
n-MVTL Attack: Optimal Transaction
Reordering Attack on DeFi

Jianhuan Wang1, Jichen Li2, Zecheng Li1, Xiaotie Deng2, and Bin Xiao1

1 The Hong Kong Polytechnic University, Hong Kong.
2 Peking University, China.

Abstract. Decentralized finance (DeFi) is a global and open financial
system built on the blockchain technology, typically using Ethereum
smart contracts. Decentralized exchanges (DEXs) are very important
sectors in the DeFi ecosystem, with billions of USD trading volume daily.
Unfortunately, the transparency of pending pools can be exploited by at-
tackers and DEXs are vulnerable to transaction reordering attacks, allow-
ing attackers to gain miner extracted value (MEV). Previous transaction
reordering attacks aim at exploiting the vulnerability of a single victim
transaction, such as sandwich attack and dagwood sandwich attack.
In this paper, we propose a novel transaction reordering attack named n-
multiple-victim-transaction-layer (n-MVTL) attack to exploit the overall
vulnerability among multiple victim transactions. Such advanced design
can significantly expand the victim transaction search space and bring
more profits to attackers. Given a set of ordered victim transactions,
we propose an optimal algorithm to identify the optimal solution for n-
MVTL attacks, which aims to maximize the profit of the attack strategy.
This algorithm supports a trade-off between time efficiency and attack
profit, making the attack algorithm more practical. Our simulations show
that the n-MVTL attack can yield an average extra daily profit of 940
USD from the top 2 most popular liquidity pools in Uniswap V2 from
Mar. 2021 to Apr. 2023, compared with the sandwich attack.

Keywords: Decentralized Finance (DeFi) · Miner Extractable Value
(MEV) · Decentralized Exchange (DEX) · DeFi Attack · Blockchain

1 Introduction
In recent years, decentralized finance (DeFi) as a supplement to traditional fi-
nance has become an enormous ecosystem with a total locked value of 47 billion
USD in May 2023 [5]. Within the DeFi ecosystem, Automated Market Makers
(AMMs) play a crucial role by providing real-time asset pricing for user trans-
actions in DeFi. The AMMs-based exchange platforms (e.g., Uniswap [9] and
Pancakeswap [8]) handle swap transactions with a total volume of several bil-
lions of USD per day [4].

However, the feature of Ethereum prioritizing transaction ordering based on
gas fees rather than time sequence makes AMMs susceptible to transaction re-
ordering attacks. These attacks are defined as the manipulation of transaction
order within blocks by miners, with the aim of extracting miner/maximum ex-
tracted value (MEV) [3]. One of the most common transaction reordering attacks
is sandwich attack, which was formalized and quantitatively analyzed for attack

2 J. WANG et al.

profitability by Zhou et al. [13]. As shown in Fig. 1(a), the sandwich attack
strategy involves the execution of a malicious front-running transaction and a
malicious back-running transaction aimed at a victim transaction. Then, the at-
tacker profits from the discrepancy between the execution prices of the front and
back-running transactions. One extension work of the sandwich attacks is the
dagwood sandwich attack [1] which targets multiple victim transactions simulta-
neously by utilizing front-running attacks on each victim transaction separately
as shown in Fig. 1(b). The sandwich attack has a single-victim-transaction layer
and the dagwood sandwich attack has several single-victim-transaction layers.
We refer to these attacks as n-single-victim-transaction-layer (n-SVTL) attacks.

FT1 Tx1

SVTL1

Execution order

FT1 Tx1 ...

SVTL1

FTn Txn

SVTLn...
Dagwood Sandwich

Attack [1]:

oberseves
Tx1

Pending Pool

Tx1,Tx2,...,Txn

reorders

Attack Strategy

Sandwich Attack [13]:
Attacker

reorders
Attacker

oberseves

(a)

(b)

Execution order

FT1 Tx1 Txi... ...

MVTL1 ...

-MVTL Attack: Tx1,Tx2,...,Txn reorders
Attacker

oberseves(c) FTm Txk Txn...

MVTLm

Back-running
Transaction

BT1

Back-running
Transaction

BT1

Back-running
Transaction

BT1

Fig. 1: Visualization of n-SVTL attacks and n-MVTL attack.
Previous studies in the field of defense mechanisms of transaction reordering

attacks focus on limiting transaction parameters [13, 7, 12, 14]. Due to the
simple structure of n-SVTL attack, the attack profit gain from each layer is
strongly influenced by the trading amount and tolerated price slippage of the
victim transaction. DeFi users can prevent n-SVTL efficiently by two defenses
(i.e., limited trading volume [13, 12, 14] and limited slippage [13, 7]). We refer
to transactions that utilize these two defenses as un-sandwichable transactions.
In light of the aforementioned advancements in defense mechanisms against n-
SVTL attacks, an important question arises:

Do the existing defenses offer adequate security for transactions of DeFi
users? Are there other kinds of transaction reordering attacks that can
bypass these defenses?

To address this question, we propose the utilization of a more flexible struc-
ture termed n-MVTL (details provided in Section 4). Unlike the approach of
employing n front-running transactions to attack n victim transactions in n-
SVTL attack, we split the n victim transactions into m (m ≤ n) different layers,
with only one front-running transaction used to attack the victim transactions in
each layer, as illustrated in Fig. 1(c). Note that the n-SVTL structure is a typical
sub-class of the n-MVTL structure. By adopting the n-MVTL structure instead
of the n-SVTL structure, we can explore additional potential attack strategies.
Furthermore, we observe that the transaction reordering attack employing the n-
MVTL structure, hereafter referred to as n-MVTL attack, can detect the overall
vulnerability among multiple un-sandwichable transactions, enabling attacks on
un-sandwichable transactions. To comprehensively evaluate the severity of the
n-MVTL attack, we provide a formalized description of this novel attack and

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 3

quantify its associated risks. To the best of our knowledge, we are the first to
explore the feasibility and profitability of transaction reordering attack that ex-
ploit the overall risk of multiple transactions. The contributions of our research
can be summarized as follows:

– Novel Transaction Reordering Attack. We propose the n-MVTL at-
tack, a novel transaction reordering attack to compromise the traditional
defense mechanisms in DeFi. Compared to the dagwood sandwich attack,
the n-MVTL attack can exploit multiple swap transactions simultaneously
in a general market environment that has no assumption about the real
price of tokens. In addition, our algorithm considers an important cost fac-
tor, AMM swap fees, which is not included in most existing attacks.

– Optimal Algorithms for Attack. We propose a Transaction Selecting
algorithm, which aims to identify the largest subset of transactions that can
be attacked based on the current state of the liquidity pool and the list of
vulnerable transactions in the pending pool. Furthermore, for these selected
transactions, we propose an optimal algorithm to find an optimal strategy
to attack them and to maximize the attacker’s profit. Details as discussed in
Section 4.

– Implementation. We implement a prototype of our proposed n-MVTL at-
tack to discover the optimal attack strategies. We also test the time efficiency
of our attack algorithms in Section 6. Experimental results show that our
algorithms are efficient and practical for generating attack strategies against
constant product market markers (CPMMs) even with a personal computer
(e.g., Macbook Pro).

– Validation of Attacks on Historical Transactions. We validate the n-
MVTL attack strategies on a simulation system that implements the swap
formula of Uniswap V2. We find that n-MVTL attack yields an extra profit of
656,972 USD compared to the sandwich attack from block height 12,000,000
to 17,000,000 in Ethereum. We demonstrate that n-MVTL attack can spot
more attack opportunities than sandwich attacks.

