermal storage to store energy is more suitable. Com-

pare to battery, the thermal storage is the most cost-
1. INTRODUCTION effective and reliable, and help lower energy consump-
tion and reduce greenhouse gas emissions(see Table 1).
The building thermal supply and electricity purchasing
from the power market surely depends on human activ-
ities that the building should support where the human
activities could be represented by class, meeting, office
usage schedules. To minimize electricity bills, we need a

Energy is a global concern nowadays and the energy
price is expected to continuously increase. Electricity
prices also fluctuate. This is because some power plants
cannot stop power generation or some power sources are
dynamic (e.g., solar or wind), and peak hour demand
leads not only to more electricity loss in power genera-



Storage Capacity Efficiency  Cost Life
Technology | (kWh/t) (%) $/kWh (year)
Lead-Acid | = 55 ) 85 50-100  3-12

battery
Thermal ) 5 74 >90 0.1-1  >20
storage

Table 1: Comparison: Lead-Acid battery and thermal
sotrage [14]

holistic planning of electricity purchasing schedule with
thermal storage management, and appropriate room as-
signment schedules for classes/meetings usage.

Clearly, this planning falls into an optimization prob-
lem. We need carefully designed algorithms. In addi-
tion, the computing algorithms require inputs of the
thermal consumption of rooms and thermal storage ca-
pacity of the HVAC system in the buildings. These
require cross-disciplinary physical modeling.

In this paper, we develop a wireless sensing system to
collect fine-grained data which are used to assist cross-
disciplinary thermal modeling. We validate our physical
modeling through real experiments. We formulate an
optimization problem to minimize the total electricity
bills where we need to develop a schedule for electricity
purchasing from the power market and a schedule for
meetings and room assignment. We show such problem
is NP-complete. Our primary focus in this paper is to
minimize electricity bills; this matches the incentives of
the commercial buildings. We observe, however, that
such minimization does not coincide with energy con-
servation. Intuitively, the optimization may schedule a
meeting to a room at a time that can result in low cost,
yet high energy consumption. We thus further study the
root cause and the correlation between energy consump-
tion minimization and electricity bill minimization. We
develop a heuristic algorithm for the overall problem
using a Lagrangian relaxation-based method. We con-
ducted comprehensive evaluation based on real pricing
data and we see up to a 40% cost saving as compared
to typical current scheduling.

The remaining part of the paper is organized as fol-
lows. We discuss related work in Section 2. We then
present background on building thermal systems and
an overview of our problem and solutions in Section 3.
In Section 4, we formally formulate our problem and
analyze its complexity. Before we go into the detailed
physical thermal modeling and computing algorithm de-
signs, we discuss the relationship between minimizing
electricity cost and minimizing energy consumption in
Section 5. In Section 6, we present the thermal mod-
eling, wireless sensing system development and experi-
mental validation. Our algorithms are shown in Section
7. In Section 8, we evaluate our algorithms and finally
we conclude our paper in Section 9.

2. RELATED WORK

With global concerns on energy conservation, energy
price is expected to continuously increase, leading to un-
precedented electricity bills in many domains. Electric-
ity grids adopt dynamic pricing strategy to reduce en-
ergy loss, minimize power plant damage, etc [36]. There
are studies that take advantage of such dynamic pric-
ing to reduce bills for data centers. Two early schemes
were proposed to reduce the electricity costs by shift-
ing workload of data center from locations with high
electricity prices to those with low prices [30]. Follow-
ing these, a comprehensive set of algorithms and game
theoretical models were developed for various scenarios
[19][31][38]. These studies provide useful experiences.
However, building thermal systems have unique charac-
teristics and different background context.

An early work that takes advantage of thermal stor-
age and real time pricing to save electricity bill in com-
mercial buildings is [8]. The work considers the build-
ings as a whole. They do not study detailed building
activity management nor they reveal the conflict be-
tween the energy minimization and electricity bill min-
imization. The work in [8] was developed in early 90s.
We believe at that time, we were short of methods to
obtain fine-grained data and modeling. Nowadays, we
have well-developed sensing systems and comprehensive
models such as EnergyPlus, etc. These make it possi-
ble for us to conduct better scheduling, as shown in
this paper. In a recent work [25], battery is proposed
to be used as storage for residential houses. Excellent
machine learning techniques are developed to predict
next-day consumption. The objective of the paper is
also minimizing electricity bills. We differ from them as
we consider the storage of the thermal systems and our
work focus more on a building/campus environment.
The thermal system has greater capacity and is also
cheaper. In general, one ton water can store 334 mil-
lion Joule or 93kWh energy [2]. A typical battery has
a capacity of around 20kWh. In addition, we develop
meeting and room assignment schedules. We have a pre-
vious study [29] where we observe that the cool air in
a room will not dissipate immediately after a class and
class schedules should take such advantage. A follow-up
work develops more refined schedules [24]. These stud-
ies only consider the thermal storage of a room, which
is small and less practical in real world. In addition, we
clearly specify the mismatch between minimizing elec-
tricity bills and minimizing energy consumption and we
hope this may contribute insights for future studies to
search for a balance. As buildings are key edge systems
for smart grids, the mismatch shows a concrete exam-
ple that the smart grid pricing strategies may quantita-
tively take into consideration; the pricing strategies of
smart grids are heavily studied recently [21], yet usually
from a high level game theoretical point of view.



