Abnormal Traffic Detection: Traffic Feature
Extraction and DAE-GAN with Efficient Data
Augmentation

Zecheng Li", Shengyuan Chen”, Hongshu Dai”, Dunyuan Xu", Chengkang Chu*, and Bin Xiao"

“The Hong Kong Polytechnic University,
Email:{zecheng.li, shengyuan.chen, francis.dai, dunyuan.xu}@connect.polyu.hk, csbxiao@comp.polyu.edu.hk
*Huawei Technologies Co Ltd Singapore,
Email: Chu.Cheng.Kang@huawei.com

Abstract—Abnormal traffic detection is the core component of
the network intrusion detection system. Although semi-supervised
methods can detect zero-day attack traffic, previous work suffers
from high false alarms because the trained model is simply
based on normal traffic. In this paper, we propose an accu-
rate abnormal traffic detection method using pseudo anomaly,
consisting of an efficient feature extraction framework and
a novel Denoise AutoEncoder-Generative Adversarial Network
(DAE-GAN) model. The feature extraction framework adopts an
innovative packet window scheme to extract spatial and temporal
features from traffic flows. The DAE-GAN model has multiple
DAE:s to achieve efficient data augmentation and generate high-
quality pseudo anomalies. The pseudo anomalies are obtained
by adding noise on normal traffic and enhanced by adversarial
learning in DAE-GAN. Our semi-supervised detection method,
exploiting both normal data and generated pseudo anomalies,
achieves a precision of 98.6% on the NSL-KDD dataset and
98.5% on the UNSW-NB15 dataset. Compared with the state-
of-the-art, the detection precision and recall under different user
behaviors are significantly improved. The evaluation on four
attack datasets shows that our method has a high flow-wise
precision of over 99% and a high recall of 60.6%.

Index Terms—Abnormal traffic detection, Generative Adver-
sarial Networks, Adversarial learning, Deep learning, DNN.

I. INTRODUCTION

Over the past two decades, with the development of com-
munication technology, traffic identification techniques have
emerged and evolved to monitor network status and provide
users with better network services. One of the main issues in
traffic identification is abnormal traffic detection. Abnormal
traffic detection is important to many applications, such as
intrusion detection systems, quality of service (QoS) control,
and resource usage management. Identifying traffic flows in
networks can not only improve the efficiency of the network
resources but also maintain the security of local devices. How-
ever, abnormal traffic detection is challenged by the diverse
and changing pattern of traffic and encryption technology.
Existing abnormal traffic detection methods can be categorized
as either misuse-based or anomaly-based.

Misuse-based (also referred to as signature-based) ab-
normal traffic detection, is to encode the traffic pattern of

known attacks into signatures by experts. During diagnosis,
a signature matching process is conducted to detect the pres-
ence of same attack traffic. To avoid costly human effort,
signatures can be constructed using rule synthesis techniques
[1]. Such rule matching-based methods can detect known
attacks at high precision, high sensitivity, and high speed [2].
However, maintaining an updated list of signatures is still
costly, requiring data labeling and signature generating. With-
out signatures, misuse-based methods cannot detect zero-day
attacks. Although incremental learning has made it possible
to detect newly discovered attacks [3]], the period between the
emergence of new attacks and construction of new signatures
is too long for a device vulnerably exposed to attackers.

Anomaly-based abnormal traffic detection, on the other
hand, can detect new attacks because it takes anomalies as
deviations from a normal pattern distribution. The normal
pattern is learned by training on a large amount of normal
data, extracting statistical and time sequence features of the
given normal data. One requirement is to maintain the latest
anomaly-free traffic data.

Though being popular for the capability of detecting un-
seen attacks, anomaly-based methods perform differently de-
pending on the algorithm they adopt. Reconstruction-based,
clustering-based, and one-class classification are three dom-
inant anomaly-based detection methods. All of them do not
need supervised information and are trained on normal data.
Though capable of detecting novel anomalies, the lack of
anomaly pattern in training data entails low detection recall
and high false alarm. To deal with this issue, an intuitive
solution is to generate pseudo anomalies by sampling in the
feature space. However, random sampling in all data spaces
is computationally expensive and impractical, especially in
high dimensional data spaces. Efficient data augmentation al-
gorithm is needed when leveraging pseudo anomalies. Specif-
ically, pseudo anomaly should be abnormal traffic generated
manually rather than the real abnormal traffic (e.g., malware
traffic) collected from the Internet.

An accurate and scalable abnormal traffic detection model
based on pseudo anomaly should have the following proper-

ties:

o Semi-Supervised Learning. Preparing labeled data is not
required before training. All data are simply obtained
from normal traffic. The model can detect unseen attacks
by training on only normal data.

o Computationally Efficient. Traffic is processed and an-
alyzed in the real time to quickly identify anomalies with
low latency.

o Effective in High-dimensional Spaces. An efficient
pseudo anomaly generation method is needed even in
high-dimensional data spaces.

To meet above property requirements, we propose Denoise
AutoEncoder-Generative Adversarial Network (DAE-GAN)
for abnormal traffic detection. The DAE-GAN is composed of
multiple denoising autoencoders and a discriminator. Multiple
DAE:s constitute a pseudo anomaly (PA) generator to produce
effective pseudo anomalies. The discriminator is trained on
anomalies generated by the PA generator, and learns to dis-
tinguish abnormal traffic from normal ones on the Internet.
Unlike most previous studies that focus on detecting anomalies
using only normal data, our approach combines the idea of
pseudo anomaly and adversarial learning. The overall high-
level framework is a GAN-like structure composed of an
efficient PA generator and a binary discriminator. In this way,
we transform the anomaly detection problem into a binary
classification problem. The sensitivity of the discriminator is
further improved through adversarial learning.

For traffic data preprocessing, we introduce an innovative
real-time feature extraction framework. A packet window is
used for extracting spatial and temporal features. We select 20
important features by considering their information gain (IG),
information gain ratio (IGR), x?2, and ReliefF. In evaluation,
the proposed DAE-GAN model is evaluated over NSL-KDD
[4] and UNSW-NBI15 [5]]. Results demonstrate that DAE-
GAN model significantly outperforms baseline methods. We
also carry out experiments to detect abnormal traffic using
four raw traffic datasets used in Kitsune [|6] by combining
the feature extraction framework and the DAE-GAN model.
Experimental results show that our method achieves at least
99.5% precision in four datasets, while the highest recall is
97%. The performance of our method outperforms Kitsune in
terms of precision and recall.

The contributions of this paper can be summarized as
follows:

« An efficient spatial and temporal feature extraction frame-
work is proposed for real-time traffic processing. Twenty
relevant features are selected for training and classifi-
cation, which lead to a low detection latency and high
accuracy.

« A novel DAE-GAN model is proposed for efficient data
augmentation in high-dimensional spaces and accurate
semi-supervised anomaly detection. The PA generator can
efficiently produce pseudo anomalies, adapted to high-
dimensional spaces.

o A well-designed adversarial learning strategy is used

TABLE I: A table of acronyms.

