IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 1

PISTIS: Issuing Trusted and Authorized
Certificates with Distributed Ledger and TEE

Zecheng Li, Haotian Wu, Lap Hou Lao, Songtao Guo, Senior Member, IEEE,
Yuanyuan Yang, Fellow, IEEE, and Bin Xiao, Senior Member, IEEE

Abstract—The security of HTTPS fundamentally relies on SSL/TLS certificates issued by Certificate Authorities (CAs), which,
however, are vulnerable to be compromised to issue unauthorized certificates (i.e., certificates issued without domains’ permission).
Current countermeasures such as Certificate Transparency (CT) can only detect unauthorized certificates rather than preventing them.
In this paper, we present PISTIS, a framework for issuing authorized and trusted certificates with the distributed ledger and Trusted
Execution Environment (TEE) technology. In P1STIS, TEE nodes validate whether the domain in a requested certificate passes the
domain ownership validation (i.e., under corresponding applicants’ control) and submit attested results to a smart contract in the
distributed ledger. The smart contract issues a certificate to the applicant when an attested result shows a pass. Therefore, PISTIS can
ensure its issued certificates are authorized due to the domain ownership validation mechanism in the TEE. Furthermore, as the
issued certificates are stored in a Merkle Patricia Tree (MPT) in PISTIS, they are trusted and can be verified by a normal user easily.
The security of PISTIS is formally proved in the Universally Composable (UC) framework. Compared with state-of-the-art, P1STIS
avoids potential damages by preventing unauthorized certificates from issuing.

Index Terms—distributed ledger, blockchain, smart contract, trusted execution environment (TEE), certificate issuance.

1 INTRODUCTION

SL/TLS certificates issued by Certificate Authorities
S (CAs) form the security foundation of HTTPS connec-
tion. Clients establish HTTPS connections with a website
only when its server provides a valid certificate to prove its
identity. However, current CAs are vulnerable to be compro-
mised to issue unauthorized certificates, which arises from the
fact that a compromised CA might issue certificates without
domains’ permission. As an example, in 2011, attackers
compromised the private key of DigiNotar and maliciously
issued unauthorized certificates for Google, which were
used to launched Man-in-the-Middle (MitM) attacks against
Google services [1]. Similar incidents happened dozens of
times [2], [3].

To mitigate this problem, some countermeasures such
as HTTP Public Key Pinning (HPKP) [4] and Certificate
Transparency (CT) [5] have been proposed. HPKP is a
straightforward way through which a server provides a list
of trusted public keys to clients. CT builds a log system to
monitor the operation of certificates, which enables clients
to detect unauthorized certificates. In addition, researchers
proposed some other countermeasures, such as Accountable
Key Infrastructure (AKI) [6] to disperse centralized trust,
Attack Resilient Public Key Infrastructure (ARPKI) [7] &

e Z.Li,H Wu, L. Lao, and B. Xiao are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong.
E-mail: {cszcli,cshtwu,cslhlao,csbxiao }@comp.polyu.edu.hk

e S. Guo is with the College of Computer Science, Chongging University,
China.
E-mail: guosongtao@cqu.edu.cn

e Y. Yang is with the Department of Computer Science, Stony Brook
University, NY, USA.
Email: yuanyuan.yang@stonybrook.edu

Manuscript received April XX, 20XX; revised August XX, 20XX.
(Corresponding author: B. Xiao.)

PoliCert [8] to log certificate operations, and Certificate
Issuance and Revocation Transparency (CIRT) [9] to provide
an efficient certificate verification method.

However, these countermeasures have some common
limitations. What they can do is to detect unauthorized
certificates or reduce the probability of unauthorized certifi-
cate problems. In most cases, attacks have already caused
damage before unauthorized certificates are detected. In
addition, when an unauthorized certificate is reported,
browser vendors typically add the corresponding CA to the
blacklist. However, some compromised CAs are too big to
fail. For example, although Symantec was reported to issue
unauthorized certificates to Google.comin 2015 [10], it was
unrealistic to block Symantec immediately because it had
controlled more than 10% of active certificates by that time.
Blacklisting Symantec will block millions of websites at the
same time.

We observe that three reasons account for the problem
of unauthorized certificates: 1. Centralized CAs might be
compromised; 2. Centralized CAs can issue certificates with-
out domains’ permission (i.e., unauthorized); 3. Centralized
CAs’ operations are opaque. Furthermore, we find that peo-
ple typically trust a CA based on its identity. However, this
trust relationship is fragile especially when the trusted CA
might be compromised. In this case, we consider addressing
this issue through a complete certificate issuance process
design, which restricts only the domain owner can apply
for a certificate related to that domain. A certificate is issued
only when its applicant passes domain validation. We also
ensure that CAs are hardly compromised. The advent of
distributed ledger (i.e., blockchain) makes our idea feasible.

Blockchain reproduced smart contract, whose execution
is immutable, transparent, and deterministic. Considering
building a CA based on smart contract, we find that: 1.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 2

the immutable feature makes it difficult for an attacker to
compromise a CA based on smart contract, which eliminates
the problem of traditional CAs being manipulated in the
event of key breaches; 2. the transparent feature let people
trust a CA based on its logic rather than its identity, and
the blockchain becomes the log of certificates” operation
history naturally; 3. the deterministic feature allows CA de-
velopers to implement autonomous and complete CA logic
through sound contract design. In P1STIS, we hard coded
that each certificate applicant should prove the ownership
of the domain related to its requested certificate to the smart
contract before certificate issuance. This process is called
domain (ownership) validation. However, it is challenging
to conduct domain validation in smart contracts solely.

Smart contracts work on overlay networks (ie.,
blockchain P2P network), which are only accessed by
blockchain nodes, and cannot communicate with domain
servers directly. In this case, traditional domain validation
methods via DNS or email cannot work. It is also infeasible
for external validators to pass validation results to a smart
contract directly. Due to the public nature of blockchain,
anyone can pass information to smart contracts so that
a smart contract cannot tell the authenticity of provided
validation results. In this case, we need a mechanism that
can conduct domain ownership validation and transfer do-
main validation results to smart contracts in a trusted way.
Inspired by Town Crier [11], which employs TEE as smart
contract’s trusted information source, we intend to address
this challenge with the TEE technology.

A TEE provides a fully isolated environment that pre-
vents other software applications, operating system, and
host from learning or tampering with the internal data
and code of applications (i.e., enclaves) running inside the
TEE. The attested execution model of TEE enables others to
check whether an attested result is outputted by an expected
program. We leverage TEE to validate whether a domain is
under the control of its corresponding certificate applicant.
Once the domain related to a requested certificate passes
ownership validation, TEE nodes pass validation results
to the smart contract. Then, after verifying the attested
validation results, the smart contract can issue a certificate
as request to the applicant.

In this paper, we present PISTISﬂ a framework for is-
suing authorized and trusted certificates with distributed
ledger and TEE. PISTIS sets distributed ledger as the root of
trust. Clients can decide whether to trust a smart contract on
the distributed ledger based on its logic. PISTIS employs two
contracts: authority contract Cyc and verification contract
Cyc. Cac is for certificate issuance and revocation, and Cyc
is for certificate validity verification.

P1sTIS is designed to be TEE-agnostic (i.e., the under-
lying TEE implementation is changeable and upgradeable).
P1STIS combines any desired underlying blockchain system
with TEE-based execution. Anchored in a formal security
model expressed as a cryptographic ideal functionality,
P1sTIS’s design supports rigorous analysis of its security
properties. The main challenges of this solution, such as TEE
failures and DNS failures are discussed in Section 311

1. In Greek mythology, PISTIS was the personification of trust and
reliability.

Our main contributions are summarized as follows:

e Authorized and trusted certificate issuance: PISTIS
can ensure all its issued certificates are authorized
and trusted. The issuance is authorized because PIs-
TIS leverages TEE nodes to validate the actual con-
trol of registrants over domains related to requested
certificates. The attested validation results provided
by TEE nodes allow the PISTIS smart contract to
issue certificates to registrants who have passed the
domain validation. As these PISTIS-issued certificates
are recorded on the blockchain, they are trusted.
Details are discussed in Section 4.3

o Efficient certificate verification: PISTIS maintains a
Merkle Patricia Tree (MPT), which stores latest cer-
tificates’ states, to enable efficient certificate verifica-
tion. In this tree, the key is a Fully Qualified Domain
Name (FQDN), and the value field stores the state
of the corresponding certificate. For the client, P1s-
TIS provides web3.js scripts, which are executed in
browsers and can verify the validity of PISTIS-issued
certificates. Detailed information are discussed in
Section 4.3

o Formal modeling and security analysis: We formally
model the PISTIS protocol as Protpisyis in Section E]
and give its ideal functionality Fpisris in Section
We prove the security of PISTIS in the Universally
Composable (UC) framework [12] in Section [5.2] By
showing that Protpisris UC-realizes the ideal func-
tionality Fpisris, PISTIS can be seamlessly integrated
in more complex cryptographic protocols such as
HTTPS.

o Implementation and evaluation: We implemented
a prototype of PISTIS based on Ethereum and Intel
SGX, which could issue X.509 certificates according
to the specification. We tested the gas consumption,
storage overhead, and verification latency of PISTIS.
The experiment results demonstrate that PISTIS can
provide an efficient certificate verification service to
end users.