As the commercial building is one top energy consum-
ing area [28], there are many other studies contributed
by the computer society in recent years: 1) there are
studies on fine-grained monitoring systems using the re-
cent advances in wireless sensor networks [13][20]. An
auditing network is built to collect electricity readings
[17][18] and sMAP is developed [9] as a general com-
mon layer to record physical information for different
applications. Similar systems include [22][32]. We de-
velop our own testbed where we convert the wired build-
ing management systems into wireless without changing
upper layer building operational protocols [23]; 2) there
are studies on physical modeling of the building ther-
mal systems [5][10]; with an aim to better understand
cyber-physical co-designs and 3) there are algorithms
on wise and automatical device turning-off to save elec-
tricity [5][15], assisted by fine-grained data collection
and/or thermal modeling, inference on human presence
[37], or human participatory sensing/voting for thermal
comfort [11].

3. BACKGROUND AND AN OVERVIEW
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Figure 1: The structure of typical HVAC system

In this paper, we will use air-conditioning in our pre-
sentation for the sake of conciseness (our work straight-
forwardly handles the heating). A typical HVAC sys-
tem(the thermal system) is shown in Fig. 1. There is
a cold water tank. It is chilled to certain temperatures
from time to time and this chilling process consumes
huge electricity. Hot air impacts on the chilled water
system and is compressed in the supply ductwork. If
a room turns on air-conditioning, the ventilation of the
room (e.g., VAV box) opens and the cold air is squeezed
into the room. The cold air gradually gets heated and
returns to circulation. The thermal storage refers to the
chilled water system and the supply ductwork; the in-
sulation of these systems is good and the energy loss
is mini-scale. To store more energy in the thermal sys-
tem, we can cool the chilled water and the cold air in
the supply ductwork to a lower degree.

For a specific room, the amount of electricity it con-
sumes depends on many factors. Two rooms of the same
capacity (the number of people the rooms can accom-
modate) may consume different amount of electricity
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Figure 2: The diagram of the thermal energy flow
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Figure 3: The framework of the thermal cost manage-
ment system

due to different configurations and/or orientations. At
different times of a day, a room also may consume very
different amount of electricity.

The energy supply and demand in a building can be
abstracted as Fig. 2. The energy demands come from
the rooms when scheduled to hold human activities, i.e.,
meetings. This meeting is meant to be general. In a
campus context, this can be translated into class sched-
ules and in a commercial building context, this can be
translated into office planning and meeting schedules.
We will see in our formulation (Section 4) that a meet-
ing is only associated with the number of people at-
tending the meeting (one person is fine if it is his office
room) and a time period (which can be considered as
his/their activity patterns). The energy supplies come
from the chiller system and the thermal storage. The
chiller system is electrically charged to support the en-
ergy demands from rooms when the thermal storage is
low. All of these finally are electrically supported by
the power market. Minimizing building electricity bills
in the aforementioned system falls into an optimization
problem. Yet we face difficulties both in algorithm de-
sign and in physical thermal modeling. Our solution
framework is in Fig. 3. On the computing side, we
need to develop two schedules: 1) meeting/class sched-
ule (if the time of the meetings is not required to be
fixed) and room assignment schedule for meetings; and
2) electricity purchase schedule from the dynamic power
market. On the physical side, we need to model: 1) the
thermal storage capacity, and 2) the energy (electric-
ity) requirement for each room if they are assigned for
meetings/classes.



The linkage between the computing side and the phys-
ical side is that computing schedules need inputs from
the physical side. From a high level point of view,
we will develop equations that link the dynamics be-
tween the demands (room air-conditioning), and the
supplies (thermal storage and the electricity charges for
the chiller system); as we can see from Fig. 2.

We give a more detailed overview of our physical side
design in Fig. 3. Thermal computing falls into the ex-
pertise of Building and Service Engineering. They have
sophisticated tools such as EnergyPlus [3]. One may fill
in the parameters of a room (or the thermal systems)
and EnergyPlus will output the energy requirements.
In EnergyPlus, one can even input the weather of the
day, and EnergyPlus can estimate the temperature, so-
lar energy strength according to the weather and output
more accurate energy requirements if a room is in use,
based on its well trained model and comprehensive his-
tory data. EnergyPlus is a complex model and there
can have hundreds of parameters.

Our physical computing is based on EnergyPlus. For
thermal storage capacity computing, we use EnergyPlus
directly as it is stand-alone and can be computed once
for all. For rooms, we can also use EnergyPlus directly.
However, the rooms are very different in configurations.
This may introduce high complication if we need to find
out the parameters to be input to EnergyPlus room-by-
room. Our approach is a wireless sensor system assisted
approach as follows. The major complexity comes from
some compound parameters that are not easy to ob-
tain directly. As an example, a key parameter is ther-
mal conductivity of a wall. It is difficult to compute
from theory as it involves knowledge of sub-parameters
of materials etc, especially, if we have to do it room-by-
room for all rooms. We found that these parameters are
invariants, however; as it will not change subject to en-
vironments. We can inversely calibrate it if we can first
collect a set of data on electricity usage, temperature
of the room, etc. We develop wireless sensor networks
to collect these data. We thus can substantially reduce
the number of parameters to be input to EnergyPlus.

4. THEPROBLEM ANDITSCOMPLEXITY

41 TheProblem

Our problem is to compute the meeting and room as-
signment schedules and the electricity purchasing sched-
ules from the power market, so as to minimize the cost.
We now formally formulate this. Assume we have N
rooms and M meetings. Let r; and m,; denote room 4
and meeting i respectively.