Acronyms ‘ Description

DAE Denoise autoencoder
GAN Generative adversarial network
1G Information gain

IGR Information gain ratio
kNN k-Nearest-Neighbor
MLP Multi layer perceptron
MSE Mean square error

PA Pseudo anomaly
SVM Support vector machine

in the DAE-GAN model. The detection sensitivity and
precision of the model are further enhanced by training
on pseudo anomalies.

o Experiments are conducted on a GPU-based platform and
a mobile device. We compare the precision, recall, and
fl-score of DAE-GAN over different attacks with several
benchmark algorithms. We also verify the computational
efficiency of the model implemented in mobile devices.

The rest of the paper is organized as follows. Section
reviews the related work of traffic data preprocessing and
anomaly detection. Section discusses the dataset used
in our work and processing methods. Section presents
our proposed abnormal traffic detection model DAE-GAN.
Experimental results are presented in section Finally, we
conclude the paper and provide future research directions in
section [Vl

II. RELATED WORK
A. Data Preprocessing

As summarized in [7]], the features of traffic datasets can
be categorized into packet-based and flow-based features. A
packet is a formatted data unit during communication carried
by a packet-switched network. A flow is defined as a unidirec-
tional sequence of packets sharing the same source/destination
IP address, source/destination port, IP protocol, ingress inter-
face, and IP type of service. Packet-based features, such as
protocol and total length, contain spatial information about
individual packets in the traffic stream. In contrast, the flow-
based features in a data stream consisting of consecutive
packets reflect temporal information of the data stream.

Packet-based features can be extracted from a single packet
without waiting for the arrival of the last packet in the traffic
flow. Over the past years, packet-based analysis like deep
packet inspection [8]] [9] [[10] has been widely used for fast
and memory-efficient abnormal traffic detection. However,
detecting whether a traffic flow is anomalous only after it ends
does not enable real-time defense against anomalous traffic and
is useful only in the so-called “post-mortem” traffic analysis.

Flow-based features are features extracted from a sequence
of packets. Temporal information within flow-based features
can be used to describe the potential behavior hidden in
monitored traffic. Previous work model time sequences by
Markov Chain, which has proved to be susceptible to noise
[11]. Using flow-based features for traffic analysis has been

TABLE II: Comparison of work on abnormal traffic detection.

Category | Mechanism

Deep autoencoder [6]
Principal component analysis [16]
Generative adversarial networks [17]

Reconstruction

Clustering Deep autoencoder + gaussian mixture model [18]
Disagreement-based semi-supervised learning [[19]
One-class SVM [20]

One-class Principal component analysis + SVM [21]

Classification One-class SVM [22]

multi modal deep autoencoder [23]]

a popular trend [12] [13] [[14]. Furthermore, some studies
encode both packet-based and flow-based features into image
format for representation learning [[15]], thus improve the traffic
identification performance.

Machine learning practitioners generally tend to use more
features in a data sample to increase the information contained
in each instance. However, abnormal traffic detection must
consider real-time performance in a real-world application. An
anomaly should be detected during a flow rather than after it is
completed. Also, fitting a dataset with more features requires
a larger model capacity, which has highly positive relevance
to the computational complexity of the model, thus affect the
application of an ML-based traffic identifier in mobile devices.

B. Abnormal Traffic Detection

Anomaly-based abnormal traffic detection is becoming pop-
ular due to the ability to detect unseen attacks. The core is
modeling the pattern of normal traffic by training a neural net-
work on a large amount of normal traffic data, where anomaly
detection models are the cornerstones. Previous anomaly-
based models can be categorized into three categories and are
summarized in Table [T}

e Reconstruction-based: In reconstruction-based methods,
models learn the pattern of normal data by minimizing
reconstruction loss during training. This method is based
on the assumption that anomalies cannot be compressed
to latent distribution. In this case, anomalies cannot be
reconstructed with low error. Current approaches include
deep autoencoder [6]), principal component analysis [[16],
and generative adversarial networks [17]. While bene-
fiting from the simple framework that only evaluates
the reconstruction error, the performance of this kind
of method is limited by the model complexity and the
data structure, suffering from high false alarm and low
accuracy.

o Clustering Analysis: Clustering analysis is a category
of methods aiming at grouping data according to the
similarity among samples. It is intractable to adopt
distance-based methods to anomaly detection directly
today because of the curse of dimensionality, which
may damage the performance of clustering. Therefore,
clustering is usually used after a dimensionality reduction
process. To alleviate losing information for clustering

Window 1 Window n
1000 Packets 1000 Packets
Temporal Spatial Temporal Spatial
Features Features Features Features
- J
Y Y

Feature set after 1000 packets Feature set after 1000n packets

Fig. 1: The feature set will be extracted every 1000 pack-
ets, combining both temporal and spatial features. Temporal
features record flow characteristics within every 1000-packet
window, and spatial features store cumulative flow information
across multiple windows.

during dimensionality reduction, researchers attempted
to devise methods for joint learning of the parameter
of both the dimensionality reduction module and the
clustering analysis module. Zong et al. used the deep
autoencoder to generate a low-dimensional representation
and reconstruction error for each input data point, which
was further input into a gaussian mixture model [18].
Li et al. proposed a semi-supervised method to classify
raw data into different categories. Then, these classified
data can be used to train a classifier for abnormal traffic
detection [[19].

o One-class Classification: One-class classification method
follows the idea of density estimation. This approach
requires a priori assumptions about the distribution of
data used to train. A popular algorithm such as one-
class support vector machine (SVM) [20] was used by
Sotiris et al. in [21] and Eduardo in [22]] to construct
a one-class network intrusion detection system. This
algorithm works well in low dimensions but suffers from
performance degradation when running in high dimension
spaces. The reason is that the distance-based evaluation
function is weak at calculating robust similarities from
noisy and sparse high dimension spaces. Bovenzi et al.
[23]] proposed a hierarchical deep autoencoder detection
system that performs lightweight anomaly detection in the
first stage and open-set attack classification in the second
stage when a possible anomaly is detected.

As one kind of one-class classification algorithm, pseudo
anomaly-based algorithm addresses the anomaly detection
problem by sampling potential anomalies in the feature space
spanned from normal data. In the absence of prior knowledge
of unknown anomalies, pseudo anomalies are usually sampled
in uniform distribution. However, sampling potential anoma-
lies is not efficient in high-dimensional data spaces. Manevitz
et al. pointed out that data points close to normal data can serve
as potential anomalies during training, providing sufficient
information about the boundary of normal data in an efficient

Temporal Feature Pool

pkt_out_count,

T T T
[—1—\

pkt_out_count, pkt_out_count,

Traffic flow =—

Y

Spatial Feature Pool
C_pkt_out_count = Y,; pkt_out_count;

Fig. 2: The feature extraction process. Temporal features such
as pkt_out_count are extracted in every packet window. Spatial
features such as C_pkt_out_count are accumulated across
multiple windows.

way [24].

Our approach uses multiple DAEs to produce pseudo
anomalies efficiently. Only pseudo anomalies near the normal
instances are effective, and training the discriminator on these
data can promise a sensitive anomaly detector. As anomalies
produced by DAE-GAN are close to the distribution of normal
data, the number of outliers in generated anomalies is signif-
icantly decreased. To control convergence and performance
of the trained model, hyper-parameters like noise factor and
latent dimensionality of DAEs can be adjusted concerning the
complexity of training data.

