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Abstract

Adversarial attacks can mislead deep neural networks
(DNNs) by adding imperceptible perturbations to benign
examples. The attack transferability enables adversarial
examples to attack black-box DNNs with unknown archi-
tectures or parameters, which poses threats to many real-
world applications. We find that existing transferable at-
tacks do not distinguish between style and content features
during optimization, limiting their attack transferability. To
improve attack transferability, we propose a novel attack
method called style-less perturbation (StyLess). Specifi-
cally, instead of using a vanilla network as the surrogate
model, we advocate using stylized networks, which encode
different style features by perturbing an adaptive instance
normalization. Our method can prevent adversarial exam-
ples from using non-robust style features and help gener-
ate transferable perturbations. Comprehensive experiments
show that our method can significantly improve the transfer-
ability of adversarial examples. Furthermore, our approach
is generic and can outperform state-of-the-art transferable
attacks when combined with other attack techniques. 1

1. Introduction
Deep neural networks (DNNs) [14, 24] are currently ef-

fective methods for solving various challenging tasks such
as computer vision, and natural language processing. Al-
though DNNs have amazing accuracy, especially for com-
puter vision tasks such as image classification, they are also
known to be vulnerable to adversarial examples [12, 43].
Adversarial examples are malicious images obtained by
adding imperceptible perturbations to benign images. No-
tably, the transferability of adversarial examples is an in-
triguing phenomenon, which refers to the property that the
same adversarial example can successfully attack different
black-box DNNs [5, 30, 34, 51].

It has been observed that image style can be decoupled
from image content, and style transfer techniques allow us
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Figure 1. An overview of our StyLess attack. We create stylized
model F̄ by injecting synthesized style features into the surrogate
model (F = F2 ◦F1) using an adaptive IN layer. StyLess reduces
the use of non-robust style features in the vanilla surrogate model
F , ultimately improving attack transferability.

to generate stylized images based on arbitrary style im-
ages [18]. Image style refers to the unique visual char-
acteristics of an image, including its colors, textures, and
lighting. For instance, two photos of the same object taken
by different photographers can have very different styles.
Robust DNNs should rely more on content features of data
than style features. This inspired us to improve attack trans-
ferability from the perspective of avoiding non-robust fea-
tures. We believe that style features of DNNs are non-robust
for building transferable attacks. However, existing attacks
do not distinguish between the surrogate models’ style and
content features, which may reduce attack transferability.

We propose using stylized surrogate models to control
style features, which can significantly improve transferabil-
ity. We refer to the original surrogate model as the “vanilla
model.” The proposed stylized model is created by adding
an adaptive instance normalization (IN) layer to the vanilla



model. By adjusting the parameters of the inserted IN layer,
we can easily transform the style features of the surro-
gate models. To compare the stylized and vanilla surrogate
models, we analyzed their network losses during optimiza-
tion. Surprisingly, we found that the adversarial loss of the
vanilla model increased much faster than those of the styl-
ized models, resulting in a widening loss gap. This phe-
nomenon reveals that as the attack iteration progresses, cur-
rent attack methods only focus on maximizing the loss of
the vanilla model, leading to increased use of the style fea-
tures of the vanilla surrogate model. However, we believe
that style features are non-robust for transferable attacks,
and relying too much on them may reduce attack transfer-
ability. To enhance transferability, we aim to limit the use
of non-robust style features and close the loss gap.

Based on the above findings, we propose a novel method
called StyLess to improve the transferability of adversarial
examples. Our method uses multiple synthesized style fea-
tures to compete with the original style features during the
iterative optimization of attack. The process is illustrated in
Figure 1. We encode various synthesized style features into
a surrogate model via an IN layer to achieve stylized sur-
rogate models. Instead of using only the vanilla surrogate
model, we use the gradients of both the stylized surrogate
models and the vanilla one to update adversarial examples.
The front part of the surrogate model works as a style en-
coder, and the IN layer simulates synthesized style features.
Although we can use a decoder to explicitly generate the
final stylized samples, it is unnecessary for the proposed at-
tack method. Experimental results demonstrate that StyLess
can enhance the transferability of state-of-the-art adversar-
ial attacks on both unsecured and secured black-box DNNs.
Our main contributions are summarized as follows:

• We introduce a novel perspective for interpreting at-
tack transferability: the original style features may hin-
der transferability. We verify that current iterative at-
tacks increasingly use the style features of the surro-
gate model during the optimization process.

• We propose a novel attack called StyLess to enhance
transferability by minimizing the use of original style
features. To achieve this, we insert an IN layer to cre-
ate stylized surrogate models and use gradients from
both stylized and vanilla models.