1.1 Paper Organization
The remainder of this paper is organized as follows. Section 2 reviews related
literature. We describe how to encode AMM protocols into state transition mod-
els in 3. We propose n-MVTL attack in Section 4. We conduct a comprehensive
analysis of the revenue of the optimal attack algorithm in Section 5. We evaluate
our attack algorithms and validate our attack strategies in Section 6. Section 7
concludes our paper.

2 Background and Related Work

In this section, we would like to introduce the necessary background and discuss
closely related works on transaction reordering attacks.
2.1 Reordering Transactions
There are three types of reordering transactions that are used to launch transac-
tion reordering attacks: (I) Front-running transaction (FT): If a transaction

4 J. WANG et al.

runs before a victim transaction and its parameters are carefully set by an at-
tacker to prevent the victim transaction from failing to swap the tokens, we
classify this transaction as an FT. This type of malicious transaction is required
in many transaction reordering attacks (e.g., sandwich attack [13]); (II) Fatal
front-running transaction (FFT): If a transaction runs before a victim trans-
action and its parameters are maliciously set by the attacker to cause the failure
of the victim transaction’s execution, we classify this transaction as an FFT.
This type of malicious transaction results in more losses for DeFi users as they
must pay gas fees even if their transactions fail to swap the tokens; (III) Back-
running transaction (BT): If a transaction runs after a victim transaction,
we classify this transaction as a BT. It is frequently used in conjunction with
other malicious activities (e.g., front-running in sandwich attack [13]).

2.2 Sandwich Attack
The most common transaction reordering attack is the sandwich attack, formal-
ized by Zhou et al. [13]. Due to the transparency of DeFi, transaction information
in the pending pool can be obtained by attackers. We consider a victim trans-
action TX1, whose information is observed by an attacker. Then, the attacker
emits a front-running transaction FT1 and a back-running transaction BT1 to
launch a sandwich attack as shown in Fig. 1(a). These malicious transactions
aim to trigger the largest price slippage of TX1. The gas prices of malicious
transactions are carefully set to ensure that the execution order will be: FT1,
TX1, BT1. Then, the attacker gains attack profit from the difference of execution
prices of FT1 and BT1. Zhou et al. demonstrated that the sandwich attack yields
a total profit of 174.34M USD from block 6,803,256 to 12,965,000 in Ethereum.

To further strengthen the attack capability, Bartoletti et al. [1] proposed a
multi-layer dagwood sandwich attack which can attack several victim transac-
tions simultaneously. The idea of this attack is to repetitively launch a front-
running attack on each transaction, targeting every transaction individually.
This approach, however, disregards the overall vulnerability among victim trans-
actions, making it susceptible to resistance from conventional defense mecha-
nisms [7, 14, 11]. Furthermore, the dagwood sandwich attack relies on two unre-
alistic assumptions: (I) Stable price assumption. The author employs the stable
price assumption for facilitating the calculation of attack profit. However, this
assumption is hard to guarantee in the real market, attackers may incur losses
due to fluctuations in real prices of tokens. (II) No AMM swap fees. The authors
introduce the assumption that no AMM swap fees are charged by the liquidity
pool. This assumption enables the use of a remarkably convenient property (i.e.,
the supply of the liquidity pool is always constant) to determine the maximum
loss state for each victim transaction. However, almost all of the DEXs (e.g.,
Uniswap [9] and Pancakeswap [8]) charge AMM swap fees. In summary, the two
assumptions of the dagwood sandwich attack make it difficult to apply it to the
real DeFi market.

2.3 Defense Strategies
Many researchers have focused on defense strategies against sandwich attack
[7, 14, 11]. Zhou et al. [13] proposed two primary protection possibilities that

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 5

could be adopted for DeFi users to prevent sandwich attacks: Limit Slippage
and Limit Trading Volume.
Limit Slippage. A DeFi user can set her transaction slippage as small as possible.
Thus, the attacker cannot benefit from a sandwich attack. To extend the defense
method of limiting slippage, Heimbach et al. [7] introduced the sandwich game
to analyze sandwich attack analytically and provided traders with a simple and
extremely effective algorithm for setting the valid slippage tolerance. However, a
transaction with small slippage is still likely to suffer from unexpected slippage.
Meanwhile, our n-MVTL attack can break this kind of protection(cf. Example
2 in Appendix B).
Limit Trading Volume. A DeFi user can also set the trading amount of her
transaction below a minimum profitable victim input, so it is unprofitable for
attackers to launch a sandwich attack. To extend this defense method, Züst [14]
proposed a valid mitigation strategy that splits a sandwichable transaction into
several small transactions with limited trading volumes. Although DeFi users
lose extra transaction fees when using this strategy, they can protect their trans-
actions from sandwich attack (or dagwood sandwich attack). Unfortunately, this
defense strategy also can not defend against our n-MVTL attack (cf. Example
1 in Appendix B).

3 Model
In this section, we formally describe a state transition model for AMM protocols.
Then we describe the profit and strategy space of our n-MVTL attack.

3.1 AMM Model

AMM is a protocol that enables automated trading tokens for DeFi. Given a pair
of tokens, an AMM will create a liquidity pool (LP), which state will change after
executing transactions, and it can set prices automatically based on a specific
rule. In this paper, we focus on the CPMM [10], which is the most widely adopted
subclass of AMMs and utilizes the constant product pricing rule.

Liquidity Pool State. Given a liquidity pool LP with two types of tokens, τx
and τy, the state S = (X ∈ N+, Y ∈ N+) denotes the state of the LP, where X
and Y denote the amount of τx and τy token in this LP respectively. The total
liquidity of a LP can be derived as K = X · Y .

Transactions. In this paper, we only focus on swap transactions. We use
TXd : swap(ax ∈ N+

0 , ay ∈ N+
0) to denote the collection of swap transactions,

where d ∈ {x −→ y, y −→ x} is the swap direction. For example, when d = x −→ y,
then this transaction means that the user wants to swap ax of token τx for at
least ay of τy, and vice versa.

Constant Product Pricing Rule. Given a transaction TXx−→y : swap(ax, ay)
and LP with a state (X0, Y0), the execution price p of this transaction can be
calculated by Formula 1, where f indicates the AMM swap fee rate set by LP
(e.g., 0.3% in Uniswap [9]). The end (post-execution) state of LP after execut-
ing TXx−→y can be derived as (X0 + ∆x, Y0 − ∆y). When this transaction is

6 J. WANG et al.

successfully executed, the user should pay ∆x · f of token X as a transaction
swap fee to LP, which will add some liquidity to the pool.

∆x = ax, ∆y = ⌊Y0 −
K0

X0 + (1− f) ·∆x
⌋, p =

∆x

∆y
(1)

In the following attack modeling, we assume that all victim transactions’
swap directions are x −→ y. To simplify notation, we write TX(ax, ay) for
Txx−→y(ax, ay). In addition, we use FT⊂ TXx−→y and BT⊂ TXy−→x to denote
the collections of malicious front-running transactions and back-running transac-
tions, respectively. Since we assume the attackers have the power to manipulate
the order of transactions, they need not care about the tolerated slippage of FT
and BT . To simplify notation, we write FT (ax) and BT (ay) for FT x−→y(ax, 0)
and BT y−→x(0, ay), respectively.
AMM Transition Functions. We define a swap transition function as F((Xi,
Yi), TXi+1, f) → Si+1, which outputs the next state Si+1 after executing TXi+1

on the state Si, where f is the transaction fee rate set by the LP. We also define a
swap amount calculating function based on Formula 1 as FA((Xi, Yi), TXi+1, f)→
yi+1, which output the amount of swapped token τy after executing transaction
TXi+1. We represent the state change of LP upon the execution of TXi+1 as

(Xi, Yi)
TXi+1−−−−→ (Xi+1, Yi+1).