III. FEATURE EXTRACTION

In this section, a new feature extraction method is pro-
posed and evaluated under some comparison experiments.
The following few subsections mainly discuss the reasons for
choosing these features.

A. Description of Datasets

To show the stability and universality of the model, different
types of dataset tests need to be performed on our proposed
model. We used four datasets to represent four kinds of attacks,
respectively.

Four flow-based datasets are extracted based on attack
traffic data provided in Kitsune [6]]. As we wanted to test the
precision and recall of DAE-GAN under different classes of
attack traffic, we chose four typical attack traffic datasets from
Kitsune. These four attacks are Active Wiretap, ARP MitM
(man-in-the-middle), Fuzzing, and Video Injection. Specifi-
cally, these four attack datasets also contain normal traffic.
We present the number of normal and abnormal packets and
flows in Table

B. Spatial and Temporal Features

As mentioned in some previous work [25] [26] [27], the
first few packets exchanged in a flow, around 20 packets, are
enough to distinguish whether this flow is benign or malicious.

Li et al. also pointed out that the first few packets of a
TCP connection are very considerable [28]]. These approaches
are proposed based on timeliness, meaning the malicious
traffic needs to be detected as early as possible once it starts
communicating with clients’ devices.

As this paper aims at training models more precisely, new
methods are proposed for extracting features. In the feature
extraction process, spatial and temporal features are extracted
because they are equally important. A time window is used to
cut the spatial features.

Spatial features are considered as features containing no
information related to time sequence. For example, the cate-
gorical feature flag_type is treated as a spatial feature. Some
continuous features such as C_byte_sum are also spatial
features.

Temporal features are incrementally calculated in sliding
packet windows to achieve a high response rate. In most cases,
temporal features cannot capture the characteristic of a whole
flow because of limited window sizes. To capture intact flow
features, spatial features will be stored in the memory and
updated for every packet’s arrival. For example, flow features
like packet number, average packet size, and inter-arrival time
will be calculated since the capture started. Unlike temporal
features, these features will not be erased every 1000-packet
window. Instead, they will provide cumulative information
about every flow captured until the flow ends. The mechanism
is shown in Fig. However, it is infeasible to find the end
of each flow based on its packet flags since the flow may not
be finished normally. In this case, cumulative flow information
will take up lots of memory space. To handle this issue, a much
larger window size (20000 packets) is set for spatial features
to clear the memory space after a certain number of packets
being captured. The feature extraction process is depicted in
Fig. 2}

As shown in Table 20 features are extracted from
captured traffic data. Among them, 13 are temporal features,
and 7 are spatial ones. These features are derived from four
public datasets and then selected based on the combination
of different selection algorithms, including Information Gain
(IG), Information Gain Ratio (IGR), X2’ and ReliefF. IG, IGR,
and x? reflect correlations between discrete features. While
ReliefF, as a discretization algorithm, is advantageous for
finding the best split points for continuous features. These four
algorithms are all applied to each dataset mentioned above.
To ensure all useful features are chosen, the union of four
sets of selected features is taken. Also, the final feature set
is the union of feature sets derived from four different public
traffic datasets so as to ensure the generalization performance
of the feature sets. Eventually, 20 features are selected from
76 features in the original feature set.

C. Time Window chosen for Temporal Features

Many papers have proposed statistical ways to extract
features such as duration, number of packets, and average
packet size [29] [30] [31]. However, these approaches are
carried out only when the flow is finished. Detecting whether

TABLE III: The overview of Kitsune dataset.

| Active Wiretap | ARP MitM | Fuzzing | Video Injection
Normal packets | 1355473 | 1358995 | 1811356 | 2369902
Abnormal packets | 923216 | 1145272 | 432783 | 102499
Normal flows | 63 | 25 | 17 | 52
Abnormal flows | 81 | 87 | 1793 | 7

TABLE IV: 20 selected features for abnormal traffic detection
in DAE-GAN. Features started with “C_" and flag_type are
spatial, the other features are temporal.

Flow Feature | Description

duration Duration of the connection

pkt_out_count
C_pkt_out_count

Number of outgoing packets in a window
Number of outgoing packets across multiple windows

byte_out_count
byte_out_median
byte_out_mean
C_byte_out_count
C_byte_out_mean

Sum of outgoing packet byte in a window

Median of outgoing packet byte in a window

Mean of outgoing packet byte in a window

Sum of outgoing packet byte across multiple windows
Mean of outgoing packet byte across multiple windows

C_pkt_out/pkt_in

Outgoing packets divided by incoming packets

IAT_out_median

Median of the inter-arrival time of outgoing packets

byte_sum Sum of packet byte in a window

byte_mean Mean of packet byte in a window

byte_skew Skewness of packet byte in a window
C_byte_sum Sum of packet byte across multiple windows
C_byte_mean Mean of packet byte across multiple windows

TIAT_wave_count Total number of peak and trough of inter-arrival time

C_min_IAT ‘ Min value of peak and trough of inter-arrival time
magnitude ‘ \/ Hgyte_in + M%yte_out

QAIT | Outgoing to incoming packet inter-arrival time
flag_type ‘ Type of flag status

a traffic flow is anomalous only after it ends does not enable
real-time defense against anomalous traffic and does not help
the overall security of the system [32].

This paper leverages both long-sequence and short-sequence
features. Long-sequence features mean the statistical features
are calculated to start from the beginning to the end of this
flow. To ensure the timeliness in short-sequence features, the
time window is used. For example, if the time window’s
size is set to be 1000, that is to say, all the features will
be calculated since the first 1000 packets arrived. When the
following 1000 packets arrive, these 1000 packets will be
taken into calculation, and a new instance will be created.
Further, the size of time windows could be changed according
to different attacks. The default time window size is set to be
1000 because 1000 is found to be the most balanced number
as it both ensures enough number of instances and the training
precision.

In this section, three parameters are used for selecting:
precision, recall, and fl-score (harmonic mean of precision
and recall). The size of 1000 is better than 200 for all these
parameters.

IV. ABNORMAL TRAFFIC DETECTION
A. Model Architecture

As depicted in Fig. 3] our proposed anomaly detection
model, DAE-GAN, consists of a pseudo anomaly (PA) genera-
tor and a discriminator. The PA generator comprises a plurality
of denoising autoencoders. The normal data is added with
noise, fed into the DAEs, and the reconstructed data is taken
as pseudo abnormal samples. We restrict the reconstruction
ability by the latent size of each DAE and the noise factor. The
discriminator is a binary classifier, as shown in the right part
of Fig. 3] The ability to identify abnormal samples is learned
through training on the samples generated by the pseudo-
data generator and normal samples. The training is adversarial
learning between the PA generator and the discriminator.