• We conducted comprehensive experiments on various
black-box DNNs to demonstrate that StyLess can sig-
nificantly improve attack transferability. Furthermore,
we show that StyLess is a generic approach that can be
combined with existing attack techniques.

2. Related Work
Adversarial Attacks. Adversarial attacks reveal the vul-

nerability of current DNNs [43]. The classic adversarial at-
tack methods are gradient-based, such as FGSM [12] and

I-FGSM [25]. C&W [4] considers optimizing the distance
between adversarial examples and benign samples, and pro-
posed optimization-based attacks. Adversarial attacks can
also be performed in the physical world [10,39]. As for de-
fending against adversarial examples, adversarial training is
a popular defense method that uses adversarial examples as
extra training data to improve robustness [32].

Increasing Attack Transferability. An intriguing prop-
erty of adversarial attacks is the transferability. Ensemble-
based attack [30] uses multiple surrogate networks instead
of one network. Ghost networks [27] generates differ-
ent surrogate networks by perturbing skip connection and
dropout layers. Optimization methods, such as MI [5], uses
a momentum-based optimization, while VT [47] introduces
gradient variance to control the stability of the localized gra-
dients. RAP [35] generates adversarial examples located in
a flat loss region. Data augmentation methods, such as DI
[51], uses image transformation like resizing and padding,
while TI [6] considers translating image pixels. SI [29] cal-
culates gradients with the help of several scaled benign sam-
ples. Admix [48] calculates iterative gradients by mixing
the benign images with randomly sampled images.

Various network architectures and features exhibit dif-
ferent relationships with adversarial attacks. DNNs’ linear-
ity is believed to cause adversarial vulnerability [12], and
LinBP [13] skips the nonlinear activation during the back-
propagation. SGM [49] uses more gradients through skip
connections in residual networks. To better leverage the in-
termediate layers, one can train auxiliary classifiers based
on feature spaces [20, 21], maximize the distance between
natural images and their adversarial examples in feature
spaces [54], or fine-tune the existing adversarial examples
in intermediate layer level by ILA [17, 26].

Style Transfer and Instance Normalization. Style
transfer can change the style of an image to match the
style of another one [9, 11, 23]. Fast feedforward networks
can perform stylization with arbitrary styles in a single for-
ward pass [18, 28]. Interestingly, style transfer has a wide
range of applications. AdvCam [8] uses natural styles to
hide non-Lp restricted perturbations. FSA [52] generates
natural-looking adversarial examples by using optimized
style changes. Style transfer has also been used to improve
network robustness by exploring additional feature infor-
mation [33]. Latent style transformations can detect adver-
sarial attacks [46]. AMT-GAN [15] proposes an adversar-
ial makeup transfer to protect facial privacy by preserving
stronger black-box transferability.

The family of instance normalization (IN) including
batch normalization [22], layer normalization [1], instance
normalization [45], and group normalization [50]. Normal-
izations are mainly used to reduce the covariate shift, and
speed model training. Recently, normalizations have been
found to be related to robustness. It has been shown that



batch normalization makes DNNs use more non-robust but
useful features [3, 19]. AdvBN proposed adding an extra
batch normalization into network training to increase train-
ing loss adversarially, which enables the network to resist
various domain shifts [40]. Adjusting batch normalization
statistics such as the running mean and variance in the infer-
ence phase, which are estimated during training, improves
robustness and defense common corruption [2, 38].

Among existing style-based attacks, FSA [52] differen-
tiates style features and content features, which is similar
to our method. However, there are three significant differ-
ences between FSA and our approach: 1) FSA proposes to
hide adversarial perturbations in the optimized style, while
we avoid relying on any style. 2) FSA aims at enhancing the
natural looking of non-`p restricted attacks, while we focus
on the transferability of `p restricted adversarial examples.
3) Both FSA and our work are inspired by AdaIN [18], but
we use IN layer differently. FSA perturbs the IN layer to
search malicious styles and requires a decoder. But we use
randomized IN layers to augment attacks and don’t need to
train a decoder.

3. Methodology

3.1. Threat Model

Attack objective. Given a benign image x with label
y, transfer-based attacks aim to generate an adversarial per-
turbation based on a white-box surrogate network F . The
general attack objective can be formulated as follows:

max
δ
L(F (x+ δ), y) s.t. ‖δ‖ ≤ ε, (1)

where L denotes the adversarial loss, δ is the adversarial
perturbation, and ε is the maximum perturbation size.