2 BACKGROUND

In this section, we introduce the background knowledge and
some commonly-used terms in this paper.

CA. The Certificate Authority (CA) is an organization
that issues digital certificates, whose purpose is to prove that
the entity and public key listed in a certificate are bound.
The CA signs the certificates it issues, which prevents attack-
ers from forging or tampering with these certificates. Users
can determine the authenticity of a certificate by verifying
its CA’s signature. In this case, people trust a CA and then
use the certificates it issues.

SSL/TLS. Since the HTTP protocol originally used on
the Internet was plain text, transmission content would be
sniffed and tampered. The SSL/TLS protocol was designed
to preserve the integrity and confidentiality by encrypting
data.

TEE. A Trusted Execution Environment (TEE) isolates
a preserved memory and conducts attested execution via
dedicated CPU instructions. TEE guarantees the confiden-
tiality and integrity of stored code and data. Popular TEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 3

implementations include Intel SGX, ARM TrustZone, and
AMD Secure Execution Environment.

Intel SGX. Intel Software Guard Extensions (SGX) pro-
tects selected code and data from disclosure and modifi-
cation. Developers can divide an application into a CPU-
enhanced enclave and a host application that manages it,
which can improve security even in attacked platforms.
Benefiting from TEE, developers can enable identity and
record privacy, secure browsing and digital rights manage-
ment protection, or any high-security application scenario
that requires secure storage of confidential or protected data.

Ethereum. Ethereum is recognized as the second-
generation blockchain system. From the science perspective,
it is a globally accessible state machine with a built-in
virtual machine that allows users to change its global state.
From the engineering perspective, it is a distributed ledger
with built-in smart contract mechanism that allows users
to develop applications atop it. In Ethereum, there are two
kinds of accounts: Externally Owned Accounts (EOA) and
contract accounts. EOAs are controlled by end users with
a unique key pair and blockchain address. By contrast,
contract accounts are empowered by contract programs,
account balances and persistent storage in the form of
key/value pairs. Ethereum has its built-in currency called
ether.

Smart Contract. The smart contract can be recognized
as a constant program that runs deterministically atop
Ethereum. Smart contracts are typically created by EOAs
in the form of contract creation transactions. An EOA can
invoke a smart contract by sending a transaction with
specified function names and parameters to the contract’s
address. Compared with Bitcoin scripting system, Ethereum
smart contract languages (i.e., Solidity, Vyper) is Turing-
complete. Ethereum introduced gas to measure the compu-
tational overhead of smart contract execution. The invoking
entity should pay for the consumed gas in ether, which
is calculated by multiplying gasprice and the number of
gas used. Ethereum transactions set limit on gas with two
parameters: gasprice and gaslimit. The gasprice indicates how
expensive the user is willing to pay for each gas. The higher
the gasprice, the faster the transaction is mined in a new
block. The gaslimit sets a limit on how many gases a transac-
tion can use. Once a transaction consumes more gases than
guaslimit, all execution and state changes are reverted.

Web3.js Blockchain Read/Write. In blockchain, reading
and writing data are different from traditional methods.
Writing data to blockchain requires you to put data as pay-
load in transactions. Only when transactions are confirmed,
data inside them is confirmed. The reading operation can be
conducted in several ways. We can use Ethereum Web3.js to
acquire data immediately. We can also use return value in
smart contract to acquire blockchain data.

3 PisTIs DESIGN
3.1 Challenges

Before diving into the specifics of PISTIS, we first describe
and address the fundamental pitfalls that arise when hy-
bridizing smart contracts and TEE. Note that designing such
a protocol that integrates smart contract with TEE to issue

certificates is non-trivial, which requires us to resolve the
following challenges.

3.1.1 TEE Failures

Though ensuring the integrity and confidentiality of enclave
execution, TEE is not a panacea. We first consider the avail-
ability of TEE. In this paper, we do not make honest host as-
sumptions. By contrast, hosts may be malicious. A malicious
host can drop messages, abort execution, or exhaust the
hardware resource (e.g., conduct computation-heavy work).
Furthermore, even honest hosts may encounter power loss,
which makes the TEE unavailable. PISTIS resolves this prob-
lem by employing a cluster of TEE nodes, where a TEE
is easily replaced. We also assume that the adversary can
compromise all but one TEE.

We then consider the breach of TEE confidentiality. Re-
cent work has demonstrated the feasibility of extracting se-
crets from TEE enclaves via side-channel attacks [13]]. PISTIS
addresses this problem in two ways. First, PISTIS is designed
to be TEE-agnostic so that vulnerable TEE can be upgraded
with patched version promptly to resolve the discovered
vulnerabilities. Second, PISTIS leverages constant memory
consumption and execution time enclaves to defend against
side-channel attacks.

We finally consider the replay attack that may be
launched by malicious hosts. Replay attack is to confuse
the TEE states by re-sending previous messages. PISTIS is
fault-tolerant to this problem since all states are stored on
the distributed ledger. As long as PISTIS smart contract
maintains a correct state, the stateless TEE will not confuse
smart contract execution.

3.1.2 DNS Failures

Before issuing certificates, the domain ownership should be
validated via DNS, which, however, has been demonstrated
insecure [14]. In PISTIS, we address this problem by con-
ducting ownership validation from multiple vantage points.
Specifically, TEE nodes are deployed in different ASes. Our
approach is based on the assumption that the adversary
cannot control the majority of the Internet, which was also
made in [14].

3.2 Distributed Ledger as a Root of Trust

In traditional PKI, root CAs act as the root of trust. They
issue intermediate certificates for commodity CAs to issue
certificates. In PISTIS, we adopt the distributed ledger as a
root of trust. We construct two contracts, an authorization
contract Cac and a verification contract Cyc. Cac takes
charge of validating the domain and issuing certificates.
Specifically, Cac is a stateful smart contract that allows
concurrent state transitions of different registrants. In the
stateful contract, an execution either reaches the next state
or revert, which protects PISTIS from malicious certificate
squatting. The state transition is depicted in the bottom left
of Fig. [l Cyc provides two interfaces: tree update and cer-
tificate verification. The tree update allows the authorization
contract Cac to update certificates’ states, and the certificate
verification enables clients to verify certificates.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 4

Client Domain

-

y @

Network
Sta

TEE

N\ [~
Network Network Network
N N N2 Stack Sta Stack
é TEE TEE TEE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
PISTIS

Fig. 1. Architecture and workflow of PISTIS. PISTIS consists of three
parts: blockchain, smart contract and TEE nodes. A domain server can
request a certificate from P1STIS. A client can verify a certificate provided
by the domain server via the blockchain in PISTIS.

3.3 Architecture and Workflow

Fig. (1] illustrates the architecture of PISTIS. As it shows,
PIsTIS consists of blockchain, smart contract, and TEE
nodes (some of them might be malicious). A domain, or
accurately its owner can request a certificate from PISTIS
via the blockchain. A client can verify the authenticity of
P1sTis-issued certificates by querying the blockchain when
connecting to a domain. Then, we discuss the workflow:

Certificate Request. Similar to certificate signing request
(CSR), an applicant should first register an entry in PISTIS
smart contract (Step (1)), which contains a fully qualified
domain name, an entity name, and a public key.

Domain Validity Validation. PISTIS only issues certifi-
cates to domains with Expiry Date longer than n seconds,
which is an adjustable parameter that equals to the validity
of PISTIS-issued certificates. The smart contract invokes the
TEE to check the validity of requested domain by posting
an invocation transaction onto the blockchain. When a TEE
node receives latest block and parses the invocation trans-
action, it conducts the validation (Step @). A TEE node
typically queries the whois database for the corresponding
Expiry Date and converts it to a Unix timestamp. By
subtracting the timestamp of latest block from Expiry
Date, the TEE node can get the remaining validity of this
domain. The smart contract processes the certificate issuance
request only when domain’s valid period is longer than a
predefined length (i.e., 3 months). The validation results will
be put on the blockchain as a transaction that calls PISTIS
smart contract to update the corresponding domain’s state

(Step (3)-

Domain Ownership Validation. PISTIS smart contract
invokes TEE nodes to validate whether an applicant controls
the provided domain. Specifically, smart contract posts an
invocation transaction onto the blockchain until TEE nodes
receive it (Step (4)). PISTIS adopts a secure 2-party compu-
tation mechanism to conduct the validation (Step (B)). We
require that the domain server should be equipped with a
TEE processor because the secure 2-party computation can
only be achieved when both parties are equipped with TEE,
which has been proved in [15]. Once a registrant passes
the domain ownership validation, TEE nodes can upload
the validation result onto the blockchain as transactions
that calls the smart contract (Step @). Then, PISTIS smart
contract can confirm that this domain is valid and under the
control of the registrant. Following above steps, PISTIS can
ensure its issued certificates are authorized.