Without loss of generality, we simplify the meeting
requirement to the number of people of the meeting
only. We may have additional constraints, such as spe-
cific equipments in a room, distance between two meet-

ings/classes in location so that people can travel be-
tween the rooms in time, etc. From an optimization
point of view, these add more constraints to the prob-
lem. Let w(m;) denote the capacity requirement (num-
ber of people) of meeting m;. Let w(r;) denote the
capacity of room r;. Let ¢ and t§ be the meeting time
is for each meeting ¢. Note that we can have fix meet-
ing times (as requirements/constraints) and/or flexible
meeting times (to be computed); and we will study both
of them in this paper.

We also simplify the total electricity consumption of
a building to be the sum of the electricity consump-
tion of the rooms in supporting meetings. There are
surely other electricity consumptions, e.g., lighting, and
air-conditioning of the corridors, etc. We argue that
the electricity consumption of lighting, etc is much less
than air-conditioning; and the air-conditioning of cor-
ridors, etc is easy to compute as their usage is regular
and stable. Let £(i,t5,t5,7T;) be electricity consump-
tion of room ¢ at start time ¢; and end time { with a
target temperature 7;; e.g., in Hong Kong the recom-
mended temperature for Grade A buildings is 23.5°C
(74.3°F)[7].

Let P; be the electricity price at time t. Let V; be the
thermal storage at time ¢. Let the maximum and mini-
mum thermal storage capacity be V,,q, and Viip,. This
Vimin shows that the thermal storage cannot be com-
pletely used up; a special characteristic of the thermal
system as compared to battery storage.

There are two schedules we need to compute. Let
L, be the electricity charge needed at time t. L; rep-
resents the electricity purchase schedule. For meeting
schedules, we need to decide the room and the meeting
time (if the meeting time is pre-determined, this be-
comes a constraint). Let x;; be an indicator variable,
where x;; = 1 represents that meeting m; is assigned
to room r; and 0 otherwise.

Our Minimize Building Electricity Cost (MBEC) prob-
lem can be formalized as:

min Z LtPt,
t

1. Meeting Schedule Constraints:

N
omy = 1Vi=1,....M (1)
=1
> wy; < 1Vi=1,...,N (2)
JET:
w(m;) < w(r) Vo =1 (3)

2. Thermal Consumption Constraints:

N

He = > 3 x;€0,6,4.T)  (4)
=1 j€T:

Hy < Hper < Lias (5)



3. Thermal Balance Constraints:

Vit Vi+ Li — Ht (6)
Vmin V;E S Vmam (7)

<

The objective function is self-explanatory. The Meet-
ing Schedule Constraints show that a meeting must be
assigned once but the only once, a room can only ac-
commodate one meeting at any time ¢ and the meeting
should not exceed the room capacity. Here, J; represent
the set of all meetings that in action at time ¢. Let Hy
be the total thermal consumption at time ¢. It is com-
puted in the Thermal Consumption Constraints. The
thermal consumption at any time must be less than the
thermal supply capacity of the HVAC system. This is
ensured by design of HVAC system. The Thermal Bal-
ance Constraints show a state transition equation (more
details in Section 6) should be maintained between each
time ¢t and t+ 1. Intuitively, the thermal storage at time
t 4 1 equals the thermal storage at time ¢, plus electric-
ity charges and minus electricity usage. V; has an upper
and lower limit at any time t.

In this problem, the inputs of £(i,¢5,t5, 7;) and Vinaq
need to be computed from the physical side.

4.2 Complexity analysis

THEOREM 1. MBEC is NP-complete.

PRrROOF. To shown the problem MBEC is NP-complete,

we reduce a Job Interval Selection Problem[33] to it.
The former is proven NP-complete in [4]. The proven
theorem is views as follow: Given are a n k-tuples on
the real line JFI; = sy, fij,j=1,...,k, i=1,..,n. A
k-tuple of interval can be referred to as a job. that is for
each job p and each interval I a starting time s, and a
finishing time fpi(> Spi) is known. It is NP-complete to
determine whether there exist a feasible scheduling while
using a minimum number of machines when k > 2.
This statement also indicates that deciding whether the
feasible schedule exists is NP-complete.

Given an instance (J, P, E) : J = Jy, Jo, ..., J, is the
set of n jobs, P = Py, P, ..., P, is the set of m pro-
cessors and JFI = s, fij,7 =1,...,k is the k-tuples
on the real line. We construct a set of meetings M =
mi, ma,...,mpy and a set of rooms R = ry,79,...,7N.
Meeting m; has feasible interval M F'I; = Gt =1,
i =1,..., M. All meetings have same capacity require-
ment w(m). all room have same capacity w(r) and
w(m) < w(r). let the electricity price be P(t)
let the thermal inertia energy be V4, = 0. Let me be
the unit time energy cost for keep any room at a target
temperature.

We next show by finding the minimum cost sched-
ule § for all meetings, we can find the feasible schedule
S’ for all jobs in polynomial time. we have a meeting
schedule &’ which is a valid schedule for all meetings,

Pconstant )

the total cost of C is expressed as Cp = Zfil Peonstantme(ts—

t?). Replacing MFI; in S with JFI; in &', we have a
minimum cost schedule § which is a valid schedule for
all meetings, thus &’ for all jobs is a feasible sched-
ule. O

Another problem that is of interest is to have the
meeting start and end time fixed. We call this problem
f-MBEC.

THEOREM 2. f-MBEC is NP-complete.

