VQL.: Efficient and Verifiable Cloud Query
Services for Blockchain Systems

Haotian Wu, Zhe Peng, Songtao Guo, Senior Member, IEEE, Yuanyuan Yang, Fellow, IEEE,
and Bin Xiao, Senior Member, IEEE

Abstract—Despite increasingly emerging applications, a primary concern for blockchain to be fully practical is the inefficiency of data
query. Direct queries on the blockchain take much time by searching every block, while indirect queries on a blockchain database
greatly degrade the authenticity of query results. To conquer the authenticity problem, we propose a Verifiable Query Layer (VQL) that
can be deployed in the cloud to provide both efficient and verifiable data query services for blockchain systems. The middleware layer
extracts data from the underlying blockchain system and efficiently reorganizes them in databases. To prevent falsified data from being
stored in the middleware, a cryptographic fingerprint is calculated based on each constructed database. The database fingerprint will
be first verified by miners and then written into the blockchain. Moreover, public users can verify the entire databases or several
databases that interest them in the middleware layer. We implement VQL together with the verification schemes and conduct extensive
experiments based on a practical blockchain system. The evaluation results demonstrate that VQL can efficiently support various data

query services and guarantee the authenticity of query results for blockchain systems.

Index Terms—cloud query service, verifiable query, data authenticity, blockchain systems.

1 INTRODUCTION

RYPTOCURRENCIES embodied by Bitcoin and its descen-

dants, acting as a modern form of digital currency, have
sparked a surge of innovation in decentralized computing.
Blockchain, as the fundamental technology of cryptocurrencies,
offers many characteristic advantages including decentralized stor-
age and immutability. Besides payment, the blockchain technique
can be used in a far wider area such as smart contract [1],
supply chain management [2], healthcare [3], distributed storage
[4] and 10T [5]. Current blockchain-based systems have tremen-
dous potential in reducing operating costs, increasing resistance
to manipulation, preventing fraud and facilitating execution of
contracts.

Though the blockchain technique can bypass data storage
fraud using distributed ledger with consensus mechanisms, most
current schemes only provide limited query services. In pursuit
of excellent writing performance, many blockchain systems adopt
the key-value database as the underlying database, e.g., LevelDB
for Bitcoin and Go client of Ethereum. However, this kind of
databases are usually based on LSM-tree [6], which provides
barely satisfactory reading performance due to the complicated
processing operations, especially for random reading [7]. In addi-
tion to the query inefficiency, the query types that native clients
support are also limited. Thus, how to provide versatile queries

o H. Wu, and B. Xiao are with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong.
E-mail: {cshtwu, csbxiao} @ comp.polyu.edu.hk.
Corresponding author: Bin Xiao.

e Z. Peng is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong.
E-mail: pengzhe @comp.hkbu.edu.hk.

o S. Guo is with the College of Computer Science, Chongging University,
Chonggqing, P.R. China.
E-mail: guosongtao@cqu.edu.cn.

o Y Yang is with Department of Computer Engineering and Computer
Science at Stony Brook University, New York, USA.
E-mail: yuanyuan.yang @ stonybrook.edu.

efficiently for all kinds of applications has not been well solved
yet.

One approach to tackling the problem of query limitation in
the blockchain system is to maintain several extra structures on
the peer node, e.g., Project Toshi [8] and ECBC [9]. Project Toshi
saves much more information and indexes besides the native client
for richer queries. ECBC builds a tree structure to support efficient
query on transactions. In the Bitcoin network, for instance, the raw
blockchain data does not contain the balance value of each ad-
dress. Thus, query service providers can pre-compute and maintain
the current balance of each address using the extra list structure so
that they can quickly return the result of the balance query without
traversing all transaction data. Regretfully, this architecture does
not meet the requirement of various queries since the balance list
can solely solve the balance query problem. In other words, the
extra data structure needs to be customized for the predefined
query type. Assume that the Bitcoin node has already supported
the query for the address balance. When a user wants to further
query about several transaction details related to an address, the
peer node still needs to adopt the direct query, searching all
blocks in the blockchain for the result. This scheme brings about
additional space cost because the node has to maintain an extra
and specialized transaction list for each address.

Another method is to take the indirect query by searching
the database with high reading performance for blockchain data
instead of the original database adopted by the native client.
EtherQL [10] integrates the typical database with the Ethereum to
expedite the process of data query. Blockchain.com [11] is able to
provide the address information since it stores historic transactions
in the database in advance. BlockSci [12] incorporates an in-
memory database to boost the data query for blockchain analysis.
However, these systems assume that the server always returns
correct results based on the blockchain data. In fact, the server
may return incorrect results that conflict with the true blockchain
data due to some interests or security vulnerabilities [13]. In this

case, a feasible mechanism to verify the data authenticity is highly
desired. Therefore, our further research problem will be: Can
we manage to provide efficient and verifiable query services for
blockchain systems?