Certificate Issuance and Revocation. Once a domain
passes the validity and ownership validation, PISTIS smart
contract can issue a certificate to it. The issuance (Step @)
and revocation (Step (6)) are two publicly available func-
tions that can be invoked by valid registrants. PISTIS smart
contract publishes issued certificates onto the blockchain,
which allows clients to verify their validity and therefore
trust these certificates (Step (6)).

Certificate Verification. PISTIS provides an efficient way
to verify its certificates. When a client connects to a website
that is protected by a PIsiTs-issued certificate (Step (7)), it
can leverage the web3.js script to query the authenticity of
provided certificate via blockchain (Step (8)).

3.4 Threat Model

We assume applicants are semi-honest, namely they be-
have honestly only when registering certificates for their
own domains. However, during other domain owners’ ap-
plication, they may behave maliciously. We assume TEE
hosts are malicious. They may delay, abort, relay arbitrary
messages, or replay previously transmitted messages to
enclaves. Besides, we assume that active TEE enclaves are
normally trustworthy, but a subset of TEE enclaves may
suffer from arbitrary integrity or confidentiality breaches.
They may be compromised by other parties (i.e., malicious
domain owners) or external attackers who want to violate
the certificate issuance security.

We assume the underlying blockchain satisfies three
properties: liveness, consistency, and immutability. Liveness
means a transaction will be included in the blockchain in
a fixed time period. Consistency guarantees that all users
have the same view on the state of the blockchain eventually.
Immutability implies that once a transaction is confirmed %
times, it cannot be reverted.

We consider two types of adversaries: internal byzantine
adversary and external adversary. For byzantine adversary,
they may control the operating system and network stacks
of TEE nodes, which can reorder, replay, drop transmitted
messages, and schedule processes arbitrarily. For external
adversary, they observe global network traffic, and may
reorder or delay messages arbitrarily.

4 THE PiIsTIS PROTOCOL

In this section, we specify Protpsrs, which aims to realize a
Universal Composable (UC) [12] ideal functionality Fpisris.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 5

Protpsis utilizes digital signature scheme ¥(Gen,Sign, Verf),
a symmetric encryption scheme SE(Gen,Enc,Dec), and an
asymmetric encryption scheme AE(Gen,Enc,Dec).

4.1 Blockchain Model

We define the underlying blockchain as a general-purpose
append-only ledger Fp that maintained by common
blockchain protocols. The blockchain is comprised as a
chain of blocks that store transactions. We assume overlay
semantics that associate with blockchain data:

e JFpg.account: itis used to generate a new account with
an address on the blockchain.

e JFgp.latest(n): it is used to download the latest n
blocks. By default, n = 1.

o JFp.post(tx): it is used to broadcast a transaction onto
the blockchain. The broadcasted transaction will be
included in § blocks.

4.2 TEE Model

We adopt the attested execution model formalized in [15]
and define our TEE as an ideal functionality G,++. Similar to
the notation in [15], a party that loads en enclave into TEE
with an ”install” message. A party that invokes the TEE
with a “resume” call.

4.3 Formal Specification of the Protocol

In this section, we give the formal protocol of PISTIS, which
is depicted in Fig.

Pi1sTIS Registration: An applicant P; who wants to
request a certificate from PISTIS should first create a
blockchain account and register its domain in the Cac. In
this phase, P; can invoke Fg.post to broadcast a transaction
to invoke Cac’s registration function. Cac will mark P;’s
blockchain address as registered and store its provided
domain in the contract.

Domain Validation: In this phase, the contract Cac needs
to ensure that the registered domain is valid (i.e., its validity
is longer than n seconds) and under the control of applicant
P;.

For the validity validation, Cac triggers TEE nodes by
invoking the Fg.post function to broadcast a transaction that
contains domain name and validity validation instructions.

For the ownership validation, we refer to the Automated
Certificate Management Environment (ACME) protocol [14]
and propose a challenge-proof protocol, which is illustrated
in Fig. B}

First, the applicant P; invokes the ownership validation
function by posting a transaction with a triple tuple {address,
Pkacet, domain}. Contract Cac checks whether the sender has
registered an account. If so, Coc generates a verification code
op, and sends it to the applicant P; as a return value.

Then, the applicant P; puts the proof as a TXT re-
source record in its authoritative DNS server in the form
of challenge.<domain> IN TXT proof.P; can invoke
the P1STIS to check whether the proof matches the challenge.

The Cac then invokes TEE nodes to generate DNS query
packets to challenge.<domain>. After receiving the TXT
response, TEE nodes can extract the proof and respond to
the PISTIS with a transaction. The PISTIS checks whether the

received proof matches its corresponding challenge. If so, the
domain passes the validation, and Cac mark the domain as
validated.

Certificate Issuance: After passing the domain valida-
tion, applicant P; can invoke the Cac to issue a certificate.
P; should generate a public key for its certificate and post
this public key onto the blockchain. Then, Cac generates a
certificate for P; and broadcasts it to the blockchain.

Cyc maintains a MPT to store the states of its issued
certificates. Specifically, we set the domain name as the key
of MPT. States of domain certificates (i.e., issued, revoked)
are stored as value.

We make some adjustments to traditional MPT by in-
dexing from the top-level domains (TLD). This is because
domain names show similarity in their TLDs, and it is better
to group similar domain names in a sub-tree. For example,
google.com and gmail.com have identical TLD so that
they can be categorized into one sub-tree. For the value part,
there are two types. A valid certificate is given a concatena-
tion in the form of CertID| |valid. For a revoked certifi-
cate, the value part is in the form of CertID| | revoked.

P1sTIS Cyc contract provides three operation functions
Insert, Update, and Get. The first two functions enable
Cac to update certificates’ states, and the last function allows
clients to verify certificates.

Insert. The insert function is operated as follows.
First, we should find the node with the same top-level
domain. Then, the TLD node’s pointer will lead us to its
branch node with 26 characters. After that, we check the
first letter of the required domain and find its sub-tree. If
this sub-tree is empty, we could insert the left letter as a leaf
node after it. Otherwise, we go to the second letter and its
sub-tree. We follow the letters one by one recursively until
we find an empty sub-tree or run out of all letters in the
domain name.

Update. The update operation is similar to the insert
operation. The difference is when we update the state of a
certificate, it has been inserted into the MPT. Accordingly,
we could search the corresponding node from TLD nodes
until we find the same longest prefix node of the domain
name. We conduct this operation recursively until we match
all letters in the domain. Finally, we could update the state
of the found domain.

Certificate Revocation: In PISTIS, certificate revocation
can be triggered in three ways:

1) A certificate expires once the latest block’s times-
tamp exceeds its validity. In this case, Cyc will
update the state of this revoked certificate as invalid
automatically.

2) A domain owner who owns the private key can
sign a revocation request to PISTIS to invalidate the
certificate. In this case, the domain owner P; should
invoke the certificate revocation function directly
by sending a transaction that contains its address,
public key, domain, and certificate id.

3) Anew applicant P;, who could prove its ownership
of the domain related to a valid certificate, can
invalidate that certificate. We consider this scenario
because the ownership of a domain may change,
while the previously-issued certificate is still valid.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 6

‘P Initialization

(ssky, spk;) < X.Gen(1*)

(ask;, apk;) «— AE.Gen(1*)
addr = Fg.account

tz; = {Cac.register, addr, FQDN}
Fg.post(txy)

P; Domain Validation

txs = {Cac.validate, FQDN}
Fg.post(tzsy)

Gau Validity

wait until tz7gg, is confirmed k times

load FQDN and send to whois for ExpiryDate
if FQDNg, i ypare — FB-latest > n(seconds):
tzrpg, -response = {Cac.validity, FQDN, passed}
Fg.post(trrgg, .response)

else: revert

Gae Ownership

wait until tzrgg, is confirmed k times
load FQDN and query FQDN
if FQDNproof = FQDNchallenge:
tx g, -response = {Cac.ownership, FQDN, passed}
Fg.post(trrgg, .response)

proof

P; Certificate Issuance

txy = {Cac.issue, FQDN}
Fg.post(txs)

P; Certificate Revocation

txy = {Cac.revoke, FQDN}
Fg.post(txy)

Cac Domain Revocation

wait until tx3 is confirmed &k times

tze,., = {Cvc.update, FQDN, revoked}
Fg.post(tze,.,)

wait until ¢{z¢,,.response is confirmed k times
AccountState(tx;.addr) = revoked

T Cac and Cyc Initialization
CAC:
state := [registered, validated, issued, revoked]
T mapping (addr — state) AccountState
. load PKrgg = [pk‘TEE1 7kaEE2 , ~~~7kaEE,,,}
|:1(> Cvc:
MPT (domain — state) CertState
Cac Registration
tx, T —=———> |wait until ¢z, is confirmed k times
= AccountState(tx;.addr) = registered
T Cac Domain Validation
< ——> |wait until tx5 is confirmed % times
txrpe, = {Ga.validity, FQDN}
t@re, response thEEl
T <— | Fp.post(txrgg,)
———=> |wait until txrgg, .response is confirmed £ times
Otherwise, revert
T tores, tzrep, = {Gan.ownership, FQDN}
<— | Fp-post(txrgg,)
———> |wait until txrgg, .response is confirmed £ times
T Otherwise, revert
AccountState(tx,.addr) = validated
tZrgg, response
Cac Certificate Issuance
T ———> | wait until {x3 is confirmed k times
tr tze,., = {Cyc.update, FQDN, issued}
Cvei
Fg.post(tze,.,)
tzs T =——=> | wait until tz¢, .response is confirmed k times
— AccountState(tz;.addr) = issued
T Cvc Certificate Issuance
ta, = |wait until tz¢,., is confirmed % times
—— e sespomse txe,., .response = {Cuac.issue, FQDN, issued}
T <——— |Fg.post(tzc,., .response)
<=
Cvc Certificate Revocation
thVCZ

T wait until tzc, ., is confirmed k times
tze,,., response = {Cac.revoke, FQDN, revoked}
Fg.post(tze,,, .response)

tec,, .response

Fig. 2. A formal specification of PISTIS protocol. Gray arrows indicate reading blockchain data. White arrows indicate broadcasting a transaction

onto the blockchain.