PRrOOF. To shown the problem -MBEC is NP-complete,

we reduce a Cost Constrained Fixed Job Schedule Prob-
lem [16] to it. The former is proven NP-complete in
[5]. The proven theorem is views as follow: Given a
set J = Ji,Ja,...,Jn of n jobs, job J; has fixed start
time and end time (s;,t;). Given k classes of processor,
and for each class j = 1,...,k, the number B; of pro-
cessors, and the unit time processing cost C; for pro-
cessors in this class. Let Z?:l B; be the total num-
ber of processors. Let C;, is the unit time processing
cost of the processor on which job J; is processed. Let
Cr = sz\il Cj, (t;—s;) be the cost in some kind of sched-
ule. Let Cp > 0 be a cost bound. It is NP-complete
to determine whether there exist a feasible schedule for
N jobs, such that the cost Cp < Cp. This statement
also indicates finding the schedule with minimum cost
is NP-complete.

Given an instance (J, P,BP,C) : J = Ji,Ja, ..., Jn
is the set of n jobs, P = Py, Ps, ..., P, is the set of m
processors and BP = BPy, BP,, ..., BPy is the family of
subsets of P. let C; be the unit time processing cost for
processors in the class BP;, J; has fixed start time and
end time (s;,t;). We construct a set of meetings M =

mi, ma,...,mpy and a set of rooms R = ry,79,...,7N.
Meeting m; has fixed start time and end time (tf,t5),

t? and t§ for m; are equal to s; and ¢; of J; respectively.
All meetings have same capacity requirement w(m). all
room have same capacity w(r) and w(m) < w(r). let
the electricity price be P(t) = Peonstant, let the thermal
inertia energy be V.4, = 0. For a set of rooms, we
divided these rooms into k classes. Let me; be the unit
time energy cost for keep the room in class j at a target
temperature. Let me;, is the unit time energy cost of
the room on which meeting m; is occupied.

We next show by finding the minimum cost schedule
S for all meetings, we can find the minimum cost sched-
ule &’ for all jobs in polynomial time. Replacing (m;,r;)
in § with (J;, P;) in &', we have a meeting schedule &’
which is a valid schedule for all meetings. The number
of room occupied in S is equal to the number of pro-
cessor used in &’. The total cost of Cr is expressed as
Cr = Zi\;l Pronstantmej, (t¢ —t?), The total cost of S is
expressed as Cf. = Efil Cj, (ti — s;). Replacing (t%,t¢)
and Preonstantmej, with (s;,t;) and Cj,, we can verify



that S for all meetings has the minimum cost, thus &’
for all jobs has the minimum cost. [

We specially mention -MBEC because 1) +MBEC
is practical in many scenarios and 2) -MBEC is quite
different from MBEC in the NP-complete proof and
analysis. We comment, in high-level, on the difference
between MBEC and f-MBEC. The key complexity dif-
ficulty of MBEC and f~-MBEC comes from the meet-
ing scheduling (similar to job scheduling). There are
two different types of job scheduling: one is finding a
schedule to satisfy the timing of all jobs [33] and one is
minimization cost for fixed jobs [16]. The complexity
reduction are from completely different threads.

In this paper, we mainly focus on MBEC. In Section
7, our algorithm for MBEC surely solves -MBEC and
we will evaluate both in Section 8.

5. ELECTRICITY COST VS ENERGY

Before we go into the details of our algorithms for
MBEC and the physical modeling, we first analyze the
relationship between minimizing electricity cost and min-
imizing energy consumption. As said, these two mini-
mizations do not coincide with each other. Note that
this is true for both MBEC and f~-MBEC, i.e., even the
start time and end time of the meetings are fixed, the
two minimizations are still not coincide with each other.
In this paper, we study the root cause that leads to the
differences between the two minimization and in what
conditions the two minimizations become identical. It
is not the objective of this paper to find a good compro-
mise of them; we believe that this is a grand problem
that is also related to power market pricing designs.
There are some studies on high-level abstraction [26]
and we also plan a future work.

OBSERVATION 3. Without real-time pricing, minimiz-
ing electricity cost and minimizing energy consumption
are identical.

OBSERVATION 4. If, at any time, all the rooms have
identical energy consumption, minimizing electricity cost
and minimizing energy consumption are identical.

Intrinsically, if there is no price difference on the
supply side, or there is no difference on the demand
side, saving cost can be achieved only by saving en-
ergy. Thus, the two minimizations become identical.
The starting time, ending time of meetings, room ca-
pacity, etc are not essential conditions. As a conse-
quence, both MBEC and -MBEC face that minimizing
electricity cost may not conserve energy.

Let £(r,t) be the energy consumption of room r at
time ¢. Define cost-energy in-conflict condition as:

(1) Given &(r,t) > E(r',t') and P, < Py, Vrt, 7', t',
E(r,t)Py > E(r',t')Py; or (2) Given E(r,t) < E(r', 1)
and P, > Py, Vrt,r' t', E(r,t)P, < E(r',t) Py .

Figure 4: Energy vs. Cost: “X” shows the region that
the two minimizations are identical.

We use the cost-energy in-conflict condition to cap-
ture the essence of Observation 3 and 4. Basically it
ensures that energy and electricity cost increase and
decrease in the same direction. Therefore,

LEMMA 5. If cost-energy in-conflict condition holds,
minimizing electricity cost and minimizing energy con-
sumption are identical.

ProOOF. We only focus on condition (1) and the con-
dition (2) can be proved similarly. We prove by con-
tradiction. For any &(r,t) > &£(r',t') and P, < Py,
assume the contrary holds, i.e., 3E(r, t) P, < E(r',t') Py .
Clearly, it minimizes electricity cost to put meeting in
r at time ¢, and minimizes energy to put meeting in r’
at time t’. This violates that room r and r’, time ¢ and
t' are identical, where minimizing electricity cost and
minimizing energy consumption are identical. [

In Fig. 4, we show an illustration of the cost-energy
in-conflict condition. The X-axis is the ratio between
the electricity price at any time and the Y-axis is the
ratio between the energy consumption of any room at
any time. “X” shows the region where there will be cost-
energy conflict. More specifically, if the electricity pric-
ing and/or energy differences of rooms falls into these
two regions, minimizing electricity cost and minimizing
energy consumption are not the same.