The structure of a DAE is shown in Fig. 3] Random noise
is applied to the input sample, and by minimizing the recon-
struction error, the model learns to reconstruct the original
sample’s most robust features. Generally speaking, a DAE
learns the features of normal traffic from noisy normal traffic
and adds a certain distribution of noise to the resulting normal
data as a pseudo anomaly to train the discriminator. The noise
applied to the original data is generated by multiplying a
standard normal random noise N (0, 1) and a hyper-parameter
called the noise factor fise. By setting the noise factor,
we adjust the approximate degree of generated samples and
original samples, thus changing the “abnormal” degree of
generated samples. We take advantage of the fact that the
reconstruction ability of DAEs can be modulated by adjusting
fooise and latent_dim, thus avoid the “mode of collapse”
problem and achieve higher sensitivity using multiple DAEs
as PA generators, as shown in Fig.]

The discriminator used in this work is a multi-layer fully
connected neural network. Its function is to learn the main
characteristics of normal samples during training and to
identify abnormal samples that deviate from the distribution
of normal samples. A trained discriminator can distinguish
abnormal samples from normal data.

B. Model Training

User actions and operating system behaviors lead to differ-
ent traffic characteristics in real-world applications. Under the
concern of privacy, labeled datasets containing all scenarios’
features are unavailable. Even if it is possible to collect a
network traffic dataset with enough features, training a model
capable of classifying abnormal traffic would be tough. Classi-
fication training on large datasets typically requires a tremen-

/ MSE(DAE(datanoise), datanorm) \

. DAE_1 .
datanorm Nolse— datanoise’ ‘ DAEl(datanoise) Hoise datapseudo
DAE_2 , —
— datanoise’ ‘.’ DAEZ(datanoise) datapseudo O
—— 1
DAE_3 noise datapseudo
— datanoise DAE3(datanoise) datapseudo Discriminator
DAE_4 .
- noise
_’ datanoise". "’ DAE*(datanise) ~ datapseuj

datall()l”l]"l

Pseudo Anomaly Generator

Fig. 3: The architecture of DAE-GAN. To train a DAE, original data is polluted by using noise or masks. The polluted data is
reconstructed in the output, minimizing the loss function applied to the original data, and the reconstructed data can enforce

the DAE to learn robust features.

X X

X

Fig. 4: Anomaly detector (blue dashed line) trained against pseudo data (black dotted line) generated by PA generator so that

it learns to distinguish anomaly from normal data distribution

(green solid line). It has been pointed out by Goodfellow et al.

[33] that the adversarial training against one single generator may face the “mode of collapse” problem (i.e., top right figure).
In DAE-GAN, using multiple generators with different reconstruction abilities can avoid the “collapse of mode” problem. In
bottom figures, DAEs with weaker reconstruction ability still ensure that the classification boundary converges outside the
normal data when DAE with the highest reconstruction ability overlaps the normal data distribution.

dously large network, which is computationally expensive and
thus unsuitable for mobile devices. Our model adopts a semi-
supervised method to train the model with only normal data.
Training the network contains two phases: adversarial training
and threshold selection. The detailed process is presented
below:

o Adversarial training using normal data

The training process is presented in algorithm [T} Specif-
ically, the abnormal traffic detection problem is a binary
classification problem. We first train several DAEs by
minimizing reconstruction loss, namely mean square error
(MSE) between the normal data and DAE-generated data,
thus push the reconstructed data close to the original data
distribution.

Algorithm 1 Model Training

Algorithm 2 Threshold Selection

Input:

Real normal data: datanomal
DAE numbers: n

Training epochs: n_epoch
Noise factor: fi. i€ {1,2,...

;n}

oise?

Output:

1:
2:
3:
4:
5:
6:

23:
24:
25:

A trained discriminator D1is;
// Training DAEs
for i € [1,n] do
data;oise — datanormal + N(Oa]-) * . éoise
DAE)s = MSE(forward, i (datal ;.), datanomal)
Min(D AFos)
end for
// Training discriminator
for n € [1,n_epoch] do
for i € [1,n] do
datafmise — datanom_lal + N(Oj 1) * rfoise
datapg < forwardpp(datag, ;.
pred.... < Dis(data’ ;..
end for
predreal — DiS(datanormal)
datagze < len(datanoma)
// target tensor
target eros < zeros(datagize)
targetones < ones(datasie)
// loss function
A = BCE(prediea, target seros)
B=1/nx%> " BCE(pred. ..
Disjoss <— A + B
Backwards(Disjes)
end for

return Dis

targetones)

After that, an adversarial training process is conducted
to train an anomaly detector (i.e., discriminator). In the
training process, the discriminator is trained to predict
the reconstructed noisy into 1 and the original data into
0. A cross-entropy function is used to measure the per-
formance of the discriminator. By minimizing the cross-
entropy loss, the discriminator learns to distinguish the
noisy data from the normal data. The adversarial training
process can be illustrated by the minimax objective:

mfl)nmng(D,P) (1)

V(D, P) = Eynpx[log D(x) +log(1 — D(P(z)))] (2)

In the adversarial training process, DAEs are trained to
reconstruct the data to confuse the discriminator. The
reconstructed data approaches the distribution of normal
data, increasing the effectiveness and efficiency of the
produced pseudo data. With a preset noise factor, the
similarity between the restored and original data can
be adjusted. We conduct an alternate training in the

Input:

Real normal data: datapormal
Target normal recall: recalliage

Output:

RO = = e = e s e e e e

R A A ol S e

A threshold for distinguishing the anomaly: Thres

: thresempirical +~0
. datagige < len(datanomar)
: predrey < Dis(datanormal)

targeteros < zeros(datagise)
10

: while 7 < 1 do

recallyoma <— Sum(prede, > i) /datagise
if recallyormal > Tecalliaee: then
thresempirical —1
break
end if
i<+ 1+ 0.01

: end while
: thresg, < mean(preds) + 3 * std(preds);
. if thresg, > 1 then

Thres < thresempirical

: else

Thres < max(thresempirical; thTeSsat)

. end if
. return Thres

discriminator during the DAE training phase, which helps
the discriminator learn the boundary of normal data.
Threshold selection

After the training process, we have a discriminator for
anomaly detection. The output of the discriminator for a
given input is a continuous scalar ranging from O to 1.
Selecting a threshold can significantly affect the model’s
generalization performance in test sets.

Since we do not know the normal data distribution, we
take a balanced value between empirical best-threshold
and statistical best-threshold. As shown in algorithm
the empirical threshold thresempirical 1S Obtained when the
trained model classifies the normal data into O with the
minimum threshold satisfying recall > recallige. The
statistical threshold thresy, is calculated by thresg, =
mean(preds) + 3 x std(preds). Finally, the threshold can
be obtained by taking the maximum of thresgy, and
thresempirical .

C. Real-Time Detection

Once the model of DAE-GAN is trained, DAEs are dis-
carded, and the discriminator is deployed on mobile devices
for real-time anomaly traffic detection. As depicted in Fig. [5}
traffic packets are preprocessed over a window to get a state
vector in each flow monitoring point. The interval between
two adjacent monitoring points is the window size. The prepro-
cessed data is fed into the discriminator for identification. Each
abnormal state in the same flow is accumulated as anomaly

accumulate
abnormal evidence

State Vector { Discriminator

Feature
extractor

window size

abnormal
Abnormal State
normal

ignore

l >threshold

abnormal traffic

(2

Fig. 5: The feature extractor extracts state vectors from collected packets and passes them to the discriminator. The abnormal
states detected by the discriminator are accumulated to judge whether the flow is abnormal.