Fig. 3. The challenge-proof protocol. Under TEE nodes, dashed line
means the communication does not involve the enclave while the thick

solid line represents that enclaves are involved.

{“register”, public key, FQDN} > {public key, FQDN} »
| {did, FQDN}
{“validity”, did, FQDN] {“validity”, did, FQDN}—]
“validity”, eid, FQDN}
whois(FQDN).ExpiryDate
{validity.proof(FQDN)}— i
“validity”, did, FQDN, valid}-»}
“ownership”, did, FQDN}] “ownership”, did, FQDN}—b}
ownership”, cid, FQDN}
. “ownership”, did, FQDN}
Enc, «(verf_code) *
Dec, i (verf_code)
<
Encyy(verf_code) TXT FQDN-»] :
Dec,(verf_code)
«
{validity.proof(FQDN)}—]
{“issue”, did, FQDN}

In this case, the new domain owner should explic-
itly invoke the PISTIS certificate revocation func-
tion. Then, PISTIS invokes the domain authorization
function, and once the new domain owner passes
the ownership validation, Cac issues a new certifi-
cate and invokes Cyc to update certificate state.

Certificate Verification: When a client connects to a web-
site protected by a PISTIs-issued certificate, he/she could
verify whether the certificate is valid before establishing a
HTTPS connection. Only when the certificate passes veri-
fication, the client believes that the server is the authentic
one. Otherwise, the browser should halt the connection.
In PISTIS, certificate verification is conducted by the Get
operation provided by contract Cyc.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 7

Get . The Get operation is a getter function provided by
the underlying blockchain, which enables clients to acquire
data directly. Specifically, the underlying blockchain imple-
mentation traverses the MPT to acquire the required state
for users.

5 SECURITY ANALYSIS

In this section, we formally prove the security of PISTIS in
the Universally Composable (UC) framework [12].

5.1 Ideal Functionality

The idea functionality of PISTIS is specified in Fig. |4 as
Fpristis- Fristis allows applicants (each applicant is denoted
by a unique id P;) to request for certificates. Following the
convention in [12], we set an information leakage function
¢ to capture the allowed information leakage from the
encryption. We also use the standard delayed output [12]
to model the power of network adversary.

Applicants can send messages to Fpisris to invoke PIS-
TIS registration, domain validation, certificate issuance, and
certificate revocation, which will update the corresponding
domain’s state. Clients (i.e., environment Z) can also query
Fpistis for the state of a domain’s certificate.

5.2 Security Proof

Intuitively, a P1STIS-issued certificate being authorized and
trusted means that an adversary cannot convince the PISTIS
to accept a response that differs from the expected content
obtained from the specified domain.

Theorem 1. (Security of Protpisris). Assume Xrgg is existen-
tially unforgeable under chosen message attacks (EU-CMA), and
AE is INC-CPA secure. Then Protpsyis securely realizes Fpisris
in the (Gt JFB)-hybrid model, for static adversaries.

Proof. Let Z be an environment and A be a “dummy ad-
versary” (i.e., acts as a “transparent channel” between the
environment Z and protocol [12]). To show that Protpsyis
UC-realizes Fpisris, we specify below a simulator Sim such
that no environment Z can distinguish an interaction be-
tween Protpisrs and A from an interaction between Fpisris
and Sim. That is, Sim satisfies

VZ, EXECPl‘OtPIST;S,‘A,z ~ EXEC]:PlsTls,Sim.E

5.2.1 Construction of Sim

Sim works as follows: if a message is sent by an honest
applicant to Fpisris, Sim emulates appropriate real world
"network traffic” for Z with information obtained from
Fristis- If a message is sent by a corrupted party, Sim extracts
the input and interacts with the corrupted party with the
help of Fpisris. We provide further details on the processing
of specific messages.
P1STIS Registration:

o If applicant P; is honest, Sim obtains (P;, FQDN,
eid) from Fpisris and emulates an execution of the
”create” call.

o Ifapplicant P; is corrupted, Sim extracts FQDN from
Z. On behalf of P;, Sim sends {"register”, FQDN} to
Fpistis and instructs Fpisris to deliver the output.

]:PISTIS (& Pz)

Parameter: leakage function ¢ : {0,1}* — {0,1}*
On receive (“register”, FQDN) from P;:

did « {0, 1}*

notify A of (“register”, P;, did, FQDN)

Storage[did] := (FQDN, 0)

send a public delayed output (“receipt”, did) to P;
On receive (“validity”, did, eid) from P;:

notify A of (“validity”, P;, did, eid)

(FQDN, st) := Storage[did]; abort if not found

(outp, st) := whois(FQDN, did)

notify A of (¢(outp), did, eid)

update Storage[did] := (FQDN, st)

send a public delayed output (“receipt”, did) to P;
On receive (“ownership”, FQDN, did, eid) from P;:

notify A of (“ownership”, P;, did, eid)

(FQDN, st) := Storage[did]; abort if not found

send a secret delayed message (challenge, did) to P;

notify A of (¢(challenge), did, eid)

update Storage[did] := (FQDN, st)

send a public delayed output (“receipt”, did) to P;
On receive “issue”, FQDN) from P;:

notify A of (“issue”, P;, did, eid)

(FQDN, st) := Storage[did]; abort if not found

update Storage[did] := (FQDN, st)

send a public delayed output (“issued”, did) to P;
On receive “revoke”, FQDN) from P;:

notify A of (“revoke”, P;, did, eid)

(FQDN, st) := Storage[did]; abort if not found

update Storage[did] := (FQDN, st)

send a public delayed output (“revoked”, did) to P;
On receive (“read”, did) from Z:

(FQDN, st) := Storage[did]; abort if not found

send st to Z

Fig. 4. The ideal functionality of PIsTIS.

e In both cases, Sim simulates the interaction between
FB and G.u, on behalf of the adversary or honest
parties.

Domain Validity Validation:

o If applicant P; is honest, Sim obtains (P;, FQDN,
did, eid) from Fpgps and emulates an execution
of the “validity” call. Specifically, Sim extracts the
whois database and checks FQDN'’s validity. Then,
Sim updates Fpistis with (FQDN, eid, st).

o Ifapplicant P; is corrupted, Sim extracts FQDN from
Z. On behalf of P;, Sim sends {“validity”, FODN}
to Fpistis and instructs Fpigrs to extract the whois
database.

Domain Ownership Validation:

o Ifapplicant P; is honest, Sim obtains (P;, FQDN, did,
eid) from Fpisris and emulates an execution of the
"validity” call.

o Ifapplicant P; is corrupted, Sim extracts FQDN from
Z. On behalf of P;, Sim sends {”ownership”, FQDN}
to Fpistis and instructs Fpisris to deliver the output.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 8

Certificate Issuance:

o If applicant P; is honest, Sim obtains (P;, “issue”,
FQDN, eid) from Fpistis and emulates an execution
of the “revoke” call.

o Ifapplicant P; is corrupted, Sim extracts FQDN from
Z. On behalf of P;, Sim sends {”issue”, FQDN} to
Fpristis and instructs Fpisris to deliver the output.

Certificate Revocation:

o If applicant P; is honest, Sim obtains (P;, “revoke”,
FQDN, eid) from Fpisrs and emulates an execution
of the “revoke” call.

o Ifapplicant P; is corrupted, Sim extracts FQDN from
Z. On behalf of P;, Sim sends {"revoke”, FQDN} to
Fpistis and instructs Fpisris to deliver the output.

Public Read: On any call (“read”, eid) from P;, Sim em-
ulates a “read” message to Fg. If P; is corrupted, Sim sends
to Fristis @ “read” message on P;’s behalf and forwards the
response to A.

Corrupted Enclaves: Sim obtains eids of corrupted en-
claves when Z corrupts them. In real world, Z could make
corrupted enclaves unavailable at any time by dropping
messages or terminating it. Sim relays all messages between
a corrupted enclave and Z. Sim terminates Fpisris once the
emulated execution is aborted by Z prematurely.