We next show the role that thermal storage can play.

LEMMA 6. Given that the thermal storage has infi-
nite capacity, minimizing electricity cost and minimiz-
ing energy consumption are identical.

PROOF. We prove by contradiction. Assume the con-
trary holds, the thermal storage has limited capacity,
so 3P, < Pp under dynamic price market. We can
find two rooms r and r’ meeting that E(r,t) > E(r', ),
E(r,t)Py < E(r',t')Py. The violates lemma 5, where
minimizing electricity cost and minimizing energy con-
sumption are identical. [
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Figure 5: Difference between minimizing electricity and

minimizing energy consumption as against to the price
difference.

This lemma shows that thermal storage can mask the
difference between the two minimizations. Intuitively,
thermal storage hides the impact of the electricity price
difference at different times.

To quantitatively understand the difference of the two
minimization, we plot an illustration in Fig. 5. The
background is as follows. There are 40 rooms and each
room has a capacity to accommodate 60 people. Never-
theless, the energy requirement of each room is different
as there are different orientations of the room (more
details of how a room can be modeled are in Section
8.1). We have 250 meetings each with a length of one
hour. We compare the solutions for minimizing elec-
tricity cost and minimizing energy consumption. We
see that when the price difference is $25, there can be
a difference of around 20%. With a thermal storage
capacity of 150kWh, the difference is 15%. Note that
the thermal storage capacity of 150kWh in our setting
indicates that the thermal storage can hold for all the
building rooms in operation for 1 hour. This is rea-
sonable practice in real world [1] and $25 - $30 price
differences are also quite conservative.

In this paper, we do not further study how we may
choose or find a trade-off between electricity bill reduc-
tion and energy conservation. We believe there can be
separate studies both in a trade-off in building man-
agement and in smart grid pricing strategies. In what
follows, we emphasize on electricity bill reduction as this
matches the incentives of the building operators.

6. THERMAL COMPUTING

We now study how we obtain the key physical in-
puts for our scheduling algorithms. We first present
our physical modeling. We present our design and im-
plementation of a wireless sensor network, which is used
for data collection to assist our physical modeling. We
further present our validation.

6.1 Physical Modeling

We first discuss the state transition equation, i.e., Eq.
6 in Section 4. We then discuss how to model thermal
storage, i.e., Vi qz; and energy consumption for rooms,
ie., E(i,t3,t5,T7).

IR BRI

6.1.1 The State Transition Equation

Let L be the electricity charging rate, and H be the
thermal demand rate. Let AV be the thermal storage
charge/discharge volume in a period AT. Thus, the
thermal storage volume V' can be characterized by an
electricity charging/thermal demand rate in the follow-
ing expression.

LAT — HAT = +AV ®)
AV < Vinae

When the electricity charging is greater than the ther-
mal demand, the thermal storage is in the charge mode;
and otherwise, in the discharge mode.

In this paper, we transform it into a discrete model
by discrete the time:

Vigin =Vi + L — Hy 9)

We call Eq. 9 the state transition equation. It estab-
lishes a linkage between the electricity charging, thermal
demand, and the thermal storage; where the electricity
charging and thermal demand should be determined by
the schedule for electricity purchasing and the schedule
for meetings and room assignment respectively.

6.1.2 Modeling Thermal Storage and Rooms

We use EnergyPlus for modeling both the thermal
storage and room energy requirement since it has exten-
sively tested HVAC modules. Many past experiences on
EnergyPlus can be found in [6][24].

As said, we directly use EnergyPlus to model the
thermal storage as it is once for all. For energy con-
sumption of the rooms, the number of parameters to
be used for EnergyPlus increases fast as rooms are very
different. The parameters can be broadly classified as:
1) length, width, and height of the rooms etc. The
values of these parameters are easy to obtain, 2) the
conductivity of walls etc. These parameters are com-
pound parameters, i.e., further related to materials etc.
They are difficult to compute directly but they are in-
variants, i.e., do not change from environments; and 3)
solar radiation, human activity, etc. These changes fre-
quently. Fortunately, however, EnergyPlus has exten-
sive training for these parameters. For example, given
the weather, we can get them by linear regression on
the historical data from EnergyPlus.

We mainly need to deal with 2). Though EnergyPlus
can also be used for 2) it can become over complex
due to a large number of rooms. As such, we derive
these parameters by inverse calibration. We use thermal
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conductivity as an example to explain our idea. Let A
be the thermal conductivity of the walls.! Ultimately,
we want to compute energy requirement of the room
E. & can be written as an equation & = f(\ a,b,¢,...)
where a,b,c,... are side parameters that are easy to
obtain. To inversely calibrate A\, we can first collect
a set of values of &, a,b,c,... and inversely solve the
equation £ = f(\,a,b,¢,...).

We develop a wireless sensor network to collect these
data for inverse calibration. The sensor network collect
indoor temperature, outdoor temperature and electric-
ity usage. Similar ideas have been proposed in [5] and
our previous work [29]. Due to page limitation, we omit
the details of formal derivation and explanation of equa-
tion groups £ = f(\,a,b,¢,...).

6.2 Wireless Sensor Network Design

The objective of our wireless sensor network is to col-
lect the electricity usage to air-conditioning the room,
and indoor, outdoor temperatures.