Slope Point. We introduce a crucial auxiliary concept, called the slope point,
which plays a significant role in sandwich attack and dagwood sandwich attack.
Given an initial state of a liquidity pool (X0, Y0) and a transaction TX(ax, ay),
we aim to identify a transition (Xi−1, Yi−1)

TXi−−−→ (Xi, Yi) (where Xi ·Yi = X0 ·Y0)
that maximizes the execution price of the transaction (i.e., TXi.p), up to its
maximum tolerated prices (i.e., axi

ayi
). We can calculate (Xi, Yi) by Formula 2.

We define spi = Xi as the slope point of TXi.

spi = Xi =
axi + 2

√
ax2

i + 4 ·X0 · Y0 · axi
ayi
· (1− f)

2
, Yi =

X0 · Y0

Xi
(2)

3.2 Attack Model
Attack Structure. Given an LP (τx/τy) and multiple victim transactions
{TXi}Ni=1, the attacker can devise an attack strategy consisting of a series of
malicious and victim transactions. We assume that the attacker has the authority
to alter the execution order of the victim transactions in order to maximize the
attack profit. In addition, as shown in Fig. 1(c), the attacker inserts m FTs,
denoted as {FTi}mi=1, into these victim transactions, where m ≤ n. These FTs
ensure that the victim transactions are executed in the state envisioned by the
attacker. By employing these FTs, the attacker can swap τx for τy at relatively
lower prices. Towards the end of the attack, the attacker emits a back-running
transaction BT1 to convert all swapped τy back to τx. Note that the execution
price of this BT is relatively higher, allowing the attacker to gain profits.
Transaction Selection. We prioritize the selection of transactions to attack
based on their slope points. Transactions with higher slope points are given
higher precedence for n-MVTL attack. This is because transactions with larger

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 7

slope points usually show greater vulnerability as they allow BT emitted by the
attacker to swap back τx at higher prices. Furthermore, preserving transactions
with larger slope points allows for more flexibility in subsequent optimization
algorithms, providing additional room for adjustments.
Attack Profit. According to the structure of n-MVTL attack strategy, the
attack profit of a n-MVTL attack strategy can be calculated by Formula 3. This
means that the attacker’s profit is R of τx. By ensuring that R is positive, the
attacker can determine the profitability of the attack strategy, without the need
for the stable price assumption.

R = FA(Sn, BT, f)−Σm
i=1 FTi.ax (3)

where Sn is the post-execution state of LP after executing the last victim trans-
action; BT and {FTi}mi=1 are the malicious transactions emitted by the attacker.

4 n-MVTL Attack
Given an initial state (X0, Y0) of an LP and a list of victim transactions {TXi}Ni=1
with the same swap direction x −→ y in the pending pool, we find the optimal
attack strategy using two algorithms: Transaction Selecting algorithm and
Optimal Attack algorithm. We first provide a transaction selecting an algo-
rithm to identify the largest subset of vulnerable transactions {TXi}ni=1. Then,
we provide an optimal attack algorithm to calculate an approximate optimal
attack strategy, thereby yielding maximum attack revenue. Our attack process
can be represented as follows:

{Txi}ni=1 ←− TransactionSelecting((X0, Y0), {TXi}Ni=1), (4)
ST ←− OptimalAttack((X0, Y0), {Txi}ni=1) (5)

4.1 Transaction Selecting
We present an approximation iterative algorithm to select victim transactions.
In this approximation iterative algorithm, the parameters (i.e., trading amount)
of malicious transactions generated by the algorithm are closer to their precise
values (i.e., the values that let the last executed transactions in all layers trig-
ger their maximum tolerated prices) as the number of iterations increases. Our
algorithm considers AMM swap fees, which are not considered in most existing
attack designs. In practice, an LP charges AMM swap fees from DeFi users for
conducting their swap transactions. Therefore, the supply of the LP will increase
after each transition. We use EKi ∈ N+ to represent the estimated supply of
the LP after executing TXi. As illustrated in Fig. 2, Transaction Selecting
involves three phases: (1) Initial Phase; (2) Iteration Phase; and (3) Final Phase.
Initial Phase. We initialize the parameter required for the iterative algo-
rithm. We assign a value of K0 for all EKi, i ∈ [N]. These parameters will be
continuously updated throughout the iterations.
Iteration Phase. We execute two processes for each iteration in the itera-
tion phase: transaction generating and transaction executing. We first use the
transaction generating function to generate the attack transactions FT s between
victim transactions {TXi}Ni=1 in the LP (in Step 1-3). Then, by transaction ex-
ecuting, we can calculate the post-execution states {(Xi, Yi)}Ni=1 for {TXi}Ni=1

(in Step 4), and then use {(Xi, Yi)}Ni=1 to update EKi (in Step 5).

8 J. WANG et al.

Process 1: GenerateStrategy(S0, Tx1:n) -> ST

Phase 2:
Iterations

Phase 1:

Phase 3:

State.Y

State.X

Fig. 2: Overview of Algorithm Transaction Selecting.

Step 1 Transaction Group Generation. A transaction group G is defined as a
sequential of victim transactions that can be successfully executed consecutively,
where the last victim transaction meets its slope point. To facilitate the descrip-
tion of the following steps, we define SSj and ESj as the expected start and
end states of transaction group Gj , respectively. We represent the state change

of the LP upon the execution of Gj as SSj
Gj−−→ ESj .

We split the victim transactions {TXi}Ni=1 into several transaction groups by
Group Generating Algorithm. In each group, the end state of the last victim
transaction triggers at its slope point corresponding to its maximum tolerated
prices, while the end state of each other victim transaction is the start state of
its next victim transaction.
Building Block: Group Generating Algorithm. Given an input {(X0, Y0),
{TXi}Ni=1}, the algorithm output a list of {Gj}kj=1. In this algorithm, for each
TXi, we first use its estimated attribute EKi instead of X0 ·Y0 and the transac-
tion swap fee rate f to calculate its estimated slope point by Formula 2. Then,
we traverse all victim transactions by their estimated slope point in reverse order
and put transactions into groups as follows:

1 For the first transaction TXN , which has the largest slope point, we create
the first group and put this transaction into it. We set SS.X = spN − axN

and ES.X = spN , respectively (where SS.X and ES.X are the numbers of
τx in the start and end states, respectively).

2 For other TXi ∈ {TXi}N−1
i=1 , if SS.X ≤ spi, we insert TXi to the front of

the current Gj , since it can be executed successively and successfully with
the subsequent victim transactions (i.e., will not trigger to its slope point) in
this group. Then we update SS.X = SS.X − axi. Otherwise, if SS.X > spi,
we finish the transaction group Gj and create a new Gj+1. Then we put TXi

into this group and reset SS.X and ES.X to spi− axi and spi, respectively.
Note that when attempting to place TXi into an Gj , if SS.X − axi ≤ X0,
the operation of adding TXi to Gj will be aborted, and the next iteration will
proceed. Ultimately, only a subset of the victim transactions may be placed into
groups. We reverse the index the transaction group as {Gj}ki=1, and denote the
selected transaction subset as {TXi}ni=1.