This problem involves the following challenges that need to be
addressed: (1) Supporting versatile query services on blockchain
data with high efficiency for different applications. (2) Ensuring
the data consistency between the queried data and the underlying
blockchain data. (3) Providing a verification scheme for query
users to validate partial data on the cloud that interests him.

We give an affirmative answer to the problem in this paper
by systematically designing and implementing a Verifiable Query
Layer (VQL), which is a cloud-based middleware layer providing
efficient and verifiable query services for blockchain systems.
Superior to the existing designs, our proposed cloud service is
capable of meeting the demands of query efficiency and data
authenticity simultaneously. A novel framework called vChain
[14] achieves the verifiable boolean queries over blockchain data
by exploiting an accumulator-based authenticated data structure.
However, this work requires radical modification of the existing
blockchain systems.

Our system consists of three layers including the underlying
blockchain network, the middleware layer and the upper appli-
cation layer. To cater to various queries from the application
layer, the middleware layer will first extract and reorganize the
data stored in the underlying blockchain and then store them
into the databases. To ensure the validity of the middleware data,
each constructed database will generate a fingerprint, which is
a cryptographic hash value based on the content and properties
of the database (e.g., name, size, timestamp, etc.). This finger-
print will then be verified by miners and further stored in the
blockchain. By virtue of the immutability of the blockchain, this
verification scheme can prevent any falsified data from being
stored by the middleware layer. Public users can also download
the entire blockchain data to verify the databases if they do not
trust the cloud service. In addition, we provide a simplified query
result verification scheme to enable users to just check the validity
of the databases that their query involves. Given the abundance
and popularity of Ethereum-based applications, in this paper, we
employ one of Ethereum testnets to illustrate the feasibility and
effectiveness of our proposed system. Our architecture can also be
extended to other blockchain applications as VQL can be adapted
to any given blockchain system. We conclude our contributions in
this paper as follows:

e The VQL is a new cloud query service with a three-
layer architecture, which efficiently supports various query
services in the blockchain system, e.g., from account
query to complicated range query, with no need to browse
each block in the whole blockchain. The databases in the
middleware are dynamically constructed and updated.

e Our proposed cloud service provides a public verification
scheme on the constructed databases to ensure its consis-
tency with the underlying blockchain. The fingerprints of
databases are verified and stored in the blockchain by the
miner. Miners or users with blockchain data can verify the
correctness of a database using these fingerprints.

e We utilize the authenticated data structure to manage
fingerprints and put forth a simplified query result veri-
fication algorithm for users to verify the received result
without downloading all blockchain data. Users can issue

2

the verification request about the databases involved and
efficiently validate their fingerprints.

e We develop the middleware prototype along with the
verification schemes and conduct extensive evaluations
based on Ethereum testnet and MongoDB. The results
demonstrate that VOL can efficiently support various query
and verification services for blockchain systems.

The remainder of this paper is organized as follows. We first
introduce the preliminary techniques used in our design in Section
2. Then we present the system design and authenticity analysis in
Section 3, and show the system implementation and evaluations in
Section 4. We review the related works in Section 5 and conclude
the paper in Section 6.

2 PRELIMINARY CONCEPTS

In this section, we briefly introduce some techniques related to our
system, and clarify their necessity in our system design.

2.1 Blockchain

Blockchain is a distributed ledger that is able to reliably record
all transactions in a decentralized network. A typical blockchain
usually comprises a series of blocks that are chained in order by
referring to the preceding block. A block mainly consists of a
block header storing the attributes of the block like the timestamp
and the hash value of its predecessor, and a block body, which
contains the corresponding list of transaction details in the block
[15]. In the blockchain network, each full node keeps a copy of the
ledger, the consistency of which is guaranteed by adopting various
consensus algorithms. The first implementation of the blockchain-
based application is the Bitcoin system [16]. By maintaining a
distributed ledger, the Bitcoin system creates a decentralized, open
and Byzantine fault-tolerant transaction paradigm, which con-
forms to the requirements of a new cryptocurrency infrastructure.
A blockchain network contains the following features:

Transparency: The network is accessible to all participants.
Any participant can get the current state of the blockchain system
based on the records in the blockchain.

Consensus: All peer nodes in the network will reach consensus
on the blockchain (i.e., no unintentional forks). A valid block
discovered by an honest peer will be recorded on the blockchain
and accepted by other peers.

Immutable and verifiable: Once a block is discovered and glob-
ally accepted, any further modification of this block is impossible.
All participants can verify the current state based on the records
in the blockchain.