We develop a two tiered wireless sensing network as
shown in Fig. 7. The end tier is a set of TelosB-based
temperature sensors. They record temperatures and
send such readings to the top tier, the Imote2-based
electricity-meters. The Imote2 is extended with an elec-
tricity meter. As such, it can record and send electric-
ity usage in real time. We also developed a long-range
data communication module (LR-Module, in connec-
tion through 3G or WiFi) and connect it to the Imote2
sensor. As such, the data can be transmitted to a re-
mote base station. This is because we cannot place the
base station (usually a laptop computer), unattended,
in the rooms of experiments and one cannot afford to
always have people in the rooms of experiments.?

We implement our sensor system in TinyOS, and use
Collection Tree Protocol (CTP) for data routing among
sensor nodes. The Imote2 sends the temperature data
collected from the end tier, and its electricity readings

!This can be considered as an average to represent the ther-
mal conductivities of all walls. More specifically, though
the walls (including ceiling and floor) of a room r are also
different, we can develop a virtual room that has the same
energy requirement and property of room r; the A of this
virtual room well represents the As of the walls of room r.

2The Imote2 sensors and the TelosB sensors are less conspic-
uous; they can be placed in boxes and hung on the walls.
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Figure 8: Example of Experiment Results

from the electricity meter to our remote base station.
The Imote2 has high load to relay data, but it has direct
power supply and TelosB sensors use batteries.

6.3 Validation

We conduct real experiments to validate our inverse
calibration using wireless sensor network. The config-
uration of the room of our experiments and the sensor
network deployment are shown in Fig. 7. We deployed
nine indoor sensors, one outdoor sensor to collect tem-
perature and an electricity-meter connected to the air-
conditioner (AC). In our experiments, we periodically
turned on and off the AC. Fig. 8 shows part of our
experiment data: the upper figure shows the electricity
usage recorded and the lower figure shows the temper-
atures recorded. We compute \ by the average of the
As of a set of electricity and temperature data. After
we have A and other parameters, we can put them into
EnergyPlus to compute energy requirements of a room.



Period Measurement WSN+EnergyPlus
(kWh) (kWh)
8:00 - 9:00 560 505
10:00 - 11:00 690 780
12:00 - 13:00 780 905
17:00 - 18:00 530 480
22:00 - 23:00 510 575

Table 2: Measured vs. Simulated Energy Consumption

To validate the accuracy of our method, we use \ to
simulate the energy consumption in five periods when
the AC is in operation. We show the results in Ta-
ble. 2. There are two columns. The 1st column shows
the real measured data, and the 2nd column shows the
data by X assisted EnergyPlus computation. The errors
are around 9%. Note that the purpose of our physical
modeling is not to achieve ultimate accuracy and make
contribution to thermodynamic theory, but inputs that
are reasonable enough for our computing algorithms.

7. ALGORITHM

Our philosophy in developing the heuristic for MBEC
is as follows. We need to develop two schedules, 1)
the meeting schedule and the room assignment sched-
ule and 2) the electricity demand schedule. Accordingly,
we develop two algorithms: 1) given the electricity de-
mand schedule fixed, find the best meeting schedule and
room assignment schedule; we call it algorithm best-
Assignment(), and 2) given the meeting schedule and
room assignment schedule fixed, find the best electricity
demand schedule; we call it algorithm best-Demand().
We solve the overall MBEC by a Lagrangian relaxation
structure using best-Demand() and best-Assignment()
as sub-routines.

Given the meeting and room schedule fixed, find-
ing the best electricity purchasing schedule (i.e., best-
Demand()) can be optimally solved as it can be trans-
formed into linear programming. Given the electricity
purchasing schedule fixed, finding meeting and room as-
signment schedule (best-Assignment()) is NP-complete.

In what follows, we will mainly discuss how we de-
velop best-Assignment(); and how best-Demand() and
best-Assignment() interact to solve MBEC.

Note that if there is no thermal storage, a meeting
schedule and the room assignment schedule computed
by best-Assignment() can determine the electricity pur-
chasing schedule. We define usable thermal storage as
the thermal storage volume that can be used at a time.
Intuitively, usable thermal storage is the flexible storage
volume at a time. With different usable thermal storage
volume, a fixed meeting schedule and the room assign-
ment schedule can reflect different electricity purchasing
schedule. This usable thermal storage provides a linkage
between best-Assignment() and best-Demand(). The
inputs of best-Assignment() are usable thermal storage

Algorithm MBEC()
1: Set V¢, V* =0;
2: Set S;, =@, S, = P
3: repeat
4:  Temp = S;
5:  Sp=best-Assignment(V*);
6:  [Se, V*]=best-Demand(S,,);
7: until Temp == S,

Figure 9: Algorithm MBEC.

and meeting requirements. Its output is a meeting and
room assignment schedule. The input of best-Demand)()
is a meeting and room assignment schedule and its out-
put is electricity purchasing schedule and the possible
usable thermal storage.

Algorithm MBEC() is shown in Fig. 9. Algorithm
MBEC() first calls best-Assignment() where the input
of usable thermal storage V" is 0. It determines a meet-
ing and room assignment schedule S,,. S,, is given to
best-Demand(). best-Demand() will compute the elec-
tricity purchase schedule S, according to S, and adjust
the usable thermal storage V*. Such V" is returned to
best-Assignment(). The ending condition for MBEC()
is if there is no change in the schedules.