Step 2 Multiple-Victim-Transactions Layers (MVTLs) Generation. An MVTL
MV TLj is defined as a combination of a front-running transaction FTj and a

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 9

transaction group Gj (cf. Fig. 1(c)). FTj is used to let the last victim transaction
in Gj trigger at its slope point, thereby maximizing the victims’ loss.

After we split the victim transactions into {Gj}kj=1, there are some state
change gaps among them. For each Gj , we generate FTj to fill the state change
gap before Gj by Formula 6 and then combine it with Gj into MV TLj . The
process of creating FTi is:

FTi =

{
FT (SSj .X −X0), j = 1
FT (SSj .X − ESj .X), 1 < j ≤ k

(6)

Step 3 Back-Running Transaction Generation. After generating {MV TLj}kj=1,
we construct BT that is used to swap all the τy swapped by {FTj}kj=1 for τx. This
transaction can be generated as BT (FA(S0, FT1, f)+Σ1<j≤k FA(SSj ,FTj , f)).
Step 4 Strategy Executing. We combine the outputs of steps 2 and 3 into
a strategy as ST ′ := ({MV TLj}kj=1, BT). Then, we can input ST ′ and S0

to Function Transaction Executing to calculate the states Si after executing
TXi ∈ {TXi}ni=1, respectively, as illustrated in Fig. 2.
Step 5 Parameters Updating. Based on the calculated states {Si}ni=1 in Step 4,
we update the estimated supply ESi for each transaction TXi ∈ {TXi}ni=1 by
the formula: EKi = Xi · Yi and go to the next iteration.

Final Phase. After several iterations in the iteration phase, the algorithm finds
a set of victim transactions {TXi}ni=1 in which the parameters of all transactions
are approximated to the precise values.

4.2 Optimal Attack Algorithm

Our optimal attack algorithm is based on a simple observation: as transactions
are executed, the price of token τx continuously decreases. Therefore, inserting
the front-running attack as early as possible can maximize the attacker’s revenue.
This observation forms the basis of our optimal attack algorithm, which utilizes
two critical building blocks: the Front-running algorithm and the Backward
algorithm.

Building Block: Front-Running Algorithm. Given the current state of
the LP and the set of victim transactions, this algorithm calculates an optimal
front-running attack, assuming that victim transactions don’t have slope points.

– Input: The algorithm gets {(X,Y), {TXi}ni=1, sy} as inputs, where (X,Y) is
the current state of the liquidity pool, {TXi}ni=1 is the set of victim trans-
actions, and sy is the number of tokens τy hold by the attacker.

– Output: The algorithm output an optimal front-running attack FT (∆x).
Although directly calculating ∆x is difficult, we can obtain the range of

∆x based on Theorem 1. After inserting an attack transaction FT (∆x), the
attacker’s will have s′y = sy + (Y − X·Y

X+(1−f)∆x) number of token τy, and the
current state (X1, Y1) of the LP becomes X1 = X +∆x, Y1 = X·Y

X+(1−f)∆x .
To simplify the notation, let’s denote the amount of tokens in {TXi}ni=1 by

{xi}ni=1, Vx =
∑n

i=1 xi and t = 1 − f . Then the new state (X2, Y2) of the LP
after executing all victim transactions satisfied:

10 J. WANG et al.

X2 = X +∆x+ Vx, Y min
2 ≤ Y2 ≤ Y max

2 .

Y min
2 =

X1 · Y1

X1 + tVx
=

(X +∆x)(X · Y)

(X + t∆x)(X +∆x+ tVx)
.

Y max
2 =

(X +∆x)(X · Y)

tn−1(X + t∆x)(X +∆x+ Vx)
.

where Y min
2 and Y max

2 come from Theorem 1. The attacker’s revenue after
the back-running transaction is

Rx = X2 −
X2 · Y2

Y2 + (1− f)s′y
−∆x (7)

According to Equation 7, we find that Rx and dRx

d∆x are strictly decreasing
when Y2 is increasing. Therefore, we can obtain the ∆x range by taking the
derivative dRx

d∆x = 0. The result of ∆x ∈ [∆xmin, ∆xmax] is:

∆xmax =
X(sy(−1 + t)tX −XY + t2(Vx +X)Y) +

√
Bmax

(−1 + t) (syt(tVx −X) + (t2Vx −X − tX)Y)

Bmax = t2V 2
x X(sy(−1 + t) + tY)

×
(
sy(−1 + t)t(−X + t(Vx +X)) + (X − t2(Vx +X) + t3(Vx +X))Y

)
∆xmin =

X(sy(−1 + t)tnX −XY + t1+n(Vx +X)Y) +
√
Bmin

(−1 + t)sytn(tVx −X) + (t2+nVx +X − t1+n(Vx +X))Y

Bmin = t1+nV 2
x X(sy(−1 + t) + tY)

×
(
sy(−1 + t)tn(−X + t(Vx +X)) + (X − t1+n(Vx +X) + t2+n(Vx +X))Y

)
Building Block: Backward Algorithm. Given the current state of LP and
the set of victim transactions, this algorithm calculates a maximized FT attack
while ensuring the last victim transaction can be successfully executed.

– The algorithm gets {X,Y, {TXi}ki=1} as input, where (X,Y) is the current
state of the liquidity pool, {TXi}ki=1 is the set of victim transactions.

– Output: The algorithm output a maximized front-running attack FT (∆x).
We also calculate the range of ∆x based on Theorem 1. To simplify the

notation, we denote the number of tokens in {TXi}ki=1 by {xi}ki=1, Vx =
∑k−1

i=1 xi

and t = 1 − f . Then the post-executing state after FT is X0 = X +∆x, Y0 =
XY

X+(1−f)∆x . The state {Xk−1, Yk−1}after executing {TXi}k−1
i=1 is:

Xk−1 = X0 +∆x+ Vx, Y min
k−1 ≤ Yk−1 ≤ Y max

k−1

Y min
k−1 =

X0 · Y0

X0 + tVx
=

(X +∆x)(X · Y)

(X + t∆x)(X +∆x+ tVx)
.

Y max
k−1 =

(X +∆x)(X · Y)

tn−1(X + t∆x)(X +∆x+ Vx)
.

Then TXk can swap yk number of token:

yk = Yk−1 −
Xk−1 · Yk−1

Xk−1 + txk
=

t · Yk−1xk

Xk−1 + txk
(8)

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 11

According to Equation 8, we know that yk is strictly decreasing when Yk−1 is
increasing. Therefore we can obtain the range of ∆x ∈ [∆xmin, ∆xmax] by solve
the Equation 8:

∆xmin = (−1 + t

2
)Vx −X − txk

2
+

√
tXxkY

yk
+

((1− t)(Vx − xk) + xk)2

4

∆xmax = t1−k∆xmin

Attack Algorithm. Given a start state (X0, Y0) of the LP and a sequence
of sorted victim transactions {TXi}ni=1, the attack algorithm outputs an attack
strategy ST , which maximizes the attacker’s revenue.

The algorithm runs in n rounds. In each round k ∈ [n], the algorithm attack
transactions {TXi}ni=k. At the beginning of each round, the algorithm initializes
parameters sy = 0, X = X0, Y = Y0, and l = k, where sy is the amount of token
τy the attacker have got, and l is the index of victim transaction. In each round,
the algorithm runs in two steps:

1 The algorithm run Front-running Algorithm(X,Y, {TXi}ni , sy = 0), re-
ceive an interval {∆xmin, ∆xmax} containing the optimal front-running at-
tack. Then the algorithm runs Binary Search d times to search an FT
approximated with the optimal attack transaction.