A popular framework to solve the above problem is iter-
ative fast gradient sign method (I-FGSM) [12, 25]:

xt+1
adv = xtadv + α · sign

(
∇xL

(
F (xtadv), y

))
, (2)

where α is the learning rate, and a clip function will be used
on xt+1

adv to ensure ‖xt+1
adv − x‖ ≤ ε.

Attacker capability. We follow the same setting in pre-
vious work that attackers have a surrogate model and some
test samples, but cannot access target models, and don’t
know network architectures, training data, or defense strate-
gies. It should be noted that our method doesn’t require any
additional datasets. Our approach involves style features,
which can be extracted from an arbitrary image or synthe-
sized without any style image.

Transferable attacks as black-box attacks. Transfer-
able attacks use the surrogate model F to create adversarial
examples that can fool unseen target models. In this way,
these attacks can be viewed as black-box attacks.

3.2. Motivation

Existing transferable attacks often rely on the gradient of
the adversarial loss function L (Equation 2) without consid-
ering the impact of different components of L. However,
these approaches have limitations because transferable at-
tacks should minimize the use of non-robust features of the
surrogate model. Interestingly, for image classification task,
style features of images are typically less robust than con-
tent features. Based on this observation, we propose to en-
hance attack transferability by explicitly reducing the use of
style features of the surrogate model within the loss L.

Our key idea is simulating various surrogate models
without the style features of the given vanilla surrogate
model. We discovered that inserting an IN layer into the
vanilla surrogate model enables us to create new surrogate
models that we refer to as stylized surrogate models. Some-
times we omit the word “surrogate.” Stylized models can
explicitly manipulate style features without compromising
model accuracy. Recall that our goal is to construct ad-
versarial examples that can mislead unseen target models,
which should include these stylized models. However, ex-
isting methods, such as MI and I, only focus on maximizing
the loss of the vanilla model.

Figure 2 indicates that MI and I(-FGSM) have limited
attack transferability on stylized models since the vanilla
model’s adversarial loss increases much faster than stylized
models’, resulting in a widening loss gap. In the following
sections, we will demonstrate how our method addresses
this issue by maximizing the loss of both the stylized and
vanilla models, which significantly improves transferability.

3.3. Stylized Surrogate Models

This section will give the definition of our stylized sur-
rogate models, which encode various style features by in-
serting an IN layer. Then we will analyze the stylized loss
gap (∆L) between the vanilla and stylized surrogate mod-
els. Specifically, we will illustrate the increasing ∆L limits
transferability and our idea to decrease ∆L.

3.3.1 Encoding Styles by Stylized Models

Given a classifier F = F2 ◦ F1 as the surrogate model, we
define a stylized surrogate model as

F̄xs
= F2 ◦ INxs

◦F1, (3)

where xs is a style input, INxs is an IN layer instantiated by
xs. In general, an IN layer is defined as

IN(x;µ, σ) = σ ·
(
x− µ(x)

σ(x)

)
+ µ, (4)

where µ and σ are the network parameters of layer IN, and
µ(x) and σ(x) are the mean and variance of input x. Ac-
cording to adaptive instance normalization (AdaIN) [18], to



(a) Baseline attack MI vs ours MI+StyLess

(b) Baseline attack I(-FGSM) vs ours I+StyLess

Figure 2. Illustration of the loss gap between vanilla network and
stylized network, with RN50 as surrogate model. The greater the
loss, the better the attack performance. The widening loss gap in
the baseline means that attack performance on stylized models is
lagging behind. The proposed StyLess can close the gap.

stylize an input x with a given style input xs, we only need
to instantiate the IN as

INxs(x) = IN(x)
∣∣
µ=µ(xs),σ=σ(xs) (5)

Our stylized model F̄xs
has encoded style features.

Based on AdaIN, the F1 from the classifier F = F2 ◦ F1

works as an encoder for style transfer, and given a style in-
put xs, we can get a stylized image as x̄ = D◦INxs

◦F1(x),
where D denotes a decoder. Thus, INxs

◦F1(x) has en-
coded the style features of xs to F̄xs

.

3.3.2 Stylized Loss Gap Limits transferability

To validate the performance of adversarial attacks on these
stylized surrogate models, we define a stylized loss gap as

∆L = Exs∈D[L(F (x), y)− L(F̄xs
(x), y)], (6)

where F and F̄xs are vanilla and stylized model, respec-
tively; xs is style input.