Algorithm best-Assignment() is greedy-oriented. We
first group the rooms according to its capacity, and sort
room groups in descending order according to capacity.
Second, we classify the meetings into different meeting
groups according to room groups. For example, if we
have room groups of capacity 20 and 40, we classify
meetings of 25 people into meeting group of 40. As such,
we have corresponding group pairs, i.e., the room group
and meeting group. In each group pair, we calculate the
cost and assign meetings to the rooms greedily, i.e., from
the smallest cost one to the largest one.

8. SIMULATION
8.1 Simulation Setup

We evaluate our algorithms using real electricity price
data, synthetic room configurations we generate based
on our validation in Section 6 and synthetic meeting
requirements. We discuss each of these in details.

We first comment on the electricity price. We ob-
tained the electricity price data of Houston from ER-
COT (Electric Reliability Council of Texas). It has a
day-ahead market and a real-time market. The day
ahead market is the predicted price from ERCOT for
the next day. This is not the true price as the true price
is real-time that subjects to the real demands. Never-
theless, the trend of the day-ahead market and real-time
market matches well. We show the day-ahead market
and real-time price at Houston on August 30th, 2012 in
Fig. 10 (a) and (b). We can see that the peak of real-
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Figure 10: Comparison price differ for day-ahead market and real-
time market in Houston on Aug 10, 2012. (a) Day-ahead market

(b) Real-time market.

time price (the true price) is usually smaller than the
day-ahead prediction; this shows that the intimidating
day-ahead high predicted price can reduce demand to
certain level. We also see that the real-time price and
day-ahead price share the same trend. This implies that
if we develop our schedules using day-ahead price (in
other words, these are offline schedules), we will obtain
reasonable good result even if we do not have real-time
price. In our simulation, our evaluation is based on real-
time price and we will compare with day-ahead price.
The dynamic price adjustment interval is 15 minutes.
We also show the daily electricity price from real-time
market in August, 2012 in Fig. 11. These data can be
found from [1] and similar evaluation setup has been
used in [19][25].

The room configurations are summarized in Table 3.
The total number of rooms is 110. (S) and (N) repre-
sent the orientation of room, i.e., south and north. In
general, rooms towards south have higher energy con-
sumption for air-conditioning. We assume the materials
of walls, floor and ceiling in the rooms are same to the
materials of the hotel rooms in our validation (Section
6). As a consequence, we can calculate the A based on
room size, position and orientation. We then use En-
ergyPlus to compute the energy consumption of each
room each hour. The P in the Table shows the median
and the variance of the results.

We set the target temperature T3 = 23.5°C (74.3°F)
for all meetings, the standard temperature recommended
for Grade A buildings in Hong Kong. We set the meet-
ings from [8:00, 22:00] in each day. The length of the
meetings are randomly selected from two groups, O; =
[1,1.5,2,2.5,3], O2 = [1,2,3]. For example, for Oy,
the meeting lengths are randomly chosen from 1, 1.5,
2, 2.5 or 3 hours. As a reference, if the meetings are
all 2 hours, the total number of meetings the building
can hold in one day is 770. The meeting capacity re-
quirement is set randomly but proportional to the room
capacity. Similar evaluation setup can be found in [29].

We compare our algorithm MBEC with 1) room schedul-

ing algorithm that just satisfies the meeting time and

20 60 80
Time(GMT-00:00)

16
August, 2012

Figure 11: Daily electricity price
data in Houston on August,

2012.

Cap | Num Size A P +20%
(S/N) (LxW x H) (J/s-K) (kW)
20(S) | 10 4x5x3 498 15
20(N) | 10 4x5x3 40.2 1.2
4008) | 20 8x5x3 83.7 2.4
ON) | 20 8x5x3 63.2 1.8
60(S) | 20  6x10x3 1145 4.7
60(N) 20 6 x10x3 82.5 3.3
80(S) | 5  8x10x3 1420 6.2
8O(N)| 5  8x10x3 1185 4.9

Table 3: Room configuration
room capacity requirements (denoted as just-fit). We
have consulted the class scheduling of our university
and there is no special algorithm designed with consid-
erations on energy or electricity issues. Therefore, we
believe just-fit can be considered as a standard bench-
mark; and 2) best-Assignment() only.

8.2 Simulation Result

In the simulation, we first consider the impact of
meetings, prices and thermal storage on electricity costs.
We then evaluate our algorithms used for -MBEC() and
compare to MBEC(). At the end of section, we further
evaluate our algorithms using day-ahead price. As a
comparison benchmark, the electricity cost if all rooms
are fully assigned (i.e., from 8:00 - 22:00) is $173.3.

The default values for thermal storage is set to 500kWh;
this can approximately support all rooms for 1.5 hours.
We use O; as our default meeting length option group.
The cost saving is the difference between MBEC() and
just-fit scheduling.

8.2.1

Fig. 12 (a) show the electricity cost as a function of
meeting numbers. For all three algorithms, we can see
that if there are more meetings (i.e., more human ac-
tivities), there needs more costs. We can also see that
both our algorithms best-Assignment() and MBEC()
save costs as compared to the just-fit schedule. This
is not surprising as the just-fit schedule only satisfies
the meeting capacity requirement. Specifically, we see

Impact of Meeting Configuration
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that if there are 200 meetings, the total electricity cost
needed by ad-hoc, best-Assignment() and MBEC() is
$47.5, $34.5 and $30.0. Our algorithm MBEC() has a
saving of 36.8%. Note that such saving is achieved only
by more careful scheduling. Fig. 12 (b) shows very
similar results if the meeting length option is in Os.
Fig. 13 extends the results to the full month of Aug.
2012. As the same as the daily electricity cost, both our
algorithms best-Assignment() and MBEC() save costs
as compared to the just-fit schedule. If there are 200
meetings, the total monthly electricity cost needed by

just-fit, best-Assignment () and MBEC() is $1441.7, $1064.0

and $894.5 and MBEC() saves 40.0%.