Latent Layer
Size Restricted

Input Layer

by latent_dim

Output Layer

noise;

O
H, € R'?®

Ie Rinput_dim

ReLU ()

Lc Rlatcnt_dim

ReLU ()

Hy € R128 o= ROutput_dim

ReLU () Tanh()

Fig. 6: The structure and parameters of a DAE. The input layer and output layer is denoted by capital letter I and O, respectively,
the hidden layer is denoted by H;, and the latent layer is denoted by L. The size of I and O is identical to the data size, and
the size of hidden layers is shown in the graph. The latent size is set by a hyper-parameter latent_dim listed in the experiment

configuration.

evidence. Once the accumulated abnormal evidence reaches a
preset threshold, the traffic is identified as abnormal.

V. EXPERIMENTS

With the extracted spatial and temporal features over a time
window, detecting an abnormal traffic flow can be divided into
two tasks: detecting momentary abnormal state (also referred
to as evidence of anomaly) and detecting abnormal traffic
by accumulated evidence. To evaluate the performance of
DAE-GAN, we conduct four experiments: preliminary exper-
iments, abnormal state detection, abnormal traffic detection,
and packet parsing efficiency. Details of these four experiments
are described below:

o Preliminary Experiment: This experiment is used to eval-
uate the anomaly detection performance of the DAE-
GAN model on two popular datasets: NSL-KDD and
UNSW-NB15. Both datasets are divided into normal and
abnormal data, where abnormal data is used as the test set.
The performance of DAE-GAN is compared with some
baseline methods. For NSL-KDD, we include five state-
of-the-arts that use identical dataset and one traditional
classification method. For UNSW-NB15, we compare it

with several traditional baseline methods. We also con-
duct an ablation study, which replaces the discriminator
with a threshold test.

e Abnormal State Detection: This experiment is devised
to detect a momentary anomaly in a monitoring point.
As demonstrated in Fig. [5] the traffic flow is a sequence
of packets cut into many segments using a window. We
calculate statistic features and temporal features over a
window to get a state vector, indicating the monitoring
point’s anomaly.

o Abnormal Traffic Detection: This experiment is designed
to accumulate evidence of anomalies for detecting ab-
normal traffic flow. Evidence of abnormal states is ac-
cumulated on the same flow. The flow can be judged as
abnormal once the accumulated evidence has exceeded a
preset threshold. The detection sensitivity can be evalu-
ated by the ratio of anomaly states detected in a flow. The
real-time performance can be reflected by the processing
time when the number of anomaly states has reached the
threshold in an abnormal flow.

Packets Parsing Efficiency: This experiment evaluates the

efficiency of parsing packets in a flow. The performance

Input Layer

Output Layer Abnormal,_,
Normalx
O ®)
Ie Rin[)ut_dim H1 c R256 HQ e R512 H3 c R512 H4 c R256 O c Rl
LeakyReLU (0.1) LeakyReLU (0.1) LeakyReLU (0.1) LeakyReLU (0.1) LeakyReLU (0.1) Sigmoid()
Dropout (0.2) Dropout (0.2) Dropout (0.2) Dropout (0.2) Dropout (0.2) &

Fig. 7: The structure and parameters of the discriminator. The size of each layer is given in the figure. Capital I denotes input
layer, H; (i € {1,2,3,4}) denotes the i, hidden layer, while capital O represent the output layer.

TABLE V: The environment used to perform the evaluations.

Mobile Device

Android 10

GPU Sever
Ubuntu 18.04.5

CPU Intel(R) Xeon(R) CPU Qualcomm Snapdragon 865
2.30GHz 2.84GHz*1, 2.42GHz*3, 1.8GHz*4
1 Cores 8 Cores

RAM \ 13.3 GB \ 12 GB

is evaluated by calculating the number of packets parsed
per second on the mobile device.

A. Experiment Configurations

The parameters of a DAE are shown in Fig. [f] All DAEs
have the same architecture, composed of fully connected layers
activated by ReL U functions. The dimension of each layer is
listed in the figure. Each DAE is different from others with
respect to the dimension of latent layer latent_dim and noise
factor fyoise- Selecting a larger fioise Or a smaller latent_dim
means constraining the reconstructing ability of the original
data. In other words, the reconstructed data will deviate further
from the original data distribution. In this experiment, four
DAEs are used to play the role of a PA generator. Parameters
of them are listed below:

o DAFEy: latent_dim = 20, fnoise = 0.4

o DAFE,: latent_dim = 40, fooise = 0.3

o DAF5: latent_dim = 80, fnoise = 0.02
e DAEy: latent_dim = 100, fyoise = 0.01

Parameters of the discriminator are listed in Fig. []] We
adopt a fully connected network to construct a binary classifier.
Each hidden layer is fully connected to the previous layer
by a weight matrix and activated by a leaky ReLLU function.
Dropout is adopted to avoid overfitting and improve general-
ization performance. To achieve binary classification, a Sig-
moid function is placed at the last layer of the discriminator.

The detection performance is evaluated on a GPU server,
and the parsing efficiency is evaluated on a mobile device.
Details of both platforms are shown in Table

B. Evaluation Criterion

In the abnormal state detection experiment, we use three
assessment criteria to measure the model’s performance: pre-
cision, recall, and fl-score. In the experiment on abnormal
traffic detection, we use flow-wise criteria to evaluate the
model’s performance. We further evaluate the speed of parsing
packets in the feature extractor. Let TP, FP, TN, and FN denote
true-positive, false-positive, true-negative, and false-negative,
respectively. Details of the used criteria are listed below:

o Precision f = TP/(TP+FP). Precision is used to measure
the proportion of truly abnormal samples in tested posi-
tive samples.

e Recall » = TP/(TP+FN). Recall is the proportion of
samples detected as positive among all abnormal samples.
It reflects the sensitivity of the model to abnormal data.

« Fl-score 2pr/(p +r). Fl-score is the harmonic mean of
precision and recall, a measure of the accuracy of tests
in binary classification and statistic analysis.

o Flow-wise performance. We calculate the rate of states

identified as abnormal in each flow to show the flow-
wise sensitiveness and robustness.
In normal traffic, it can be calculated by FP states in a
normal flow divided by overall states in a normal flow.
In abnormal traffic, it can be calculated by TP states in
a normal flow divided by overall states in an abnormal
flow.

« Parsed packets per second. This metric measures how fast
a mobile device parses packets.

We hope to improve the detection sensitivity and accuracy
as much as possible on the premise of ensuring a low FP rate
to ensure that the precision and recall are as high as possible.

C. Preliminary Experiment

The preliminary experiment compares our proposed DAE-
GAN model with some baseline methods over NSL-KDD [4]
and UNSW-NB15 [5] datasets.