2 The algorithm executes FT from state (X,Y), then try to execute victim
transactions {TXi}ni=l.
• All transactions are executed successfully: The algorithm should record

the attack strategy and moves to the next round.
• When executing transactions, a transaction TXj reach its slope point:

Now the algorithm should run Backward Algorithm (X,Y, {TXi}ji=l),
receive and interval {∆xmin, ∆xmax}. Then using Binary Search d
times, the algorithm can find an approximate maximum FT attack x
which swaps y number of tokens τy. Assume the final state after executing
transactions FT and {TXi}ji=l) is (Xj , Yj) Finally, the algorithm set
sy = sy + y, X = Xj , Y = Yj , l = j + 1 and continue running step 1.

Finally, the algorithm compares all the revenues in n rounds and chooses the
attack strategy ST with the largest revenue.

Each step of the algorithm runs binary search d times, in which the algorithm
should execute at most n transactions. Hence the algorithm runs at most O(nd)
time in each step. As the algorithm runs each step at most n times in each round,
and there are n rounds, the time complexity of the optimal attack algorithm is
O(n3d).
4.3 Implementing Attacks on Blockchain
We consider an Ethereum-like blockchain where many DeFi users initiate their
transactions on the pending pool (cf. Fig. 3). We consider a rational attacker A
who observes the pending pool’s transactions in real-time. When A detects one
or more victim transactions that interact with the same LP’s smart contract and
have the same swap direction, A can use n-MVTL attack algorithms to find an
optimal attack strategy ST to attack these victim transactions. After that, A

12 J. WANG et al.

Ethereum
pending pool

 TX1,...,TXn

2a
).T

X 1
,..

.,T
X n

 O
bs

er
ve

d Adversary
(Miner)

Adversary
(MEV searcher)

n-MVTL Attack Algorithms

1. Transaction Selecting
2. Optimal Attack

Output: an optimal attack
strategy

Honest
Miner

Ethereum
Network

2b
).T

X 1
,..

.,T
X n

 O
bs

er
ve

d

3b). Inputs TX1,...,TXn

4a). Sends ST
(if profitable)

4b). Sends ST
(if profitable)

3a). Inputs TX1,...,TXn

5b). Sends ST as a bundle
with auction fee

MEV
relay

6b). Transfer the
 bundle

7b). ST included
in a block

5a).Includes ST
in a block

...

1). Sends TX1

1). Sends TX2

Victim 1

Victim 2

Victim n

1). Sends TXn

ST

Fig. 3: n-MVTL attack system.
can include ST in a new block and broadcast it to Ethereum on his own if A is a
miner (cf. 5a of Fig. 3). Otherwise, A can send ST as a bundle with an auction
fee to an honest miner via an MEV relay (e.g., flashbots [3], Eden Network [6]).
If A wins the auction, the honest miner will then include ST in a new block and
broadcast it to Ethereum (cf. 5b-7b of Fig. 3).

The n-MVTL attack surpasses prior works by overcoming three limitations:
(I) No stable price assumption. The attack profit obtained by the n-MVTL at-
tack are positive amount of Token X, hence ensuring positive gains without the
stable price assumption. (II) Consider AMM swap fees. The supply of a liquidity
pool is not constant when considering AMM swap fees. After each swap trans-
action is executed, a portion of the tokens is collected as AMM swap fees and
added to the liquidity pool. In our algorithm, we take this factor into account to
generate attack strategies. This increases the computational complexity, but it
makes our generated attack strategies more practical. (III) Hard to defend. We
employ a structure n-MVTL to exploit the vulnerability among multiple victim
transactions, making it difficult for DeFi users to resist n-MVTL attack using
conventional methods. We show how the novel structure works in Appendix B.
5 Analysis
In this section, we first proved the upper and lower bounds of the pool state after
executing re-ordered transactions. Then we provide a comprehensive analysis of
the revenue of the optimal attack algorithm.
5.1 Post-execution State Analysis
The greatest difficulty when analyzing the revenue of the algorithm is determin-
ing the quantity of token τy in the LP, because it is according to the transaction
order. To estimate the quantity of Y in the pool after n trades, we prove the
following theorem:
Theorem 1. Given a start state (X0, Y0) of the LP and a set of transactions
{TXi}ni=1 in which the swap tokens are {xi}ni=1. Then post-executing state (Xn, Yn)
satisfied:

Xn = X0 + Vx

X0Y0

X0 + (1− f)Vx
< Yn <

X0Y0

X0 + (1− f)Vx
∗ (1− f)1−n

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 13

where Vx =
∑n

i=1 xi.

The proof is in Appendix A.1.
With Theorem 1, we can estimate the algorithm output in Front-running

Algorithm and Backward Algorithm.
Corollary 1. In Front-running algorithm (or Backward algorithm) with d times
of Binary search, the swap amount ∆x in the output attack transaction and the
swap amount ∆xopt for the optimal attack transaction are satisfied:

∆xopt −∆x

∆xopt
≤ (1− f)1−n − 1

2d
(9)

where n is the number of input victim transactions in the algorithm.
Proof. Because ∆xmax ≤ (1− f)1−n∆xmin, thus we have:

∆xopt −∆x

∆xopt
≤ ∆xmax −∆xmin

2d∆xmin
=

(1− f)1−n − 1

2d
(10)

5.2 Revenue Analysis
Meanwhile, we notice that when the total number of τx in the FT is fixed, the
attacker can get more revenue by inserting as many front-running transactions
as possible in the front. This statement can be written into the following lemma.
Lemma 1. Given a starting state (X0, Y0), a victim transactions TX1 and two
attacking transaction FT1 = FT (∆x1) and FT2 = FT (∆x2), the attack sequence
{FT (∆x1+∆x2), TX1} can earn more token τy than sequence {FT1, TX1, FT2},
if TX1 do not reach its slope point.

The proof is straightforward as the price of token τy is a monotone increase
while executing transactions. Then according to Corollary 1 and Lemma 1, we
have the following theorem:
Theorem 2. Given a set of ordered victim transactions {TXi}ni=1, assume the
revenue of our attack is Pn−MV TL, the maximum revenue by any attack strategy
is Pmax, we have the following lower-bound:

Pn−MV TL > (1− (1− f)1−n − 1

2d
)2Pmax (11)

The proof is in Appendix A.2. This theorem shows that for any ϵ, the al-
gorithm with parameter d > log2

(1−f)1−n−1
ϵ can receive at least (1 − ϵ) of the

maximum revenue. Therefore, the attack strategy of the algorithm is an approx-
imate optimal attack strategy.

6 Evaluation
We first implement a prototype of an attack system in Python 3.8.0. We rig-
orously test the implementation of the critical method F in our attack system
to ensure that our system does not deviate from the real smart contract due
to different implementations of rounding methods. We use real-world data to
test the accuracy of our calculations, where test data is extracted from the Sync
event3 initiated by the Uniswap V2 smart contract to obtain the state of the
3 Topic0 of Sync events: 0x1c411e9a96e071241c2f21f7726b17ae89e3cab4c78be50e062b0

3a9fffbbad1

14 J. WANG et al.

liquidity pool before and after each transaction, and the Swap event4 initiated
by the Uniswap V2 smart contract to obtain the amount of τx spent by the
user in the transaction and the amount of τy obtained. We test 10,000 historical
transactions by executing them based on their respective states before execution,
and the execution states calculated by our attack system are consistent with the
execution states in history.