5.2.2 Validity of Sim

We show that, in hrbrid settings, no environment Z can
distinguish an interaction with Protpisys and A from an
interaction with Fpisris and Sim. We consider the following
sequence of hybrid settings, starting with the real protocol
execution.

o Hybrid H; lets Sim to emulate G,y and Fs.

e Hybrid H; filters out the forgery attacks against
YITEE-

o Hybrid Hjs lets Sim emulate the issuance phase.

o Hybrid H, replaces the encryption of challenge with
encryption of 0.

Hybrid H; proceeds as in the real world protocol, except
that Sim emulates the behavior of G.;; and Fg. To emulate
Gatt, Sim generates a key pair (pkigg, skree) for Xree.
Whenever A wants to communicate with G, Sim records
A’s messages and faithfully emulates G,+'s behavior. As to
emulate Fg, Sim stores blockchain data internally.

From the perspective of A’, H; is perfectly simulated as
in the real world. In this case, Z cannot distinguish between
H; and the real world execution.

Hybrid H, proceeds as in H;, except for the following
differences. If A invokes Gyt with correct message, then for
all sequential calls, Sim records a tuple where state is the
output of contract and orgg is the attestation under skrgg.
Let €2 denote the set of all such tuples. Whenever A sends
an attested output (st, ogg) ¢ 2 to Fp or an honest party
‘P;, Sim aborts.

The indistinguishability between H; and Hj can be
shown by the following reduction to the EU-CMA property
of ¥: In H;, if A sends forged attestations to Fg, signature
verification by Fg or honest party will fail with all but

negligible probability. If Z can distinguish Hy from H,, Z
and A can be used to win the game of signature forgery.

Hybrid Hj is the same as Hy but has Sim to emulate the
certificate issuance. Sim emulates messages from G4+ to Fig
as described above. If P; is corrupted, Sim sends (“issue”,
FQDN) to Fpsris as B;.

It is clear that from the perspective of 4, Sim emulates
Gowt and Fp perfectly. In this case, Z cannot distinguish
between Hj and the real world execution.

Hybrid H, is the same as H3 except that honest appli-
cants also send messages to Fpisris- If P; is corrupted, Sim
emulates real-world messages with the help of Fpsrs.

The indistinguishability between Hz and H; can be
reduced to the IND-CPA property of .AE. Having no knowl-
edge of the secret key, A cannot distinguish encryption of
0 from encryption of other messages. Note that we don’t
require IND-CCA security because .A does not have direct
access to a decryption oracle.

O

6 EXPERIMENTS AND EVALUATION

In this section, we conduct experiments to explore the fea-
sibility of PISTIS by evaluating the performance of contracts
and TEE nodes.

6.1 Contract Evaluation

We implement PISTIS contracts in Solidity and deploy them
on the Ropsten testnet. We operate three nodes: a domain
node, a TEE node, and a client node. All nodes are equipped
with a blockchain endpoint. For client node, we install a
MetaMask wallet, which is a web-based Ethereum wallet.
The Geth wallet operates as the endpoint for the TEE node.
It exchanges data between PISTIS contracts and the TEE
node. On the client side, we inject certificate verification
script into the PISTIS-protected websites. Only when PISTIS
returns a valid answer, the browser recognizes the certificate
as valid and establishes a HTTPS connection.

We first evaluate the performance of PISTIS contract.
Three experiments are conducted to test the gas consump-
tion, storage cost, and verification latency.

6.1.1 Gas Consumption

In this experiment, we test the gas consumption of most
operations provided by PISTIS. The gas consumption is
closely related to the sustainability and feasibility of PISTIS.
Specifically, we measure the approximate computational
steps (in Ethereum gas) and money cost (in USD) for each
operation supported by the PISTIS contract. During the
writing of this paper (i.e., December of 2020), an ether costs
around 500 USD. For the gas price, we adopt 40 Gwei (1
Gwei = 107? ether), which is 0.00002 USD. For testing, we
assume all strings are a maximum of 32 bytes, which is the
basic storage unit in Ethereum. We also assume that the
public keys for certificate verification are 2048-bit RSA keys.
Table[T| shows the costs of various operations in PISTIS.

As we can see, the issuance of a certificate with PISTIS
may cost a domain owner around 5 dollars, which is less
than most commercial certificate authorities” certificate is-
suance service. For end clients, the certificate verification
costs nothing so that they do not need to pay to visit PISTIS-
protected websites.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 9

TABLE 1
The consumption of PISTIS operations.

Operation | Gas Cost (Unit) | Gas Cost (USD)
Account_Registration 38500 0.77
domain_Registration 41800 0.836
domain_Validation 52900 1.058
Challenge_Generation 65050 1.31
Challenge_Verification 3600 0.072
Certificate_Issuance 52500 1.05
Certificate_Revocation 4100 0.082
Certificate_Verification 0 0
CertID_Broadcast 1800 0.036

6.1.2 Storage Overhead

In this experiment, we investigate the storage overhead of
P1STIS. Specifically, we investigate the on-chain storage for
MPT, the account list, and transactions required for data
transmission. For the MPT, we store the states of 11,239
certificates, which costs about 104 MB. For the account list,
we insert 11,239 account entries, whose storage requirement
is 8 MB. As the storage overhead increases linearly with the
number of certificates, we can infer that the required storage
space is in the TB level when there are hundreds of millions
of certificates in the system. We think this requirement can
be reached easily on current consumer computers.

700 1 —@— Pistis
—+— CA+O0CsP
| —— CA+CRL

' =

N
o
)

Latency (ms)

w

o

o
L

N
o
o

L

0 2 4 6 8
Number of Operations

Fig. 5. The comparison of verification latency between PISTIS, traditional
CA + OCSP, and traditional CA + CRL.

17.5 4 —@— Pistis
—+— CA+O0CSsP
15.0 { —&— CA+CRL

7.54

Packet Size (KB)

o
=}
L

2.5 + + + —t—

00{f —06—06—0—0—0—0—0—0—0
0 2 4 6 8
Number of Operations

Fig. 6. The comparison of verification packet size between PISTIS,
traditional CA + OCSP, and traditional CA + CRL

6.1.3 \Verification Performance

In this experiment, we aim to test the performance of certifi-
cate verification in PISTIS and compare it with the latency
of OCSP and CRL, two widely-used certificate verification
methods. Typical certificate verification can be categorized
into two parts. First, we need to verify the signature pro-
vided by the certificate and check whether it is assigned by
a trusted CA. Second, we need to verify whether this certifi-
cate is revoked. A certificate will not pass the verification if
either step fails.

The first step is conducted on the browser side. The
main difference in verification latency lies in the certificate
state checking. For PISTIS, we measure the latency from
the time that a client sends a state verification transaction
to the time that a response transaction is parsed, and the
certificate’s state is confirmed. For the OCSP and CRL, we
use OpenSSL to send OCSP and CRL requests and record
the corresponding latency.

We conduct the measurement ten times on P1sTIS, OCSP,
and CRL, respectively. Results are summarized in Fig.
We use the circle dots to represent the delay of PISTIS,
the vertical lines to represent the delay of OCSP, and the
triangle dots to represent the delay of CRL. As depicted in
Fig.[5} the verification latency of PISTIS is the lowest, which
fluctuates around 150 ms. The delay of OCSP ranks secondly
with 400 ms certificate verification service. The CRL has
the longest delay, nearly 700 ms, which results from the
biggest packet they transmit during verification. In addition,
we also measure the packet size during each operation and
illustrate them in Fig. [6] The CRL needs to transmit around
15 KB data for certificate verification, while OCSP needs to
transmit 2 KB. By contrast, PISTIS only needs to transmit a
transaction for verification, whose size is around 0.1 KB.

6.2 TEE Evaluation

We evaluate the performance of PISTIS TEE on a server with
i9-9900k CPU and 32GB memory. Our experiment results
prove that PISTIS can easily meet the peak throughput of
Ethereum network and can be deployed on current com-
modity servers.

6.2.1 Throughput

We first evaluate the throughput of a TEE node. We aim
to explore to what extent can a TEE node processes trans-
actions. The experiment results are illustrated in Fig. [7} We
can see that a server with at most 30 enclave instances can
handle up to 58 transactions per second. We also notice that
when the number of enclave instances is less than 16, the
throughput increases linearly.

6.2.2 Response Time

We define the response time of a TEE node as the interval
between the time that a PISTIS Contract/Domain Owner
sends a request to the enclave and the time that a PISTIS
Contract/Domain Owner receives a response from the TEE
node. The experiment results are presented in the Table
As we can see, the interaction between a enclave and
PISTIS contracts are fast, which is because the TEE node
is equipped with a blockchain endpoint. In this case, the
interaction between the PISTIS contract and the enclave omit

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 10

—&— Pistis Enclaves
80 4

60 -

40

Throughput (tx/s)

20 A

0 5 10 15 20 25 30
Number of Enclaves on a Single Machine

Fig. 7. The throughput of TEE node on a single machine with different
numbers of enclave instances.

TABLE 2
The response time of TEE node operations.