An increasing loss gap ∆L can be observed in Figure 2
which limits attack transferability, as explained below. Hy-
pothetically, let’s say we can decouple style-dependent loss
from content-dependent loss in L as follows:

L = Lc + Lsx,
L̄ = Lc + Lsxs

,
(7)

where L is the vanilla loss, and L̄ is the stylized one; Lc is
the common content-dependent loss; Lsx is input sample x-
specific style-dependent loss, while Lsxs

is style sample xs-
specific style-dependent loss. In this case, ∆L = Lsx−Lsxs

.
In other words, the non-robust features are related to Lsx

and Lsxs
, while Lc is supposed to be shared by other unseen

DNNs. MI and I-(FGSM) have increasing gaps in Figure 2
means that attackers gradually focus on optimizing the Lsx
part, which only belonged to the vanilla surrogate model F .
Therefore, the loss gap limits the transferability of adver-
sarial examples in unseen stylized models.

To decrease ∆L and boost transferability, we consider
involving Lsxs

as a competitor of Lsx in optimization pro-
cess to suppress the growth of Lsx. In general, we can as-
sume that all these losses in Equation 7 are non-negative,
and they satisfy: Lc � Lsx, Lc � Lsxs

. Also, there is a
upper bound B for these losses: L < B, L̄ < B, as the ad-
versarial perturbations are required to smaller than a given
ε. If we only maximize the vanilla loss L, both Lc and Lsx
are likely to be increased. To this end, we propose to maxi-
mize Exs∈DLsxs

+Lsx +Lc, which involves multiple style-
dependent losses Lsxs

(xs ∈ D) to compete with Lsx and
leads to a decrease of ∆L.

3.4. Proposed Style-Less Perturbations (StyLess)

Based on the above analysis, we propose style-less per-
turbations (StyLess) method to increase attack transferabil-
ity by optimizing stylized loss and vanilla loss together:

max
δ

Exs∈DL(F̄xs
(x+ δ), y) + L(F (x+ δ), y). (8)

The key to generate multiple stylized models F̄xs is syn-
thesizing style statistics µ, σ for Equation 5 to obtain pa-
rameterized IN layers. We propose using scaling and inter-
polation to simulate multiple style features, formulated as

µ = β(λµx + (1− λ)µs),

σ = γ(λσx + (1− λ)σs),
(9)

where µx, σx is the mean and variance of F1(x), relating
to the benign content input x, while µs, σs are for style in-
put xs similarly. xs is an arbitrary image. λ is a scalar
that controls the interpolation of two styles. β and γ are c-
dimensional vectors that scale the synthesized style, where
c refers to the number of channels in the style feature.

We summarize the proposed StyLess attack in Algo-
rithm 1. To obtain the parameters of the IN layer without
training, we select a random image as xs, and generate a
pair of µ and σ using Equation 9. With µ and σ, we can cre-
ate a stylized model F̄xs(x) using Equation 3 and 5. F̄xs(x)
need to be equal to F (x) or label y, otherwise we will re-
generate µ and σ by altering β, γ and λ. In each iteration,
we use N stylized models to update adversarial examples
based on the proposed objective function in Equation 8.



Algorithm 1 Style-Less Perturbations (StyLess) Algorithm

Input: Surrogate model F , benign example x, iteration
number T , maximum perturbation ε, data augmentation
φ(·), decay factor η. Scale factors β, γ and interpola-
tion factor λ. The number of stylized models N .

Output: An adversarial example xadv
1: xadv = x, g0 = 0, α = ε/2.
2: for t = 0→ T − 1 do:
3: Augment input xadv = φ(xadv)
4: Obtain gradient g̃t+1 with respect to xadv using F
5: repeat
6: Synthesize a style statistic by Equation 9
7: Obtain a stylized model F̄xs

by Equation 3
8: Get gradient g̃ with respect to xadv using F̄xs

9: Update g̃t+1 = g̃t+1 + g̃
10: until obtain N stylized models
11: Calculate momentum gt+1 = η ·gt+ g̃t+1/‖g̃t+1‖1
12: Update example xadv = xadv + α · sign(gt+1)
13: end for
14: return xadv .

4. Experiments

4.1. Experimental Setup

Dataset. We use ImageNet [36] for experiments. Specif-
ically, we use 1000 images which are randomly selected
from ImageNet validation set by Wang et al. [47]. Simi-
lar dataset settings have been widely used in previous work
[5, 13, 29, 47, 49, 51]. These images include all categories;
almost all are correctly classified by the target DNNs.