Then, we conduct the evaluation on a machine with Quad-Core Intel Core i5
(1.4 GHz) and 16 GB memory. We conduct a series of experiments aimed at (a)
evaluating the convergence rate of Transaction Selecting, (b) evaluating the
time efficiency of attack algorithms, (c) validating the profit capability of attack
strategies, and (d) conducting the trade-off analysis for Optimal Attack.

6.1 Convergence Rate of the Iterative Algorithm
We define the loss of an attack strategy ST as follows:

strategy_loss = mean(Σ
Size(ST .MV TLs)
i=1 | ˆFTi.ax− FTi.ax|)

where ˆFTi denotes the ith FT in ST with es-
timated parameters generated by Transaction
Selecting, while FTi denotes the ith FT with
precise parameters generated by Transaction
Selecting and using binary search algorithm. We
evaluate the loss of ST in 10 numbers of itera-
tions based on the different sizes of LPs in Fig. 4.
We can see the loss shows a logarithmic decrease
in all cases as the number of iterations increases.
When the number of iterations is 8, losses in all
cases are smaller than 1,000.

Fig. 4: Loss of Transaction
Selecting Algorithm

6.2 Time Complexity

To evaluate the time efficiency of our algorithms, we record the time taken to
perform each step in our algorithms. We set the state at (1027, 1024) in the exper-
iments since it exceeds the current size of any liquidity pool. Victim transactions
were randomly generated in the experiments as the veracity of the transactions
will not influence the time efficiency of our algorithms. We set the number of
iterations utilized in Transaction Selecting to 10. We do not limit the number
of iterations of the BSA utilized in Optimal Attack. As we can see from Ta-
ble 1, the time cost of Transaction Selecting algorithms rises nearly linearly
in all cases as the number of random transactions increases. The time cost of
Optimal Attack has cubic growth. In total, it takes around 4 seconds to build
an optimized attack strategy when the number of random transactions is 100.
Note that the average number of executed transactions per block is 154.8, and
the average block generation time is 12.2 seconds on April 20, 2023, in Ethereum
[2]. The results show that our algorithms are feasible in the current Ethereum.
4 Topic0 of Swap events: 0xd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d13

0840159d822

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 15

Table 1: Time Cost of Attack Algorithms.

Algorithms

Transactions
10 20 50 100

Strategy finding 0.014s 0.024s 0.510s 0.120s

Strategy optimization 0.042s 0.171s 0.888s 4.018s

All 0.560s 0.195s 1.398s 4.138s

6.3 Attack Strategy Validation

We evaluate the profitability of n-MVTL attack on historical blockchain data
from block 120,000,000 to block 170,000,000 over a total of 699 days. We locally
deploy the Uniswap V2 Router02 smart contract5 using Foundry6, a popular
EVM development platform, and interact with the deployed smart contracts to
execute all malicious and victim transactions. We compute the actual profits
based on the transaction execution results in Foundry. We focus on the transac-
tions of the top 2 most popular liquidity pools in Uniswap v2 (i.e., ETH/USDC
and ETH/USDT). Our attack is solely targeted at successfully executed trans-
actions recorded on the blockchain. Each attack is specifically directed towards
transactions with the same swap direction that are present within a single block.
We set the number of iterations utilized in FindStrategy to 10. We do not limit
the number of iterations of the BSA utilized in OptimizeStrategy. To measure
the performance of n-MVTL attack on extracting extra profits compared to
sandwich attacks, we establish a comparison group as a baseline by launching
sandwich attacks on victim transactions. As shown in Table 2, n-MVTL attack
can extract extra profits in all cases compared to the baseline. In total, n-MVTL
attack can yield 656,976 (i.e., 295,608 + 361,368) USD of extra attack profit from
5,006 (i.e., 2,498 + 2,508) profitable victim transactions since n-MVTL attack
can only attack victim transactions in one swap direction at the same time.

Table 2: Estimated attack profit of SVTL attack and MVTL attack.
LP and swap direction Profitable TXs /

total TXs
Attack profit of
1-SVTL attack

Attack profit of
n-MVTL attack

of
n-MVTL attacks

Extra profit
(token)

Extra profit
(USD)

ETH/USDC
(Uniswap V2)

ETH ->USDC 1,965/1,481,222 562.24 ETH 616.40 ETH 592 54.16 ETH 103,066 USD

USDC ->ETH 2,498/1,373,080 3,555,817 USDC 3,851,425 USDC 790 295,608 USDC 295,608 USD

ETH/USDT
(Uniswap V2)

ETH ->USDT 2,564/1,387,482 677.27 ETH 718.76 ETH 782 41.49 ETH 78,955 USD

USDT ->ETH 2,508/1,472,498 1,230,739 USDT 1,592,419 USDT 798 361,368 USDT 361,368 USD

To eliminate the influence of private pending pools on n-MVTL attacks, we
did not attack against failed and pending transactions. Our attacks are restricted
to transactions that were successfully executed within the same block in the
historical blockchain. These transactions were inevitably witnessed by one miner,
regardless of whether these transactions originated from private pools. Thus, if
the miner possesses malicious intent, he can launch an n-MVTL attack against
these transactions. As the number of transactions attacked in this validation is
less than the number of real attackable transactions in history. Therefore, the
profit statics only represent lower bounds on the severity of n-MVTL attack.

5 https://github.com/Uniswap/v2-periphery/blob/master/contracts
6 https://github.com/foundry-rs/foundry

16 J. WANG et al.

6.4 Trade-off Analysis of Time Cost and Profit

We employ historical transaction data of LP
(ETH/USDT) for trade-off analysis. We re-run
the attack on transactions in the USDT->ETH
swap direction by varying the limits on the num-
ber of iterations of the binary search algorithm
(BSA) utilized in OptimzieStrategy. Fig. 5 illus-
trates the interplay between time cost, attack
profit, and the corresponding iteration limits in
BSA. As the iteration limits increase, the time
cost exhibits a linear growth pattern, while the
attack profit demonstrates exponential growth

Fig. 5: Average time cost and
attack profit of attacks

against LP (ETH/USDT)
when the number of iterations is below 15. Remarkably, the profit nearly con-
verges to that of attacks with no limit when the number of iterations reaches 15.
In a real-world setting, the attacks can adjust the iteration limits within BSA
to strike a trade-off between time cost and profitability.

7 Conclusion
In this paper, we propose a novel transaction reordering attack, n-MVTL attack,
to attack against multiple transactions in DeFi. Unlike traditional transaction
reordering attacks, n-MVTL attacks enable attacks on un-sandwichable transac-
tions and consider AMM swap fees. In addition, we provide an optimal algorithm
to generate an optimal n-MVTL attack strategy with maximum attack profit.
This algorithm strikes a balance between time efficiency and attack profit, en-
hancing the practicality of the attack algorithm. We also validate the attack
strategies on historical blockchain data. The result shows that the n-MVTL at-
tack can generate an average daily more profit of 940 USD compared to the
sandwich attack. Our new attack can offer attackers more profit and thus cause
more loss to normal users in DeFi. Compared with the sandwich attack, n-MVTL
attack is more difficult to defend against and harmful to DeFi users. We hope
our research raises awareness of this unresolved MEV risk and engenders future
work on defense mechanisms against MEV.