Operation ‘ timean (ms) ‘ tmax (ms) ‘ tinin (ms)
Protocol Trigger 1.1 421 0.36
DNS Query 1.06 417 0.28
DNS Response 86.4 280.2 46.7
Protocol Response | 1.13 4.25 0.41
Total | 89.69 | 292.83 | 47.75

the network latency. By contrast, the DNS query operation
has the longest response time, which is because the commu-
nication latency between TEE nodes and domains.

7 DISCUSSION

In this section, we discuss how to deploy, maintain, and
upgrade PISTIS contracts and TEE nodes. We also discuss
the limitations of the underlying infrastructure of PISTIS.

7.1 Deployment, Maintenance, and Upgrade

As PISTIS adopts a new way to issue and revoke certificates,
its deployment, maintenance, and upgrade methods are
different from traditional CAs. PISTIS contracts are written
by its developers (e.g., a traditional CA company or open-
source community that wants to issue certificates using
P1sTIS). These developers can deploy PISTIS contracts onto
a chosen blockchain platform and operate TEE nodes to
establish the communication channels between PISTIS and
domains. Developers also monitor the state transition of
P1STIS and check if there are any problems. If they want to
add new functions, they can use a new contract to upgrade
the PISTIS service. The older contracts will be destructed by
calling the selfdestruct function and the new contract
address will be advertised to target domain owners. We
want to emphasize that these upgrades will not increase
the possibility that PISTIS is manipulated by its developers.
Since PISTIS is transparent, any deviation from its design
principle will cause people not to trust it, which conflicts
with the interests of developers.

Once developers deploy the PISTIS contract on the
blockchain, domain owners can interact with it to request a
certificate. After getting a PISTIS-issued certificate, a domain

owner can set up its HTTPS-protected service. Clients can
verify whether a certificate is valid by querying PISTIS
blockchain. Specifically, a client needs to inject the verifi-
cation script into the website to interact with the certificate
verification contract Cyc. Once a certificate passes verifica-
tion, the client can establish a HTTPS connection with the
P1sTIs-protected website.

In this process, PISTIS will not be affected by whether
people trust its developers. If developers leave a back door
in the contract program, domain owners can discover it and
reject PISTIS-issued certificates. Even developers are com-
promised during PISTIS’s execution, the hybrid architecture
of blockchain and TEE prevents their malicious behaviors as
long as the PISTIS contract has no loopholes.

7.2 Infrastructure Limitations

PISTIS is constructed based on smart contract and TEE,
which are both emerging technologies and have some limi-
tations.

Blockchain Limitations. Blockchain has demonstrated
to be vulnerable in some aspects. For example, the mining
policy is not secure since attackers can withhold a newly-
mined block and broadcast it until another miner finds a
new block in the same height, which makes the computation
power devoted by most honest miners invalid. In addition,
bribery attack [16] demonstrates the possibility that attack-
ers can manipulate the inclusion of transactions.

Blockchain platforms, especially those support smart
contract, can only provide limited-throughput transaction
processing service. In this case, PISTIS can only issue cer-
tificates at a limited rate. In our future work, we aim
to extend PISTIS to some performant blockchain systems
such as Hyperledger, Libra, or some experimental sharding
systems.

Smart Contract Limitations. The smart contract also
has some vulnerabilities and some even lead to serious
consequences such as the DAO attack. Since the authoriza-
tion of certificates constructs the foundation of secure web
connections, we should alleviate the exposed vulnerabilities
and protect PISTIS from the other potential vulnerabilities.

TEE Limitations. The Intel SGX was proposed to pro-
vide trusted computation by isolating some memory parts
and encapsulating programs in enclaves securely. However,
some researchers have successfully launched side-channel
attacks against the Intel SGX platforms [13]. Moreover,
enclaves can offload some computation overhead from the
PISTIS contract, which might lead to new attack vectors such
as SgxPectre [17]]. In this case, mitigation should be located
in the PISTIS framework. We also consider the case that some
TEE hosts are malicious. They can delay or drop correct
DNS responses but cannot forge a valid proof of ownership
validation. In this case, malicious hosts can only cause a
small DoS attack. As we have assumed that at least one TEE
is working, such attacks cannot affect the overall operation
of PISTIS.

MitM Attack. We consider the possibility that MitM
attacker may affect the system. We discuss attacks launched
by two kinds of attackers: passive attackers that controls
a large ISP, and active attackers that attempts to attract
traffic from other networks. We run simulations with dif-
ferent number of TEE nodes. If the attacker is in the victim

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 11

domain’s network, it can hijack requests from the domain
owner and spoof responses. Most domains may have multi-
ple nameservers and these nameservers are usually placed
in different networks. This is following the best practice
to avoid a single point of failure for domains. Further-
more, as nameservers of the same domain are hosted in
different networks, an attacker can hardly hijack or spoof
all responses. We also quantify the ability of an on-path
attacker to intercept majority of DNS requests sent to a TEE
node from the victim domain. The simulation evaluates all
possible scenarios for an on-path attacker to cover almost
all routes between the victim domain and the TEE node.
Results show that it is impossible for a MitM attacker to
acquire challenge value during the validation process.

8 RELATED WORK

In this section, we discuss the related work of PISTIS, includ-
ing blockchain-TEE hybridized systems, traditional counter-
measures against unauthorized certificates, and blockchain-
based PKI/CA. We finally compare PISTIS with state-of-the-
art.

8.1 Blockchain-TEE Hybridized Systems

The combination of blockchain and TEE shows great poten-
tial due to their superior characteristics and complementary
nature in areas such as privacy preserving and attested
execution. Kaptchuk et al. explores the computational prop-
erties of using blockchain to store the state of stateless TEE
[29]. Teechain [30] leverages TEE as the entry and exit point
for off-chain payment channels and enables asynchronous
execution of off-chain transactions. FASTKITTEN [31] em-
ploys TEE to execute arbitrarily complex smart contracts ef-
ficiently on cryptocurrencies, which are originally designed
without smart contract support.

8.2 Traditional Countermeasures

Traditional countermeasures that aim to address the unau-
thorized certificate problem can be categorized into two
types: client-side and server-side.

On the client-side, proposals such as HPKP [4] and Trust
Assertions for Certificate Keys (TACK) [32] aim to establish
a solid connection between the public key and the domain
name. These solutions, however, require a domain to inform
clients which keys are valid so that clients can distinguish
valid certificates from unauthorized ones. Researchers also
proposed community of trust [33], which acts as the basis of
certificate verification. Syta et al. proposed CoSi [19], which
employs a witness cosigning protocol to ensure that every
statement is verified and publicly logged by a diverse group.

On the server-side, most countermeasures aim to estab-
lish log servers, which allows domain owners to record
operations on their certificates. This also provides public ac-
countability to clients. Sovereign Keys (SK) [34], Certificate
Transparency (CT) [5], AKI [6], ARPKI [7], DTKI [18], and
PoliCert [8] fall in this category. Researchers also focused on
the notification of certificate revocation to prevent attackers
from further involvement [35].

8.3 Blockchain-based PKI/CA

There are some proposals aiming to address the unautho-
rized certificate problem utilizing blockchain technology.

Fromknecht et al. proposed CertCoin [20], whose core
idea is letting the public ledger as a ”bulletin boards” for
domains and their associated public keys. Mustafa proposed
SCPKI [21]], which is an alternative PKI system based on a
decentralized and transparent design using the web-of-trust
model and smart contracts. Catena [36] leverages Bitcoin as
the log server and generates a transaction chain to prevent
CAs from issuing contradicting certificates. By contrast,
PISTIS not only preserves transactions to trace certificate
state transitions, but also maintains a MPT to store latest
states of certificates. IKP [22] aims to mitigate unauthorized
certificates by incentivizing the CA, domain owner, and
clients to report unauthorized certificates. IKP is designed to
be compatible with current PKI so that certificate issuance
and revocation are both conducted by traditional CAs.
Cecoin [23] employs a Bitcoin-like blockchain to provide
irreversible unforgeability and public verifiability in the
CAs. Specifically, certificates are treated as currency and are
circulated on the blockchain. BlockPKI [26] uses blockchain
as the log server to make CA operations publicly visible and
accountable.

Yakubov et al. introduced smart contracts to establish
a blockchain-based PKI [37]. Each smart contract acts as a
CA that takes charge of issuing and revoking certificates.
CertChain [24] aims to enhance the security of PKI by
recording certificate operations on the blockchain. However,
it does not provide a feasible domain validation function,
which leaves a door of unauthorized certificates. PBCert [25]
explores the way to enable privacy-preserving in querying
the latest states of certificates, which protects users from
eavesdropping. CertLedger [27] utilizes the blockchain to
implement certificate transparency and provides an efficient
certificate verification method. SmartCert [28] generates
smart contracts for certificates to automate the certificate
validation.

8.4 Comparison

Differences between PISTIS and state-of-the-art are sum-
marized in Table 3} The comparison is conducted in six
dimensions: certificate authority’s construction and type,
certificate issuance, domain ownership validation, certifi-
cate validity verification, certificate revocation request and
checking, and security analysis of the proposed system. The
related work is sorted chronologically in the table, while we
separate PISTIS, traditional solutions and blockchain-based
solutions with dual horizontal lines.