Models. We evaluate the generated adversarial examples
on different black-box DNNs, including both unsecured and
secured models. Unsecured models are trained on Ima-
geNet using traditional methods, while secured models are
based on adversarial training. The unsecured models in-
clude VGG19 [41], AlexNet [24], ResNet50 (RN50) [14],
WideResNet101 (WRN101) [53], DenseNet121 (DN121)
[16], InceptionV3 (IncV3) [42], MnasNet [44], Mo-
bileNetV2 (MNv2) [37], ShuffleNetV2 (SNv2) [31] and
ViT [7]. Their pre-training parameters are obtained from
PyTorch official. The secured DNNs are IncV3ens3 (en-
semble of 3 InceptionV3 networks), IncV3ens4 (ensemble
of 4 InceptionV3 networks) and IncResV2ens3 (ensemble of
3 IncResV2 networks). These models were adversarially
trained and widely used in previous work [5, 30, 47, 49]. As
for the surrogate models, we use VGG19 [41], RN50 [14],
WRN101 [53] and DN121 [16].

Implementation Details. We use I-FGSM [12] as the
initial baseline. Unless otherwise specified, the attacks are
untargeted and l∞-restricted. The maximum perturbation
size is set to ε = 16/255. We compare StyLess primarily
with six transferable attacks: MI [5], DI [51], TI [6], SI [29],

Admix (AI) [48], and an ensemble-based approach [30]. We
set the optimization step size to α = ε/2, and the num-
ber of iterations to T = 50. The momentum decay in MI
is µ = 1. For DI, SI and AI, we follow the official set-
tings described in the corresponding papers. For StyLess,
we simulate 10 stylized models in each iteration, denoted
by N = 10. To generate a stylized model for a given x, we
randomly sample λ from [0, 0.2], and β, γ from [0, 2], and
ensure that F̄xs

(x) is equal to F (x) or the real label. The
IN layer is inserted after the first bottleneck block for RN50
and WRN101, and after the first dense block for DN121.

4.2. Attacking Unsecured Models

We compare StyLess with other attacks on various unse-
cured DNNs using three surrogate models. Table 1 shows
that StyLess is a powerful and generic method that can
be combined with existing attack methods to further im-
prove attack transferability. Specifically, we compare Sty-
Less with I, MI, DI, TI, SI and Admix (AI). For the most
challenging case in the table, attacking the black-box IncV3
(let’s take RN50 ⇒ IncV3 attack as an example), StyLess
significantly improves the attack success rate of baseline
attacks (I and MI): 46.2% → 68.3% (I), 59.2% → 78.9%
(MI). StyLess also demonstrates its capabilities when using
other DNNs as the surrogate network. For instance, DN121
⇒ SNv2 attack, StyLess significantly improves the base-
line: 69.3%→ 91.4% (I), 77.4%→ 95.1% (MI).

StyLess can be combined with other attack techniques.
Previous work has shown that combining various attack
methods results in powerful and transferable attacks. Sty-
Less can be integrated with existing combination-based at-
tacks to enhance attack transferability. We report the re-
sults of four combinations of existing attacks: MDI, MTDI,
MTDSI, and MTDAI. StyLess further enhances these four
attack methods’ attack success rate by +8.0%, +8.2%,
+3.0%, and +3.3% (in the case of RN50 ⇒ IncV3 at-
tack). We evaluate attack performance using various sur-
rogate models, including RN50, WRN101 and DN121.
For instance, when combining MTDAI with StyLess, our
method enhances the transferability of MTDAI: WRN101
⇒ IncV3 attack: +4.7%, WRN101⇒MNv2 attack: +1.5%,
WRN101⇒ SNv2 attack: +3.4%, DN121⇒ IncV3 attack:
+4.3%, DN121⇒ MNv2 attack: +0.6%, DN121⇒ SNv2
attack: +3.8%. The results show that StyLess is an efficient
and generic approach for improving attack transferability.

4.3. Attacking Secured Models

We evaluate StyLess on three widely-used secured mod-
els: IncV3ens3 , IncV3ens4 and IncResV2ens , as shown in
Table 2. We present the results of I, MI, MDI, MTDI,
and MTDSI on the three secured models using two sur-
rogate models: RN50 and WRN101. These secured net-
works are more robust than the unsecured DNNs we men-



Table 1. Attacking unsecured black-box models with StyLess.

Source Attack VGG19 RN50 WRN101 DN121 IncV3 MNv2 SNv2

RN50

I / +Ours 72.8 / 88.8 100 / 100 80.8 / 97.1 83.0 / 97.8 46.2 / 68.3 77.1 / 91.9 60.6 / 77.8
MI / +Ours 82.9 / 94.1 100 / 100 83.9 / 97.2 87.5 / 98.7 59.2 / 78.9 83.8 / 93.2 72.3 / 83.5

MDI / +Ours 97.5 / 99.2 100 / 100 98.2 / 99.8 99.4 / 100 89.5 / 97.5 98.1 / 99.9 88.5 / 96.9
MTDI / +Ours 98.6 / 99.7 100 / 100 99.2 / 100 99.8 / 100 90.2 / 98.4 98.7 / 100 90.8 / 98.1