For comparison over NSL-KDD, baseline methods are de-
scribed in Table The NSL-KDD dataset contains 67,343

0.987 0.986
1.000 : 0.963 : :
- 0921 0,886 . 0918 0.930 0.900 : 0.895
0.829 : 8 : 0.824 omm0 i 0828 : 81
0.788 72 74 . :
0.575 0.496
0363 0.285
.20(.
0.150 : :
© N 5
G N & X S 2 s
* (%) o Q Q o G}
S & $ ’
N) & 12) $ é/
& Q Q < Q
o <
B Precision Recall B F1-score

Fig. 8: Preliminary experiment on NSL-KDD. The results of DAE-GAN and baseline methods are demonstrated in histograms.

Precision, recall, and f1-score are shown in different colors.

TABLE VI: Anomaly detection baseline methods.

Baseline Methods \ Descriptions

DCN

Deep clustering network (DCN) is a state of
the art cluster method proposed by Bo Yang
et al. The method jointly optimize dimen-
sionality reduction component and k-means-
based clustering component. Distance from
sample to cluster center is used as the criter-
ion in DCN-based anomaly detection.

DSEBM-e DSEBM-¢ is an unsupervised anomaly detect-
ion method. The method calculate the energy
of the sample which can be then used to judge

the anomaly of the sample.

DSEBM-r

DSEBM is proposed by Zhai et al.,sharing
the same architecture with DSEBM-e. Diff-
erent from DSEBM-e, the DSEBM-r use
reconstruction error as criterion for anomaly
detection.

One Class SVM (OCSVM) is a generalized

version of support vector machine, popular

in anomaly detection task for its ability to
detect novelty.

OCSVM

OCSVM+C5

Decision Tree

The method recently proposed by Khraisat
detect anomaly by stacking C5 Decision Tree
and OCSVM.

AutoEncoder A simple autoencoder trained on normal data
is used to detect anomaly, high reconstruction

error is used as indication of anomalies.

normal samples and 58,630 abnormal samples. We randomly
select 60,000 normal samples for training the model. In the
test set, 7,000 normal samples are selected from the remaining
normal data, and 7,000 abnormal samples are randomly se-
lected from 58,630 abnormal samples. Experiment results are
shown in Fig. 8] According to the results, our proposed method
has the highest precision, and the fl-score is comparable to
autoencoder-based methods. Autoencoder-based methods have
a relatively high recall.

For comparison over UNSW-NB15, we choose some clas-
sic classification methods as baseline methods. They are
k-Nearest-Neighbor (kNN) Classifier, multi-layer perceptron
(MLP) Classifier, and decision tree classifier. The UNSW-
NB15 dataset contains 19,488 normal samples and 61,686
abnormal samples. We randomly select 15,000 normal samples
for training the model. In the test set, 4,000 normal samples are
selected from the remaining normal data, and 4,000 abnormal
samples are randomly selected from 61,686 abnormal sam-
ples. Experiment results show that DAE-GAN can achieve a
precision of 98.54%, recall 69.38%, and f1-score 81.43% over
the UNSW-NBI15 dataset. In contrast, the precision of kNN is
98.31%, MLP is 98.37%, and the decision tree is 98.09%.

This experiment results demonstrate the high performance
of the DAE-GAN model in anomaly detection. Training on
only normal data, DAE-GAN has significantly high precision
and recall in execution mode. In other words, the model can
generalize well to unseen normal data and is sensitive to novel
attacks.

We also replace the discriminator to conduct an ablation
study. Four DAEs are used to generate pseudo anomalies. We
evaluated the maximum, mean, and minimum value of the
MSE between the original normal data and generated pseudo
anomalies. Results are displayed in Table[VIII} We can see that
the generated anomalies show great differences from normal
data. In addition, the difference becomes constant as the noise
factor gets smaller.

D. Abnormal State Detection

This experiment evaluates the impact of feature extraction
parameters on identifying a momentary state value in terms of
accuracy and real-time performance. This experiment uses the
dataset provided by Kitsune [6]. As shown in Table [VII| we
do this by trying different window sizes and different numbers
of features. The win_200 and win_1000 mean the window
sizes are set to 200 and 1000 packets, respectively. Meanwhile,

TABLE VII: Performance comparison with different window sizes and feature selection. Best results are shown in bold.

win_200 & feat_T6

win_1000 & feat_76

win_1000 & feat_20

Attack
precision recall fl-score precision recall fl-score precision recall fl-score
ARP | 0.975 0.039 0.075 | 0.989 0.089 0.163 | 0.990 0.083 0.153
Fuzzing | 0.988 0.103 0.186 | 0.996 0.258 0.409 | 0.991 0.385 0.555
Video Injection | 0.975 0.039 0.075 | 1 0.215 0.354 | 0.941 0.606 0.737
Active Wiretap | 0.992 0.124 0.221 | 1 0.134 0.236 | 0.993 0.232 0.376

TABLE VIII: Ablation study of DAE-GAN without discrimi-
nator.

MSE | Maximum | Mean | Minimum
DAEI1 (fhoise = 0.04) 9.8936 1.6341 0.0065
DAE2 (fhoise = 0.03) 10.0474 1.6322 0.0094
DAES3 (fhoise = 0.002) 10.0474 1.6322 0.0094
DAE4 (froise = 0.001) 10.0474 1.6322 0.0094

feat_20 denotes that the features extracted are 20 top-ranked
features.

Comparing black and red dotted lines, we see that our
model performs better under the setting of win_1000, which
is in line with our expectations. Because features calculated
over a larger window size typically contain more temporal
information. We take this as a satisfying result for its higher
performance and lower computational cost (theoretically 5
times lower than settings of win_200). Though a larger
window size requires more time to collect and process data,
the fast data transmission speed can alleviate the extra time
consumption. Despite the satisfying results under win_1000,
developers can also tune the window size to balance the
efficiency and real-time processing of the traffic identifier
concerning different circumstances.

To reduce the data complexity, feature selection is con-
ducted to find the most relevant features. Based on the idea of
making the features more concise, the method of information
gain rate is used here to rank all features, and the top 20
features are chosen. As a control for the previous setting
(3rd column), the 4th column reveals that the concise features
are computationally efficient and ensure better performances
(in terms of recall and fl-score). Furthermore, by reducing
the number of processed features, there is a reduction in the
complexity of the algorithm.

This experiment is conducted 5 times on four different
attack datasets. The results demonstrate that DAE-GAN can
detect abnormal state values at high precision, thus provide
great potential for detecting abnormal flows in the following
experiment.

E. Abnormal Flow Detection

To evaluate the efficiency of abnormal flow detection, DAE-
GAN is compared with Kitsune [6] using the same dataset.
Flow-wise performance is evaluated in this stage. Histograms
in Fig. [9] compare the distribution of misjudgment rate (mis-
Jjudge points in a flow divided by detection points in a flow) of

DAE-GAN and Kitsune on each normal flow on four attack
datasets. Histograms in Fig. [I0] compare the distribution of
successful detection proportion (successful points in a flow
divided by detection points in a flow) for each abnormal flow
in four attack datasets.