For traditional solutions, all work relies on external
trusted CA to issue certificates. As to the request initiation
side, all systems can initiate registration request from both
domain and CA side. We have emphasized that requests
initiated from CA side enable attackers to compromise
a CA and maliciously issue unauthorized certificates. By
contrast, PISTIS uses smart contracts to build CAs, which
are essentially source code that cannot initiate a certifi-
cate issuance request locally, namely from CA side. For
ownership validation, most work are left empty because
they rely on external trusted CA to conduct ownership

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 12
TABLE 3
Comparison between PisTIS and related work.

Name Certilficate Authority IS§uance) (})wnership2 o Validity Revocation) Security

Construction | Type Domain | CA! | Validation | Method Validation | Method Request | Checking Analysis
PISTIS | Smart Contract + TEE | Decentralized | v | N/A | v | TEE | v | MPTP® | v | web3js | Formal
AKI [6] | External Trusted CA | Centralized | v | v | - | - | v | ILS Proof! | v | N/A | Informal
ARPKI |7 | External Trusted CA | Centralized | v | v | - | - | v | wMTP® | v | N/A | Formal
PoliCert [8 | External Trusted CA | Centralized | v | v - | - | v | Log Proof | v | LogProof | Informal
DTKI [18] | External Trusted CA | Centralized | v | v - | - | v | Master Key | v | N/A | Formal
DV++ [14] | External Trusted CA | Centralized | v | v v | Multi-Path | N/A | N/A | N/A | N/A | N/A
CoSi [19 | External Trusted CA | Centralized | v | v - | - | v | MTP | N/A | N/A | N/A
CertCoin [20] | On-Chain Transaction | Decentralized | v | N/A | v | Passive | v | Passive | v | N/A | N/A
SCPKI [21] | Smart Contract | Decentralized | N/A | N/A | N/A | N/A | v | MTP | v | N/A | N/A
IKP [22] ‘ External Trusted CA ‘ Centralized ‘ v ‘ v ‘ - ‘ - ‘ v ‘ MTP ‘ v ‘ N/A ‘ N/A
Cecoin [23 | On-Chain Transaction | Decentralized | v | N/A | v | Passive | v | Passive | N/A | N/A | Informal
Certchain [24| | External Trusted CA | Centralized | v | v - | - | v | MTP | v | Bloom Filter | Informal
PBCert [25] | External Trusted CA | Centralized | v | v - | - | v | MTP | v | OCSP | Informal
BlockPKI [26] | External Trusted CA | Centralized | v | v v | ACME | v | Multi-Sig | N/A | N/A | Informal
CertLedger [27] | External Trusted CA | Centralized | v | v - | - | v | MPTP | v | N/A | Formal
SmartCert [28] | External Trusted CA | Centralized | v | v - | - | v | MTP | v | N/A | Informal

! This column indicates that a malicious or compromised CA can issue certificates for any domains without their permission.

“_n

2 For systems that rely external trusted CA to issue certificates, we use

to indicate not covering ownership validation.

3 MPTP is short for Merkle Patricia Tree Proof while MTP is short for Merkle Tree Proof.

*ILS is short for Integrity Log Server, which is proposed in AKI [6].

validation except DV++, which proposes a multiple vantage
points domain validation mechanism. Allowing CA-side
certificate issuance means that malicious or compromised
CAs may issue certificates without domain permission, i.e.
unauthorized certificates. PISTIS ensures that malicious or
compromised CAs cannot issue certificates by combining
this certificate issuance limitation. A certificate request can
only be initiated from domain side and the domain must
pass the ownership validation. In addition, all systems ex-
cept DV++ proposed the corresponding certificate validity
validation mechanism, that is, to detect whether a certificate
is valid, whether it has been revoked or beyond its valid
period. As to certificate revocation, DV++ and CoSi do not
provide mechanism to revoke certificates and only PISTIS
and PoliCert provide revocation checking mechanism. For
security analysis, either formal or informal, most work pro-
vides security analysis. In general, traditional approaches
were based on a trusted CA, with enhanced protection
to avoid corruption caused by unauthorized certificates.
However, as the CA might still be compromised to issue
rogue certificates, traditional methods cannot prevent the
issuance of unauthorized certificates as PISTIS.

For blockchain-based solutions, we found that most of
them rely on external trusted CAs to issue certificates. This
reflects their log server based ideas, which are similar to
traditional log server based solution. In these blockchain-
based log server solutions, blockchain is used as a data
carrier similar to the traditional log server to chain the
history of certificate operations. By contrast, SCPKI relies
on smart contracts to issue certificates. SCPKI does not
issue full certificates, but binding relationships between
public keys and identities. In addition, SCPKI cannot con-
duct domain ownership validation on its applicants, which
indicates that SCPKI is incomplete. CertCoin and Cecoin
are based on Namecoin and therefore use blockchain as

their certificate authority. Furthermore, solutions that rely
on external trusted CAs still offload certificate issuance and
ownership validation to them. Only BlockPKI emphasizes
that it carries out ownership validation through ACME
method. In CertCoin and Cecoin, as the registration of
certificates is based on the validity of relevant domains,
it is only necessary for a domain owner to broadcast a
certificate registration transaction based on its previous
domain registration transaction. At this step, ownership
validation of domains is simply a matter of looking up
the transaction history on blockchain. For certificate validity
validation methods, all listed solutions are equipped with
a proper one. As to certificate revocation, BlockPKI issues
short-lived certificates so that omits it while Cecoin does not
provide revocation mechanism. In addition, only CertChain
and PBCert provide revocation checking mechanism. For
the security analysis, only CertLedger provides a formal
analysis. The rest either only provide an informal analysis or
no analysis at all. Generally speaking, the idea behind most
blockchain-based work is similar to that of traditional work,
namely log server mode. They simply use the blockchain
as a substitute of the log server to record operations of
certificates.

In summary, PISTIS focuses on fundamental issues of
certificate issuance, i.e., mandatory domain ownership val-
idation for applicants and disallowing CA-side initiated
requests. By contrast, most existing work still focus on
monitoring issued certificates and providing accountability
in the form of log server, which cannot prevent issuing
unauthorized certificates and even further MitM attacks.

9 CONCLUSION

In this paper, we propose PISTIS to address the problem
that traditional CAs are vulnerable to be compromised to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 13

issue unauthorized certificates. PISTIS leverages TEE and
smart contract to ensure that only the domain owner can
request a certificate for its domain, which guarantees all
issued certificates are authorized. Previous work either only
detects unauthorized certificate or decreases its possibility.
PISTIS not only ensures its issued certificates are authorized,
but also provides a new trust paradigm. Users can trust a
CA based on its execution logic rather than its identity, and
P1sTIs-issued certificates are trusted as they are recorded on
blockchain. To the best of our knowledge, this is the first
attempt to prevent issuing unauthorized certificates. Our
security analysis and experiment results prove the security
and feasibility of PISTIS.

ACKNOWLEDGMENTS

This paper is partially supported by HK RGC GRF PolyU
15217321 and 15216220.

REFERENCES

(1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]
[10]

[11]

(12]

[13]

[14]

[15]

Wikipedia, “DigiNotar Unauthorized Certificates,” 2011. [Online].
Available: https:/ /en.wikipedia.org/wiki/DigiNotar

S. M. Kerner, “Google Hit Again by Unauthorized SSL/TLS
Certificates,” 2015. [Online]. Available: https://www.esecuritypla
net.com/browser-security/google-hit-again-by-unauthorized-ss
Itls-certificates.html

D. GOODIN, “Google warns of unauthorized TLS certificates
trusted by almost all OSes,” 2013. [Online]. Available: https:
/ /arstechnica.com/information-technology/2015/03/google-wa
rns-of-unauthorized-tls-certificates- trusted-by-almost-all-oses /
C. Evans, C. Palmer, and R. Sleevi, “Public key pinning extension
for HTTP,” RFC Editor, RFC 7469, 2015.

B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,”
RFC Editor, RFC 6962, 2013.

T. H.-J. Kim, L.-5. Huang, A. Perrig, C. Jackson, and V. Gligor,
“Accountable key infrastructure (AKI) a proposal for a public-key
validation infrastructure,” in Proceedings of the 22nd International
Conference on World Wide Web, 2013, pp. 679-690.

D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Sza-
lachowski, “ARPKI: Attack resilient public-key infrastructure,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014, pp. 382-393.

P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure
and flexible tls certificate management,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2014, pp. 406-417.

M. D. Ryan, “Enhanced certificate transparency and end-to-end
encrypted mail,” in NDSS, 2014, pp. 1-14.

S. Somogyi, “Google security blog: Improved digital certificate
security,” 2015. [Online]. Available: https:/ /security.googleblog.
com/2015/09/improved-digital-certificate-security.html

F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
Crier: An authenticated data feed for smart contracts,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016, pp. 270-282.

R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE, 2001, pp. 136-145.
J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
E. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in USENIX Security Symposium,
2018, pp. 991-1008.

M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner, “Domain
validation++ for mitm-resilient PKL" in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2018, pp. 2060-2076.