MTDSI / +Ours 98.6 / 99.2 100 / 100 99.5 / 100 99.8 / 100 96.2 / 99.2 98.7 / 99.9 96.2 / 98.2
MTDAI / +Ours 99.3 / 99.6 100 / 100 99.8 / 100 99.9 / 100 95.5 / 98.8 99.7 / 100 95.7 / 99.0

WRN101

I / +Ours 64.8 / 79.6 88.6 / 98.7 100 / 100 77.7 / 94.2 43.2 / 66.6 68.1 / 84.7 58.1 / 73.2
MI / +Ours 75.6 / 86.4 89.8 / 98.7 100 / 100 83.9 / 96.4 57.6 / 73.7 76.1 / 87.0 70.2 / 81.2

MDI / +Ours 92.2 / 98.5 99.0 / 99.9 100 / 100 97.1 / 99.9 86.3 / 96.3 93.6 / 99.0 86.8 / 95.8
MTDI / +Ours 92.5 / 98.6 99.2 / 100 100 / 100 97.9 / 99.6 89.2 / 97.9 95.4 / 99.3 88.4 / 97.0

MTDSI / +Ours 95.9 / 98.9 99.6 / 100 100 / 100 99.7 / 100 95.8 / 99.5 97.7 / 99.9 94.5 / 98.4
MTDAI / +Ours 96.5 / 99.2 99.9 / 99.9 100 / 100 99.4 / 100 93.7 / 98.4 98.1 / 99.6 94.6 / 98.0

DN121

I / +Ours 79.7 / 97.7 87.0 / 99.4 74.7 / 98.0 100 / 100 55.7 / 88.7 81.3 / 97.0 69.3 / 91.4
MI / +Ours 86.9 / 99.1 89.4 / 99.7 78.2 / 98.6 100 / 100 66.0 / 95.7 86.5 / 98.7 77.4 / 95.1

MDI / +Ours 96.7 / 99.9 98.9 / 100 95.4 / 99.8 100 / 100 90.5 / 99.0 97.5 / 100 90.9 / 98.6
MTDI / +Ours 97.5 / 99.9 99.1 / 100 95.9 / 99.8 100 / 100 92.7 / 99.4 96.9 / 100 92.2 / 98.6

MTDSI / +Ours 97.4 / 99.9 99.3 / 100 98.0 / 99.8 100 / 100 96.5 / 99.8 98.9 / 100 95.1 / 99.1
MTDAI / +Ours 99.2 / 99.9 99.8 / 100 98.1 / 99.9 100 / 100 95.1 / 99.4 99.4 / 100 95.2 / 99.0

Table 2. Attacking three secured black-box models with StyLess.
The surrogate model is RN50 or WRN101.

Attack
RN50⇒

IncV3ens3 IncV3ens4 IncResV2ens

I / +Ours 21.6 / 34.6 18.9 / 32.0 14.1 / 21.5
MI/ +Ours 31.5 / 47.1 29.3 / 42.4 20.8 / 31.0

MDI / +Ours 59.6 / 78.1 53.5 / 69.8 38.3 / 57.3
MTDI / +Ours 69.2 / 89.6 63.8 / 81.8 54.6 / 72.2

MTDSI / +Ours 88.0 / 93.1 84.7 / 91.3 77.8 / 84.5

WRN101⇒

I / +Ours 23.4 / 40.3 20.9 / 34.6 15.5 / 25.6
MI/ +Ours 35.0 / 51.2 30.4 / 46.6 24.7 / 35.9

MDI / +Ours 64.0 / 81.5 58.8 / 76.2 46.9 / 66.4
MTDI / +Ours 75.5 / 91.4 70.5 / 87.4 63.6 / 81.0

MTDSI / +Ours 91.6 / 97.5 88.6 / 96.1 83.0 / 92.5

tioned above. Taking RN50 ⇒ IncV3ens3 attack as an ex-
ample, I, MI, MDI, and MTDI achieve attack success rates
of only 21.6%, 31.5%, 59.6%, and 69.2%, respectively.
StyLess effectively improves the performance of these at-
tacks. Notably, MTDSI has been improved by our method:
91.6%→ 97.5% in WRN101⇒ IncV3ens3 attack; 88.6%→
96.1% in WRN101⇒ IncV3ens4 attack; 83.0% → 92.5%
in WRN101⇒ IncResV2ens attack. StyLess demonstrates
its great power to enhance transferability in breaking these
challenging secured DNNs.