As demonstrated by the results, our proposed DAE-GAN
shows higher robustness over normal traffic in four attacks.
By contrast, Kitsune suffers from potential high false alarms,
especially in the video injection dataset. Kitsune and DAE-
GAN show different performance on abnormal traffic data.
DAE-GAN has a higher detection rate than Kitsune on three
datasets (ARP MitM, Active Wiretap, and Video Injection).
However, Kitsune achieves a higher detection rate on the traffic
flow for the Fuzzing dataset. One reason for the higher false
alarm in Kitsune might be the trade-off between normal flow
error and abnormal flow detection. Kitsune tends to improve
the sensitiveness in abnormal flow detection by observing a
slight deviation from the normal distribution. Therefore, some
normal traffic flow will be misclassified.

As for three attack types (ARP MitM, Active Wiretap, and
Video Injection) demonstrated in the figures, the detection
rate is low using both techniques. This result may attribute
to the possible case that these attack datasets generated by the
author contain many normal packets, thus indistinguishable
from normal traffic.

ARP MithM Active Wiretap Fuzzing Video Injection

Normal flow error rate
0.9
0.8 103
0.7 W05
0.6
0.5

0.4

0.2

0.1

0.0 ——
=z @ z @ z @ 2 o
4 s < 5 < g < s
] z G E G E S E
< x < = < = < =
a =} a [=}

Fig. 9: Error rate of Kitsune and DAE-GAN on normal data
(False positive states in a normal flow <+ overall states in a
normal flow). Darker color indicates that a normal traffic flow
has higher possibility to be predicted as an anomaly.

Kitsune’s datasets contain many flows with both 0 (normal)
and 1 (abnormal) packets. Therefore, it is difficult to identify

TABLE IX: Performance comparison between Kitsune and DAE-GAN. Best results are shown in bold.

Kitsune DAE-GAN
Attack
precision recall fl-score precision recall fl-score
Active Wiretap | 0.346 0.342 0.344 | 0.993 0.232 0.376
ARP MitM | 0.677 0.674 0.676 | 0.990 0.083 0.153
Fuzzing | 0.035 0.033 0.034 | 0.991 0.385 0.555
Video Injection | 0.002 0.002 0.002 | 0.941 0.606 0.737

whether the flow is malicious. To solve this problem, each flow
containing 0 and 1 labels is separated into different flows for
convenience. The possible reason why 0 and 1 are mixed in
the same flow is that the experimenter used the same channel
to carry out both normal and abnormal activities.

By setting a detection-rate-based threshold, flow-wise pre-
cision, recall, and f1-score can be obtained. As shown in Table
the best result is shown in bold. The proposed DAE-GAN
model achieves a high precision in all datasets. Also, the model
shows a higher fl-score in three datasets.

Compared with the performance of Kitsune, our model is
significantly generalizing well to new normal flow. In the
DAE-GAN model, the mechanism of adversarial learning and
the efficient pseudo anomaly generator help build high sen-
sitiveness to abnormal data. On the other hand, the threshold
selection based on empirical and statistical analysis ensures a
low false alarm, thus achieve great generalization on normal
traffic. It is worth mentioning that Kitsune has a high detection
rate in the Fuzzing dataset. The reason for the huge difference
is that Kitsune’s performance is better at analyzing malicious
flows with the small packet number. While for abnormal flows
containing a large number of packets, Kitsune cannot detect
them well.

F. Packets Parsing Efficiency

We further evaluate the packet parsing speed on the mobile
device. The result is demonstrated in the Fig. [TT] Most

ARP MitM
1.0 Abnormal flow detection rate

mo4
W05
|_JX3
mo7
W08
W09
u

Active Wiretap Fuzzing Video Injection

0.1+

oo HEEN .
= & = & = & =
< S < S < S <
e 2 e 2 e 2 ¢
& 2 & 2 & 2 &
< > < > < > <
a a a a

Fig. 10: Detection rate of Kitsune and DAE-GAN on abnormal
data (True positive states in a normal flow + overall states in
an abnormal flow). Darker color indicates that an abnormal
traffic flow has a higher possibility to be detected.

—— Packet parsing

0.8 —— Packet arriving

o
o

Probability

1
>

0.2

0.0 +
0 200 400 600 800 1000

Number of packets / s

Fig. 11: Packets parsing efficiency. The packet parsing speed
(number of packets per second) is shown in blue histogram.
As a comparison, the packet arriving speed is shown in red
histogram. We also draw the kernel density estimation curve of
the respective histogram to visualize the density distribution.

packets can be parsed at around 600 packets per second, while
others can be parsed faster (around 700 packets per second).
Compared with the packet arriving speed, the feature extractor
can achieve real-time analysis of the arrived packets.

VI. CONCLUSION

To solve the abnormal traffic detection problem, we propose
an efficient feature extraction framework and an adaptive semi-
supervised learning model named DAE-GAN, exploiting both
normal data and pseudo anomalies. The feature extraction
framework can quickly extract spatial and temporal features
from raw traffic and select the 20 most important features.
The DAE-GAN can train a discriminator to detect anomalies
accurately in high dimensional spaces by using efficient data
augmentation containing DAE-generated pseudo anomalies.
To further improve the accuracy and precision of the dis-
criminator, an adversarial learning process is conducted to
adjust the classification boundary of the discriminator closer to
the distribution of normal traffic. Substantial experiments on
public benchmark datasets showed that the proposed model
could effectively extract features and detect abnormal traffic
with high accuracy, outperforming the state-of-the-art model.

In future work, we expect to add new modules to optimize
the sensitivity of our model by utilizing labeled malicious
traffic. In addition, considering the sparsity of the malicious
traffic, a few-shot learning approach could be effective. A

lightweight and robust model trained on small samples can
also be designed and deployed on mobile devices.

[1]

[2]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

REFERENCES

L. Alcantara, G. Padilha, R. Abreu, and M. d’Amorim, “Syrius: Synthe-
sis of rules for intrusion detectors,” IEEE Transactions on Reliability,
2021.

F. Erlacher and F. Dressler, “On high-speed flow-based intrusion detec-
tion using snort-compatible signatures,” IEEE Transactions on Depend-
able and Secure Computing, pp. 1-1, 2020.

X. Li, M. Zhu, L. T. Yang, M. Xu, Z. Ma, C. Zhong, H. Li, and Y. Xiang,
“Sustainable ensemble learning driving intrusion detection model,” [EEE
Transactions on Dependable and Secure Computing, pp. 1-1, 2021.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

N. Moustafa and J. Slay, “Unsw-nbl5: a comprehensive data set for
network intrusion detection systems (unsw-nbl5 network data set),”
in 2015 military communications and information systems conference
(MilCIS). 1EEE, 2015, pp. 1-6.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
Network and Distributed Systems Security (NDSS) Symposium, 2018,
pp. 1-15.

A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys Tutorials, vol. 18, no. 2, pp. 1153-1176, 2016.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel bloom filters,” in /1th Symposium
on High Performance Interconnects, 2003. Proceedings. IEEE, 2003,
pp. 44-51.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 4, pp. 339-350, 2006.

F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Proceedings of the 2006 ACM/IEEE symposium on Architecture
for networking and communications systems, 2006, pp. 93-102.

N. Ye, Y. Zhang, and C. M. Borror, “Robustness of the markov-chain
model for cyber-attack detection,” IEEE transactions on reliability,
vol. 53, no. 1, pp. 116-123, 2004.