References

1. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing Extractable Value
from Automated Market Makers. 2022 International Conference on Financial Cryp-
tography and Data Security (FC) (2022)

2. Bitinfocharts, https://bitinfocharts.com/
3. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,

Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 910–927. IEEE (2020)

4. DeFi Tracker, https://defiprime.com/dex-volume
5. DeFi Llama, https://defillama.com/
6. Eden Network, https://www.edennetwork.io/

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 17

7. Heimbach, L., Wattenhofer, R.: Eliminating Sandwich Attacks with the Help of
Game Theory. In: Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security (ACM ASIACCS 2022). pp. 153–167 (2022)

8. Pancakeswap, https://pancakeswap.finance/
9. Uniswap, https://www.uniswap.org

10. Uniswap v1, https://docs.uniswap.org/protocol/V1/introduction
11. Wang, Y., Zuest, P., Yao, Y., Lu, Z., Wattenhofer, R.: Impact and User Perception

of Sandwich Attacks in the DeFi Ecosystem. In: CHI Conference on Human Factors
in Computing Systems. pp. 1–15 (2022)

12. Zhou, L., Qin, K., Gervais, A.: A2mm: Mitigating frontrunning, transaction re-
ordering and consensus instability in decentralized exchanges. arXiv preprint
arXiv:2106.07371 (2021)

13. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-Frequency Trading on
Decentralized On-Chain Exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 428–445. IEEE (2021)

14. Züst, P.: Analyzing and Preventing Sandwich Attacks in Ethereum.
https://pub.tik.ee.ethz.ch/students/2021-FS/BA-2021-07.pdf (2021)

A Proof
A.1 Proof for State Analysis
The proof of the lower bound for Yn comes from the following claim.

Claim. Given two transactions TX1, TX2 with swap tokens x1 and x2 and a
transaction TX with swap tokens x = x1 + x2, the number of τy in the pool
after running transaction TX is lesser than running transactions TX1 and TX2.

Proof. We denote the number of tokens τy in the pool after executing transaction
TX as Y1, the number after executing TX1, and TX2 as Y2. Assume the state
of the LP is X0, Y0:

Y1 =
X0Y0

X0 + (1− f)(x1 + x2)
,

Y2 =
(X0 + x1)X0Y0

(X0 + (1− f)x1)(X0 + x1 + (1− f)x2)
,

Y1

Y2
=

(X0 + (1− f)x1)(X0 + x1 + (1− f)x2)

(X0 + x1)(X0 + (1− f)(x1 + x2))
.

Notice that (X0 + x1) + (X0 + (1− f)(x1 + x2)) = (X0 + (1− f)x1) + (X0 +
x1 + (1 − f)x2) and (X0 + (1 − f)x1) < (X0 + x1), (X0 + (1 − f)(x1 + x2)) <
(X0 + x1 + (1− f)x2). With average inequality, we have Y1

Y2
< 1, thus Y1 < Y2.

With this claim, we can get the lower bound by merging all the victim trans-
actions into one transaction TX, in which Vx =

∑n
i=1 xi. Thus we have:

Yn >
X0Y0

X0 + (1− f)Vx
.

The proof of the upper bound for Yn comes from the following claim.

Claim. Given the start state X0, Y0, two transactions TX1 and TX2 such that
the swap tokens satisfied x1 + x2 = T . Then when x1 =

√
X0T −X0, the pool

has a maximum number of tokens τy after executing two transactions.

18 J. WANG et al.

Proof. Assume the number of tokens τy after executing is Y , we have:

Y =
(X0 + x1)(X0 + T)X0Y0

(X0 + (1− f)x1)(X0 + x1 + (1− f)(T − x1))
,

dY

dx1
=

f(1− f)X0Y0(X0 + T)(X0T − 2X0x1 − x2
1)

(X0 + (1− f)x1)2(X0 + x1 + (1− f)(T − x))2
.

Notice that dY
dx1

> 0 when x1 <
√
X0T−X0, and dY

dx1
< 0 when x1 >

√
X0T−X0.

Thus Y is maximum when x1 =
√
X0T −X0.

With this claim, we know that the maximum Yn when Vn is given is when
X2

i = Xi−1 ·Xi+1 for each i ∈ [n− 1]. Therefore, we have:
Thus the maximum Yn is:

Yn ≤
X0Y0

Xn

n∏
i=1

Xi

fXi−1 + (1 − f)Xi

=
X0Y0

Xn

n∏
i=1

X
n−i
n

0 (X0 + Vx)
i
n

fX
n−i+1

n
0 (X0 + Vx)

i−1
n + (1 − f)X

n−i
n

0 (X0 + Vx)
i
n

=
X0Y0

Xn

n∏
i=1

X
n−i
n

0 (X0 + Vx)
i
n

X
n−i
n

0 (X0 + Vx)
i−1
n

(
fX

1
n
0 + (1 − f)(X0 + Vx)

1
n

)

=
X0Y0

Xn

n∏
i=1

(X0 + Vx)
1
n(

fX
1
n
0 + (1 − f)(X0 + Vx)

1
n

)
=

X0Y0

Xn

(X0 + Vx)(
fX

1
n
0 + (1 − f)(X0 + Vx)

1
n

)n

=
X0Y0

Xn

(1 − f)−n

(1 +
fX

1/n
0

(1−f)(X0+Vx)1/n
)n

≤
X0Y0

(1 − f)n−1(fX0 + (1 − f)(X0 + Vx))

‘ =
X0Y0

X0 + (1 − f)Vx

· (1 − f)
1−n

Thus the upper bound is proved.

A.2 Proof for Profit

Due to the page limit, we only give a proof of sketch. Firstly, if the output of the
Front-running and Backward algorithms is the optimal solution, we prove that
our algorithm can get the maximum attack profit.

Proof. Assume there has an optimal attack strategy that executes transactions
as {FTi, Gi}ki=1. According to Lemma 1, the last transaction of Gi, 1 ≤ i ≤ k−1
must reach its slope point. (Otherwise, remove a part of FT in the front can get
more revenue) This is exactly what our Backward algorithm is working for. Also,
for the last FT transaction FTk, it should consider BT to maximize its profit,
which is exactly the result of our Front-running algorithm. Thus our algorithm
can get the maximum profit.

n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi 19

However, our Front-running and Backward algorithms have a little loss in
the output, which can be bounded according to Corollary 1. We now calculate
the total loss in the attack.

Assume there are k numbers of front-running transactions {FTi}ki=1 in our
attack. By Section 4, we know that the first k− 1 FT is calculated by Backward
algorithm. Assume the swap tokens τx in the transaction FTi is ∆xi, and VFT =∑k−1

i=1 ∆xi, by Corollary 1 we have:

V opt
FT − VFT

V opt
FT

≤ (1− f)1−n − 1

2d
.

As the price of τy is monotone increasing, the profit of Backward algorithm PBW

satisfied:

PBW ≥ (1− (1− f)1−n − 1

2d
)P opt

BW

Then we calculate the loss of FTk. Because of backward algorithm loss, the
input state Yn is bigger than the exactly Y max

n and satisfied:

Yn

Y opt
n

≤
V opt
FT

VFT
≤ 1

1− (1−f)1−n−1
2d

And according to Corollary 1, the gap between the output ∆x of the algorithm
and the optimal output ∆xmax in FTk also satisfied:

∆xopt −∆x

∆xopt
≤ (1− f)1−n − 1

2d

So the profit of Front-running algorithm PFR satisfied:

PFR ≥ (1− (1− f)1−n − 1

2d
)P opt

FR

As there are only two types of loss in the algorithm, we finished the proof of
Theorem 2.
B Examples
B.1 Example 1 for A Typical 1-MVTL Attack.
As shown in Fig. 6, we assume that a user U wants to swap 120,000 τx for at least
800 τy. If U initiates a transaction with 120,000 token X, this transaction is prone
to sandwich attack (cf. (1) of Fig. 6). Suppose U uses the limiting volume defense
strategy [14] that splits her transaction into four small transactions to defend
against sandwich attack (cf. (2a) of Fig. 6). Then, each small transaction only
has a small trading volume (30,000 τx) so that none of the split transactions can
be attacked by the sandwich attack (cf. (2b) of Fig. 6). In contrast, the n-MVTL
attack can identify the overall vulnerability among the victim transactions. In
this case, the large state change provided by these split transactions is one form
of overall vulnerability, which are prone to n-MVTL attack. As shown in (3) of
Fig. 6, the attack profit of the n-MVTL attack is 27,621 of τx.