Figure 3 shows a comparison of StyLess and LinBP. We
consider LinBP and its combination with existing attacks
such as ILA, SGM, and MDI on various target DNNs. Our
method exhibits the best attack transferability.

Figure 3. Comparing with LinBP on different black-box models
and defenses. The surrogate model is RN50.

4.4. Combining with Ensemble-Based Method

Generating adversarial examples based on multiple sur-
rogate networks simultaneously can improve attack perfor-
mance in practice [30]. This ensemble-based method has
been shown to be a powerful attack, and StyLess can fur-
ther improve it. We use an ensemble of RN50, WRN101,
and DN121 as the integrated surrogate model.

We compared our StyLess with ensemble-based MI
and MTDI in Table 3. The considerable strength of the
ensemble-based method can be seen when comparing with
the results in Table 1 and 2. For example, in RN50
⇒ IncV3 attack, the baseline attack MI only get 59.2%,
while it get 81.0% attack success rate in the case of
RN50+WRN101+DN121 ⇒ IncV3 attack. Noted that we
generally use ε = 16, which is a standard setting. As we
can see, when ε = 16, the ensemble-based MTDI achieves
an average attack success rate of less than 90% on the three



Table 3. Combining with ensemble-based attack method.

ε Attack
RN50+WRN101+DN121⇒

VGG19 RN50 WRN101 DN121 IncV3 MNv2 SNv2 IncV3ens3 IncV3ens4 IncResV2ens

4
MI 56.8 96.4 94.8 97.2 35.7 62.3 48.3 18.4 15.8 9.4

MTDI 79.2 97.9 96.6 98.8 67.5 84.5 71.6 36.5 32.1 22.3
+StyLess 90.4 99.5 99.4 99.9 83.2 94.3 85.4 50.0 42.9 29.1

8
MI 79.2 99.6 98.7 99.4 58.3 83.3 68.0 31.4 26.8 18.2

MTDI 95.2 99.9 99.5 99.9 89.5 97.5 90.4 67.6 61.8 46.9
+StyLess 99.1 100 100 100 97.5 99.6 97.2 85.1 77.4 66.1

16
MI 92.3 100 100 100 81.0 93.2 85.0 53.0 46.3 35.0

MTDI 99.2 100 100 100 97.5 100 97.9 92.7 86.4 80.7
+StyLess 100 100 100 100 99.8 100 100 98.5 97.5 94.3

secured networks: IncV3ens3 , IncV3ens4 , and IncResV2ens .
StyLess can further boost the transferability of ensemble-
based MTDI: 92.7% → 98.5% for IncV3ens3 , 86.4% →
97.5% for IncV3ens4 , 80.7% → 94.3% for IncResV2ens .
These results show that StyLess is a different type of attack,
and can work perfectly with the ensemble-based method.

We also report the experimental results with different ε.
We use ε = 4 or 8 to increase the difficulty to attack. For
instance, in the case of ensemble-based MTDI⇒ IncV3ens3
attack, attack success rate drops from 92.7% to 67.6% when
ε = 8 instead of ε = 16, and StyLess can help ensemble-
based MTDI gains +17.5% (67.6% → 85.1%), which is a
huge improvement. When ε = 4, the results also demon-
strate the advantages of StyLess. This shows that StyLess
consistently delivers strong transferability when faced with
a more robust network that is difficult to attack.

4.5. Attacking the Google Cloud Vision API

We use the Google Cloud Vision API as an example of
real-world applications to evaluate the transferability of at-
tacks. This API allows us to use various vision features,
such as image labeling and face detection. As a black-box
model, regular users like us cannot access its network archi-
tecture, training data, or defense mechanism. In this section,
we will focus on attacking its image labeling feature.

To utilize the image labeling feature of the API, we need
to upload images and obtain the predicted labels. We use
1000 images from ImageNet as the target images, as de-
scribed in the experimental setup. Due to the fact that the
API does not support all 1000 categories in ImageNet, our
objective is to mislead the API’s original top-1 prediction.

We use ResNet50 as the surrogate network to compare
the baseline method MTDSI with our method. Experimen-
tal results show that MTDSI achieves an attack success rate
of 75.6% on the Google Cloud Vision API. Our approach,
MTDSI-SyLess, achieves an attack success rate of 85.2%,
which is a 9.6% improvement over the baseline. Our re-
sults demonstrate that transfer-based black-box attacks pose
a severe threat to real-world applications, and StyLess can
effectively boost attack transferability.

4.6. Ablation Study

In this session, we will present four ablation studies: 1)
The position of the inserted IN layer; 2) The number of the
generated stylized models; 3) The clean losses of stylized
models and attack transferability; 4) The most important
statistic of style features.