8.2.2 Impact of Dynamic Price

2 2.5 3
Peak to off-peak ratio

Figure 18: Cost saving as against to
peak to peak-off ratio.
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Figure 19: Monthly electricity cost
as against to peak to peak-off ratio.

There are two important parameters for the dynamic
pricing: 1) its average price and 2) its peak to off-peak
ratio. We study both these situations. First, we ad-
just the average price of our electricity price data while
keeping peak to off-peak ratios constant. In our base-
line situation, the average price is 32.4$. We adjust this
to a range of [20, 50]. Second, we adjust the peak to
off-peak ratio while keeping the average price constant.
In our baseline situation, the peak to off-peak ratio is
2.2. We adjust this to a range of [1.5, 3.5].

Fig. 14 shows the electricity cost as against to the av-
erage price when meeting number is 200. For all three
algorithms, we can see that if there are higher aver-
age electricity price, there are higher costs. This figure
shows that, as expected, the total electricity cost in-
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creases when the average price increases; yet the just-fit
scheduling increases faster than our algorithms.

In Fig. 15 we show the cost savings as against to
the average price. Clearly, MBEC() outperforms ad-
hoc scheduling and we want to evaluate the gap under
different situations. We see that the more meetings we
have, the larger the gap is. We also see that when av-
erage electricity price increases, we have more savings.

Fig. 16 show the monthly electricity cost as against
to the average price when meeting number is 200. We
see the same results as the daily electricity cost.

Fig. 17 shows the electricity cost as against to the
peak to off-peak price when the number of meetings is
200. We can see that if the peak to off-peak ratio in-
creases, the total electricity cost of just-fit scheduling
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price.

stays the same and our algorithms decrease. Clearly,
just-fit scheduling is ignorant to the cost and our algo-
rithms can take more advantages of the cost differences.
When the peak to peak-off ratio is 3, MBEC() can out-
perform just-fit for as much as 39.8%. In Fig. 18 we
show the cost savings as against to the peak to off-peak
ratio and we see similar results.

Fig. 19 shows the monthly electricity cost when the
number of meetings is 200. We compare all three al-
gorithms. Again, the same as the daily electricity cost,
both best-Assignment() and MBEC() substantially save
costs as compared to the just-fit scheduling.

8.2.3

Fig. 20 shows the electricity cost as against to ther-

Impact of Thermal Storage



mal storage capacity when the number of meetings is
200. We can see that if the thermal storage capac-
ity increases, the electricity costs of just-fit schedul-
ing and best-Assignment() do not change, while best-
Assignment() is better. The electricity costs of MBEC()
keep decreasing. This is not surprising as just-fit schedul-
ing and best-Assignment() do not use the thermal stor-
age for cost saving. When the thermal storage is 1000kWh
(approximately support all rooms for 3 hours), it can in-
troduce a saving of 22.3% as compared to best-Assignment().

Fig. 21 shows the saving cost when we use different
thermal capacity and Fig. 22 show the monthly elec-
tricity cost as against to thermal storage capacity. All
these show that having an appropriate thermal storage
capacity is very cost-effective.

8.2.4 Meetings with Fixed Start and End Time

In many scenarios, meetings have fixed start and end
time. We specially evaluate this in this subsection. Our
algorithm MBEC() can naturally adapt to this. We
call it £fMBEC() in what follows to make the context
clearer. Note that if the start and end times are fixed,
these times become constraints (inputs for the algo-
rithm) rather than to be computed. In our simulation,
we randomly generate the start and end times for the
meetings (following the meeting length constraint Oy).

Fig. 23 and Fig. 24 show the results. Similarly, we
see that if there are more meetings, there needs more
costs and both best-Assignment() and MBEC() save
costs as compared to the just-fit schedule. Compared to
flexible start and end time, the saving becomes smaller,
yet -MBEC() still has a saving of around 25%. Fig.
25, we show the cost savings as against to the average
price. Fig. 26 shows the electricity cost as against to
the peak to off-peak price when the number of meetings
is 200. Fig. 27 shows the electricity cost as against to
thermal storage capacity when the number of meetings
is 200.

8.2.5 The Day-ahead Price

Finally, we evaluate our algorithms using day-ahead
price and compare the results to the real-time price.
This is a comparison between online and offline algo-
rithm. More specifically, we develop the schedule by
the day-ahead price and calculate the electricity cost
by the real-time price. Fig. 28 show the result. We can
see that there is only a slight difference. Certainly, the
results associated with the accuracy of the trend of the
day-ahead price (it is not necessary that the absolute
prices are the same). The closer the trend of the day-
ahead price and real-time price, the better the results.

9. CONCLUSION

In this paper, we studied minimizing electricity bills
of buildings in a dynamic power market. We presented

13

a holistic planning by developing electricity purchasing
schedule from the power market on one end and meeting
schedules and room assignment schedules for the build-
ing to support human activities on the other end. The
thermal storage plays a key role in cost reduction and
linkage between the supply and demand.

Our problem is cross-disciplinary in nature and we de-
veloped both computing algorithms and physical mod-
eling, which is assisted by our wireless sensing systems.

We showed real experiments for validation.

We ob-

served that minimizing electricity bills does not coincide
with minimizing energy consumption. We studied the
cause and their relationship. Unfortunately, we believe
that the incentive of the building operators is to reduce
costs. We would like to conduct a in-depth study on an
appropriate balance of them in the future.
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