R. Alshammari and A. N. Zincir-Heywood, “Machine learning based
encrypted traffic classification: Identifying ssh and skype,” in 2009
IEEE symposium on computational intelligence for security and defense
applications. 1EEE, 2009, pp. 1-8.

M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. W. Hong,
“A flow-based method for abnormal network traffic detection,” in 2004
IEEE/IFIP network operations and management symposium (IEEE Cat.
No. 04CH37507), vol. 1. IEEE, 2004, pp. 599-612.

W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “Botmark: Automated
botnet detection with hybrid analysis of flow-based and graph-based
traffic behaviors,” Information Sciences, vol. 511, pp. 284-296, 2020.
Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection
using convolutional neural networks for representation learning,” in
International conference on neural information processing. Springer,
2017, pp. 858-866.

E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, pp. 1-37, 2011.
H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chan-
drasekhar, “Efficient gan-based anomaly detection,” arXiv preprint
arXiv:1802.06222, 2018.

B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International conference on learning representa-
tions, 2018.

W. Li, W. Meng, and M. H. Au, “Enhancing collaborative intrusion
detection via disagreement-based semi-supervised learning in iot envi-
ronments,” Journal of Network and Computer Applications, vol. 161,
pp. 1-9, 2020.

D. Tax, “One-class classification: Concept learning in the absence of
counter-examples,” Ph.D. dissertation, Delft University of Technology,
2002.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33

—_

[34]

[36]

[37]

V. A. Sotiris, W. T. Peter, and M. G. Pecht, “Anomaly detection through
a bayesian support vector machine,” IEEE Transactions on Reliability,
vol. 59, no. 2, pp. 277-286, 2010.

E. G. da Silva, A. S. da Silva, J. A. Wickboldt, P. Smith, L. Z.
Granville, and A. Schaeffer-Filho, “A one-class nids for sdn-based
scada systems,” in 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), vol. 1. IEEE, 2016, pp. 303—
312.

G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé, “A
hierarchical hybrid intrusion detection approach in iot scenarios,” in
GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE, 2020, pp. 1-7.

L. M. Manevitz and M. Yousef, “One-class svms for document clas-
sification,” Journal of machine Learning research, vol. 2, no. Dec, pp.
139-154, 2001.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18 042-18 050, 2017.
S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE communications magazine, vol. 57, no. 5, pp. 76—
81, 2019.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Distiller: En-
crypted traffic classification via multimodal multitask deep learning,”
Journal of Network and Computer Applications, vol. 183, pp. 1-17,
2021.

R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia, “Byte segment neural
network for network traffic classification,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). 1EEE, 2018,
pp. 1-10.

D. Zuev and A. W. Moore, “Traffic classification using a statistical
approach,” in International workshop on passive and active network
measurement. Springer, 2005, pp. 321-324.

A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using
machine learning techniques,” in International workshop on passive and
active network measurement. Springer, 2004, pp. 205-214.

T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark,” in Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer
communications, 2005, pp. 229-240.

L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identi-
fication,” in Proceedings of the 2006 ACM CoNEXT conference, 2006,
pp. 1-12.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, vol. 27, 2014, pp.
2672-2680.

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,” in
international conference on machine learning. PMLR, 2017, pp. 3861—
3870.

S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep structured energy based
models for anomaly detection,” in International conference on machine
learning. PMLR, 2016, pp. 1100-1109.

B. Scholkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” Advances in neural
information processing systems, vol. 12, pp. 582-588, 1999.

A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab,
“Hybrid intrusion detection system based on the stacking ensemble
of ¢5 decision tree classifier and one class support vector machine,”
Electronics, vol. 9, no. 1, pp. 173: 1-18, 2020.

http://archive.ics.uci.edu/ml

1

< b

Zecheng Li is currently pursuing his Ph.D. degree
in the Department of Computing, The Hong Kong
Polytechnic University under the supervision of Dr.
Bin Xiao. He received his B.Eng. degree from
the School of Information Science and Technology,
Southeast University, Nanjing, China, in 2017. His
research interest lies in network security, blockchain
security, and smart contract security.

Shengyuan Chen is currently pursuing a Ph.D.
degree in the Department of Computing, The Hong
Kong Polytechnic University. He received his B.Eng.
degree from the School of Information Science and
Technology, Fudan University. His research interest
lies in abnormal traffic detection and identification.

Hongshu DALI is currently pursuing a B.Eng. degree
in the Department of Computing, The Hong Kong
Polytechnic University. His research interests in-
clude Big Data technology and feature engineering.

Dunyuan XU is currently pursuing a B.Eng. de-
gree in the Department of Computing at The Hong
Kong Polytechnic University. His research interests
include Al, Big data analytics.

Cheng-Kang Chu Dr. Chu received his Ph.D. in
Computer Science from National Chiao Tung Uni-
versity, Taiwan. He is a senior researcher of Huawei
International, Singapore. Before joining Huawei, Dr.
Chu was a research scientist in Cryptography and
Security department at Institute for Infocomm Re-
search (I2R) in Singapore. Dr. Chu has had a long-
term interest in the development of new technologies
in applied cryptography, cloud computing security
and IoT security. His research now focuses on
mobile security, IoT security, decentralized digital

identity, etc. Dr. Chu has published many research papers in major conferences
and journals like PKC, CT-RSA, AsiaCCS, IEEE TPDS, IEEE TIFS, etc. and
received the best student paper award in ISC 2007. He also served as vice chair
of IEEE CCNC 2012 and on the program committee of many international

conferences.

Bin Xiao (S’01-M’04-SM’11) is an associate pro-
fessor at Department of Computing, the Hong Kong
Polytechnic University, Hong Kong. Dr. Xiao re-
ceived the B.Sc and M.Sc degrees in Electronics En-
gineering from Fudan University, China, and Ph.D.
degree in computer science from University of Texas
at Dallas, USA. After his Ph.D. graduation, he joined
the Department of Computing of the Hong Kong
Polytechnic University as an Assistant Professor. His
research interests include Al and network security,
data privacy, and blockchain systems. He published
more than 180 technical papers in international top journals and conferences.
Currently, he is the associate editor of IEEE IoTJ, IEEE TCC, IEEE TNSE,
and Elsevier JPDC. He is the vice chair of IEEE ComSoc CISTC committee.
He has been the symposium co-chair of IEEE ICC 2020, ICC 2018 and
Globecom 2017, and the general chair of IEEE SECON 2018. He is a senior
member of IEEE, the member of ACM and CCF.

	Introduction
	Related Work
	Data Preprocessing
	Abnormal Traffic Detection

	Feature Extraction
	Description of Datasets
	Spatial and Temporal Features
	Time Window chosen for Temporal Features

	Abnormal Traffic Detection
	Model Architecture
	Model Training
	Real-Time Detection

	Experiments
	Experiment Configurations
	Evaluation Criterion
	Preliminary Experiment
	Abnormal State Detection
	Abnormal Flow Detection
	Packets Parsing Efficiency

	Conclusion
	References
	Biographies
	Zecheng Li
	Shengyuan Chen
	Hongshu DAI
	Dunyuan XU
	Cheng-Kang Chu
	Bin Xiao