Which position to insert the IN layer? As shown in
Figure 4, we use features from different layers of the vanilla
surrogate networks as the encoder F1 for style transfer. We
evaluate the attack success rates using two surrogate net-
works: WRN101 and DN121. After injecting synthesized
styles into different network layers, we report the attack suc-
cess rates on various DNNs, including AlexNet, VGG19,
RN50, WRN101, and DN121. We observe a trend that the
best attack success rates are usually achieved in the shallow
layers of the surrogate networks. For example, when us-
ing WRN101 as the surrogate network, injecting the synthe-
sized styles in the layers before layer ten is a good choice.
Using intermediate layers such as layers 40 to 80 is also
acceptable, but the attack performance may be unstable or
even worse when injecting the styles in the last few layers.
The results of using DN121 as the surrogate network also
indicate that the last few layers are the worst choices, and
the shallow layers are the optimal.

Figure 4. Ablation study on using which network layer to synthe-
size styles. The surrogate networks are WRN101 and DN121.

How many stylized models should be created in each
iteration? In Figure 5, we vary the number of stylized
models generated in each attack iteration from zero to



ten. We conduct experiments by combining StyLess with
two baseline attacks: MI and DI. The first figure evalu-
ates the attack success rates on three unsecured networks
for our MI+StyLess attack. In the second figure, we test
DI+StyLess on three secured models. When the number of
stylized models is 0, StyLess is not involved, so it is the
vanilla baseline attack. As we can see, when the number
increases from 0 to 1, the attack success rate starts to grow,
which means StyLess starts to work. There is an anomaly
when DI begins to combine with StyLess. If the number
is less than three, the attack success rate on IncResV2ens
is slightly worse than the baseline (around 25%). When
the number increases by more than three, the attack suc-
cess rate becomes higher than the baseline. This may be
because IncResV2ens is very strong, and more synthesized
style features need to be injected into the surrogate model.
According to the figure, StyLess works quite well when six
to ten stylized models are used in an attack iteration.

Figure 5. Ablation study on the number of stylized models in an
attack iteration. The surrogate network is RN50.

How network loss affects attack success rate? In Fig-
ure 6, we demonstrate how varying strengths of style injec-
tion can affect network loss, which in turn impacts attack
performance on a surrogate network (in this case, VGG19).
The strength of synthesized style features is denoted by the
number of stars, with more stars indicating greater style
strength that alters the style features of the surrogate model.
Generally, injecting synthesized style features should not
significantly affect the clean loss, as an increase in network
loss typically leads to a decrease in clean accuracy. Overly
corrupted stylized surrogate models can also result in bad
gradients for attack methods. Therefore, there is an upper
bound on clean loss when generating stylized models. The
red line in the figure represents the situation of overly cor-
rupting, in which the clean loss exceeds the estimated bound
(indicated by a yellow line in the right figure), and the at-
tack success rate drops significantly. This demonstrates the
importance of maintaining relatively good clean accuracy
when creating stylized networks.

Which statistic of style features matters most? In Fig-
ure 7, we compare the effects of the mean and variance
of style features on StyLess. Here the interpolation fac-

Figure 6. Study how synthesized style features affect the clean
loss, which in return impacts the attack success rate. The number
of stars indicates the degree of change in original style features.

tor is λ = 0. Equation 9 shows that β involves the mean
in IN, while γ affects the variance. The attack success
rate represents the average success rates of attacks on five
DNNs: VGG19, AlexNet, RN50, WRN101, and DN121.
The results show that γ plays a more important role than
β. Specifically, when RN50 is used as the surrogate net-
work, modifying β alone barely improves the baseline at-
tack, while involving γ alone enhances the attack success
rate by around 5%. A similar observation can be made for
VGG19. From the perspective of gradient calculations, this
also makes sense. When we backpropagate through an IN
layer, we have ∂

∂x IN = σ, which also indicates that the
variance matters most for adversarial attacks.

Figure 7. The effect of different statistics of style.

5. Conclusion
In this work, we analyze the mechanism of attack trans-

ferability in terms of style features. We demonstrate that ex-
isting attack methods increasingly use the style features of
surrogate models during the iterative optimization, which
hampers attack transferability. To address this issue, we
propose a novel attack method called StyLess to enhance
transferability by reducing reliance on original style fea-
tures. StyLess uses stylized surrogate models instead of
a vanilla surrogate model. Experimental results show that
StyLess outperforms existing attacks by a large margin, and
can be combined with other attack methods. Notably, Sty-
Less is a different paradigm from previous transferable at-
tack methods, and we hope it will shed light on the interpre-
tation of adversarial attacks in the future.
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