R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested ex-
ecution secure processors,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT).
Springer, 2017, pp. 260-289.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

S. Gao, Z. Li, Z. Peng, and B. Xiao, “Power adjusting and bribery
racing: Novel mining attacks in the bitcoin system,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2019, pp. 833-850.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“SgxPectre: Stealing intel secrets from SGX enclaves via specula-
tive execution,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). 1EEE, 2019, pp. 142-157.

J. Yu, V. Cheval, and M. Ryan, “DTKI: A new formalized PKI with
verifiable trusted parties,” The Computer Journal, vol. 59, no. 11, pp.
1695-1713, 2016.

E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities” honest
or bust” with decentralized witness cosigning,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 526-545.
C. Fromknecht, D. Velicanu, and S. Yakoubov, “Certcoin: A name-
coin based decentralized authentication system,” MIT, Tech. Rep.,
2014.

M. Al-Bassam, “SCPKI: A smart contract-based PKI and identity
system,” in Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts, 2017, pp. 35-40.

S. Matsumoto and R. M. Reischuk, “IKP: Turning a PKI around
with decentralized automated incentives,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP). 1EEE, 2017, pp. 410-426.

B. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi, “Cecoin:
A decentralized PKI mitigating mitm attacks,” Future Generation
Computer Systems, vol. 107, pp. 805-815, 2020.

J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “Certchain:
Public and efficient certificate audit based on blockchain for tls
connections,” in IEEE INFOCOM 2018-IEEE Conference on Com-
puter Communications. 1EEE, 2018, pp. 2060-2068.

S. Yao, J. Chen, K. He, R. Du, T. Zhu, and X. Chen, “PBCert:
Privacy-Preserving Blockchain-Based Certificate Status Validation
Toward Mass Storage Management,” IEEE Access, vol. 7, pp. 6117-
6128, 2018.

L. Dykcik, L. Chuat, P. Szalachowski, and A. Perrig, “BlockPKI: an
automated, resilient, and transparent public-key infrastructure,”
in 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 2018, pp. 105-114.

M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar, “Certledger: A new
PKI model with certificate transparency based on blockchain,”
Computers & Security, vol. 85, pp. 333-352, 2019.

P. Szalachowski, “Smartcert: Redesigning digital certificates with
smart contracts,” arXiv preprint arXiv:2003.13259, 2020.

G. Kaptchuk, M. Green, and I. Miers, “Giving state to the stateless:
Augmenting trustworthy computation with ledgers,” in NDSS,
2019, pp. 1-15.

J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Piet-
zuch, “Teechain: a secure payment network with asynchronous
blockchain access,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), 2019, pp. 63-79.

P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostdkov4, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts
on bitcoin,” in USENIX Security Symposium, 2019, pp. 801-818.

M. Marlinspike, “Trust assertions for certificate keys,” 2013.
[Online]. Available: http://tack.io/

E. Osterweil, D. Massey, D. McPherson, and L. Zhang, “Verifying
keys through publicity and communities of trust: Quantifying off-
axis corroboration,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 2, pp. 283-291, 2013.

P. Eckersley, “Sovereign keys: A proposal to make HTTPS
and email more secure,” 2012. [Online]. Available: https:
/ /www.etf.org/deeplinks/2011/11/sovereign-keys-proposal-
make-https-and-email-more-secure

W. Liu, H. Nishiyama, N. Ansari,]. Yang, and N. Kato, “Cluster-
based certificate revocation with vindication capability for mobile
ad hoc networks,” IEEE Transactions on parallel and distributed
systems, vol. 24, no. 2, pp. 239-249, 2012.

A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation
via bitcoin,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 393-409.

A. Yakubov, W. Shbair, A. Wallbom, D. Sanda et al., “A Blockchain-
based PKI Management Framework,” in The First IEEE/IFIP
International Workshop on Managing and Managed by Blockchain
(Man2Block) colocated with IEEE/IFIP NOMS 2018, 2018.

https://en.wikipedia.org/wiki/DigiNotar
https://www.esecurityplanet.com/browser-security/google-hit-again-by-unauthorized-ssltls-certificates.html
https://www.esecurityplanet.com/browser-security/google-hit-again-by-unauthorized-ssltls-certificates.html
https://www.esecurityplanet.com/browser-security/google-hit-again-by-unauthorized-ssltls-certificates.html
https://arstechnica.com/information-technology/2015/03/google-warns-of-unauthorized-tls-certificates-trusted-by-almost-all-oses/
https://arstechnica.com/information-technology/2015/03/google-warns-of-unauthorized-tls-certificates-trusted-by-almost-all-oses/
https://arstechnica.com/information-technology/2015/03/google-warns-of-unauthorized-tls-certificates-trusted-by-almost-all-oses/
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
http://tack.io/
https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure
https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure
https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 14

Zecheng Li is currently pursuing his Ph.D. de-
gree in the Department of Computing, The Hong
Kong Polytechnic University under the supervi-
sion of Dr. Bin Xiao. He received his B.Eng.
3 degree from the School of Information Science
- and Technology, Southeast University, Nanjing,
China, in 2017. His research interest lies in the
network security, blockchain security, and smart
contract security.

Haotian Wu received the BSc and MSc degrees
in computer science from Southeast University,
Nanjing, China, in 2015 and 2018, respectively.
He is currently working toward the PhD degree in
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong. His research
interests include mobile computing, blockchain
systems, and data security.

LapHou Lao received his master degree in
information technology from The Hong Kong
Polytechnic University. He is currently pursu-
ing his Ph.D. degree at The Hong Kong Poly-
technic University. His research interests include
blockchain, data privacy, and cryptography.

Songtao Guo received his B.S., M.S. and Ph.D.
degrees in Computer Software and Theory from
the Chongging University, Chongging, China, in
1999, 2003 and 2008, respectively. At present,
he is a full professor at Chongqing University,
China. His research interests include wireless
sensor networks, wireless ad hoc networks and
parallel and distributed computing. He has pub-
lished more than 80 scientific papers in lead-
ing refereed journals and conferences. He has
received many research grants as a Princi-
pal Investigator from the National Science Foundation of China and
Chongging and the Postdoctoral Science Foundation of China.

Yuanyuan Yang received the BEng and MS
degrees in computer science and engineering
from Tsinghua University, Beijing, China, and
the MSE and PhD degrees in computer science
from Johns Hopkins University, Baltimore, Mary-
land. She is a SUNY Distinguished Professor
of computer engineering and computer science
and the Associate Dean for Academic Affairs
in the College of Engineering and Applied Sci-
ences at Stony Brook University, New York. Her
research interests include data center networks,
cloud computing and wireless networks. She has published over 380
papers in major journals and refereed conference proceedings and
holds seven US patents in these areas. She is currently the Associate
Editor-in-Chief for IEEE Transactions on Cloud Computing. She has
served as an Associate Editor-in-Chief and Associated Editor for IEEE
Transactions on Computers and Associate Editor for IEEE Transactions
on Parallel and Distributed Systems. She has also served as a general
chair, program chair, or vice chair for several major conferences and a
program committee member for numerous conferences. She is an IEEE
Fellow.

Bin Xiao (S’01-M’'04-SM'11) is a full professor
at Department of Computing, The Hong Kong
Polytechnic University, Hong Kong. Dr. Xiao re-
ceived the B.Sc and M.Sc degrees in Electronics
Engineering from Fudan University, China, and
Ph.D. degree in computer science from Univer-
sity of Texas at Dallas, USA. After his Ph.D. grad-
uation, he joined the Department of Computing
of the Hong Kong Polytechnic University as an
Assistant Professor. His research interests in-
clude Al and network security, data privacy, and
blockchain systems. He published more than 180 technical papers in
international top journals and conferences. Currently, he is the associate
editor of IEEE loTJ, IEEE TCC, IEEE TNSE, and Elsevier JPDC. He is
the vice chair of IEEE ComSoc CISTC committee. He has been the
symposium co-chair of IEEE ICC 2020, ICC 2018 and Globecom 2017,
and the general chair of IEEE SECON 2018. He is a senior member of
IEEE, the member of ACM and CCF.

	Introduction
	Background
	Pistis Design
	Challenges
	TEE Failures
	DNS Failures

	Distributed Ledger as a Root of Trust
	Architecture and Workflow
	Threat Model

	The Pistis Protocol
	Blockchain Model
	TEE Model
	Formal Specification of the Protocol

	Security Analysis
	Ideal Functionality
	Security Proof
	Construction of Sim
	Validity of Sim

	Experiments and Evaluation
	Contract Evaluation
	Gas Consumption
	Storage Overhead
	Verification Performance

	TEE Evaluation
	Throughput
	Response Time

	Discussion
	Deployment, Maintenance, and Upgrade
	Infrastructure Limitations

	Related Work
	Blockchain-TEE Hybridized Systems
	Traditional Countermeasures
	Blockchain-based PKI/CA
	Comparison

	Conclusion
	References
	Biographies
	Zecheng Li
	Haotian Wu
	LapHou Lao
	Songtao Guo
	Yuanyuan Yang
	Bin Xiao