20 J. WANG et al.

Pending Pool
LP state: 10,000,000 Token X;

100,000 Token Y; Fee rate: 0.3%

TX1 (120,000, 800, 0)
A large trading volume transaction：

Pending Pool
LP state: 10,000,000 Token X;

100,000 Token Y; Fee rate: 0.3%

TX'
1 (30,000, 200, 0)

TX'
2 (30,000, 200, 0)

TX'
3 (30,000, 200, 0)

TX'
4 (30,000, 200, 0)

(1)

(2b)

(3)

Attacker
(2a) Limit trading volume

Sandwich attack (profit = -1,096 Token X)

SV
TL

 1

FT1 (2,217,487) + TX'
1 TX'1 : 30,000 X → 200 Y， Price：150.000

FT1 : 2,217,487 X → 18,105 Y， Price：122.480

BT1(18,105) BT1 : 18,105 Y → 2,216,391 X， Price：122.419

Sandwich attack (profit = 28,101 Token X)

SV
TL

 1

FT1 (2,172,708) + TX1 TX1 : 120,000 X → 800 Y， Price：150.000
FT1 : 2,172,708 X → 17,804 Y， Price：122.035

BT1 : 17,804 Y → 2,200,809 X， Price：123.613BT1(17,804)

-MVTL attack (profit = 27,621 Token X)

SV
TL

 1

FT1 (2,127,742) + SCPG1 ,
SCPG1 = TX'

1,TX'
2,TX'

3,TX'
4

FT1 : 2,127,742 X → 17,500 Y， Price：121.585
TX'1 : 30,000 X → 202 Y， Price：148.515
TX'2 : 30,000 X → 201 Y， Price：149.254
TX'3 : 30,000 X → 200 Y， Price：150.000
TX'4 : 30,000 X → 200 Y， Price：150.000

BT1(17,500) BT1 : 17,500 Y → 2,155,363 X， Price：123,164

n

Fig. 6: Example 1. A 1-MVTL attack strategy. We highlight the malicious
transactions (in red) initiated by A.

B.2 Example 2 for n-MVTL Attack with Optimization.

When the real price of a cryptocurrency increases or decreases dramatically,
there might be a large number of arbitrage transactions in the pending pool
with the same swap direction. We assume that the current state of an LP is
(10,000,000, 1,000,000), and the real price of this token pair is 11.0. The pending
pool has ten arbitrage transactions, as illustrated in Fig. 7. To attack these victim
transactions, we use Transaction selecting (cf. Section 4.1) to find the largest
set of victim transactions {TXi}11i=2 that can be attacked together, and these
transactions can be grouped into five MVTLs. In each MVTL, there exists one
FT and one or more victim transactions. Then, we optimize the attack strategy
by Optimal Attack. The algorithm’s results indicate that we can maximize the
attack profit when we only attack against {TXi}11i=5. The strategy optimization
increases the attack profit from 4,621 of τx to 7,042 of τx.

We observe that TX1 and TX2 have the ability to defend against sandwich
attack since they are set with a small slippage (only 1%). However, they still
face the risk of n-MVTL attack. In the optimal n-MVTL attack strategy, TX1

and TX2 are not executed intentionally by A. We can regard that TX1 and TX2

suffer a fatal front-running attack that makes the users fail to swap their tokens.
Pending Pool

LP state: 10,000,000 Token X;
1,000,000 Token Y; Fee rate: 0.3%

TX1 (30,000, 30,000/10.1, 0)

TX2 (30,000, 30,000/10.1, 0)

TX3 (30,000, 30,000/10.2, 0)

TX4 (30,000, 30,000/10.5, 0)

TX5 (30,000, 30,000/10.5, 0)

TX6 (30,000, 30,000/10.5, 0)

TX7 (30,000, 30,000/10.5, 0)

TX8 (30,000, 30,000/10.8, 0)

TX9 (30,000, 30,000/10.8, 0)

TX10 (30,000, 30,000/11.0, 0)

1. Select
Transaction

-MVTL attack 2 (profit = 7,042 Token X)

M
VT

L
1

FT'
1 (153,632) + G1

G1 = (TX5,TX6,TX7)
TX7 : 30,000 X → 2,859 Y， Price：10.493

TX5 : 30,000 X → 2,892 Y， Price：10.373
TX6 : 30,000 X → 2,875 Y， Price：10.435

FT1 : 153,632 X → 15,086 Y， Price：10.184

M
VT

L
2

FT2 (88,277) + G2
G2 = (TX8,TX9) TX9 : 30,000 X → 2,778 Y， Price：10.799

FT2 : 88,277 X → 8,316 Y， Price：10.615
TX8 : 30,000 X → 2,794 Y， Price：10.737

M
VT

L
3

FT3 (34,815) + G3
G3 = (TX10,TX11)

FT3 : 34,815 X → 3,203 Y， Price：10.870
TX10 : 30,000 X → 2,743 Y， Price：10.937
TX11 : 30,000 X → 2,728 Y， Price：10.997

BT1 (26,605) BT1 : 26,605 Y → 283,766 X， Price：10.666

FT2 : 19,410 X → 1,912 Y， Price：10.152
TX3 : 30,000 X → 2,942 Y， Price：10.197

-MVTL attack 1 (profit = 4,621 Token X)

M
VT

L
1

TX2 : 30,000 X → 2,971 Y， Price：10.098
FT1 : 18,690 X → 1,859 Y， Price：10.054

M
VT

L
2

FT2 (19,410) + G2
G2 = (TX3)

FT1 (18,690) + G1
G1 = (TX2)

M
VT

L
3

FT3 (25,551) + G3
G3 = (TX4,TX5,TX6,TX7)

TX5 : 30,000 X → 2,892 Y， Price：10.373
TX6 : 30,000 X → 2,875 Y， Price：10.435
TX7 : 30,000 X → 2,859 Y， Price：10.493

FT3 : 25,551 X → 2,491 Y， Price：10.257
TX4 : 30,000 X → 2,909 Y， Price：10.313

M
VT

L
4

FT4 (88,279) + G4
G4 = (TX8,TX9)

M
VT

L
5

FT5 (34,816) + G5
G5 = (TX10,TX11)

BT1 (17,781) BT1 : 17,781 Y → 191,367 X， Price：10.762

TX9 : 30,000 X → 2,778 Y， Price：10.799

FT4 : 88,279 X → 8,316 Y， Price：10.616
TX8 : 30,000 X → 2,794 Y， Price：10.737

FT5 : 34,816 X → 3,203 Y， Price：10.870
TX10 : 30,000 X → 2,743 Y， Price：10.937
TX11 : 30,000 X → 2,728 Y， Price：10.997Attacker

n

n

2. Optimize the
attack strategy

Attacker
TX11 (30,000, 30,000/11.0, 0)

Fig. 7: Example 2. An optimized n-MVTL attack strategy. We highlight the
malicious transactions (in red) initiated by A.

	n-MVTL Attack: Optimal Transaction Reordering Attack on DeFi