2.2 Merkle Patricia Tree

The Merkle Patricia Tree (MPT) [17] is first introduced in
Ethereum [18], which is a cryptographically authenticated data
structure combining the Trie Tree and the Merkle tree. MPT can
be used to store (key,value) bindings and there are three kinds
of nodes provided in an MPT, i.e., Leaf Nodes (LN), Branch
Nodes (BN) and Extension Nodes (EN). A leaf node represents
[key,value] pair, where key is the public prefix and value is the
terminal value at the node. An extension node also represents
[key,value] pair, but here value is the hash of the next node.
The branch node is a 17-element array node and used to store
viable leaf nodes or extension nodes when the prefixes of keys
differ. Among the 17 elements, the first 16 elements are the

hex characters, representing the possible prefix of the next node.
The last element is used to store the final target value if the
path has been fully traversed. In MPT, each node is encoded in
Recursive Length Prefix (RLP) code, which is designed to encode
arbitrarily nested arrays of binary data, and denoted by its hash.
It is noted that the MPT is fully deterministic, which means given
the same (key,value) bindings, the MPT constructed from them is
guaranteed to be the same regardless of their insertion order and
thus have the same root hash.

The superiority of MPT is that it provides O(log n) efficiency
for inserts, deletes and searches, while node insertion and deletion
in Merkle Tree incur huge time cost. Moreover, with a publicly
known root hash, anyone can prove that there exists a given value
at a specific path in the MPT by providing the nodes along the
way.

3 VQL DESIGN

In this section, we present the design of our proposed VQL
that supports efficient and verifiable data query services for
blockchain-based applications. We first introduce the overview of
the system architecture and the structure of the middleware layer.
In order to guarantee the consistency between the middleware
databases and the underlying blockchain (i.e., data authenticity),
we then propose a database verification scheme to prevent falsified
data from being stored in the middleware. We further simplify
the verification process and put forth the simplified query result
verification scheme for ordinary users who do not have blockchain
data. This scheme enables query users to validate the query
results by downloading partial database data. Finally, we conduct
a comprehensive analysis on the data authenticity of our proposed
design.

3.1 System Architecture

In this subsection, we introduce the architecture of our proposed
cloud query service model and the middleware structure along
with its update scheme. As illustrated in Figure 1, our cloud ser-
vice model involves three parties, i.e., a blockchain as a distributed
database storing a ledger, a middleware layer supporting efficient
data query services through reorganizing the blockchain data, and
an application layer providing various services for users.

3.1.1 Underlying Blockchain

In the blockchain system, transactions generated from users are
stored in the blocks and form a public ledger. Some blockchain
platforms such as Ethereum provide APIs to access the transac-
tions stored in each block. In our system, we utilize these APIs
to extract blocks, transaction and balance information stored in
the blockchain. This service model can also be applied to other
blockchain systems like logistics and supply chain, which record
the information of goods delivery and market transaction using
consortium blockchain.

3.1.2 Middleware Layer

Based on the blockchain data, the middleware layer extracts and
reorganizes all information, e.g., block, transaction and balance,
and constructs databases to support efficient data query and data
analysis. Figure 2 gives an illustration of the designed middleware
structure. Our middleware consists of a list of micro databases that
contains the data generated in each time interval (e.g., in every

SYeYE

Application Layer

Query Service

o O

Middleware Layer

— Block #1 — Block #2 — Block #3 —

Underlying blockchain

Fig. 1: Middleware-based cloud query service model for

blockchain applications.

Middleware Layer

\
} \

|
! \
| Micro Database Micro Database Micro Database Micro Database }
} Block Block Block Ve Block \
| Transaction Transaction Transaction }
‘ [
! I
! J

Transaction
Balance Balance Balance

Balance

Fig. 2: Structure of the middleware layer.

day) after the specified time point. Each database has a header
that contains a cryptographic hash value of the database and some
database properties. The hash value of the database can be utilized
to verify the data integrity of the database.

Given the underlying blockchain, the algorithm shown in
Algorithm 1 updates the middleware layer with newly generated
blocks. With the blocks being generated in the blockchain, the
system will reorganize the blockchain data and update the mid-
dleware layer at a specific frequency, e.g., once a day as shown
in the algorithm. At the end of each day, based on the new
blocks that have been validated and confirmed by the miners, the
middleware layer will be updated in time and support up to date
query services. The middleware extracts the block, transaction and
balance information from the blockchain data and constructs the
corresponding databases. Then the fingerprint of these databases
will be calculated. In order to avoid unnecessary modification
of the databases, the middleware will extract information and
construct databases only from the immutable blocks in a *pull-
based’ method. It is noted that the frequency of daily update is our
tentative setting, which can adjust based on the query requirement
of different applications, e.g., hourly update for logistics system.

3.1.3 Application Layer

Since the middleware layer constructs databases based on a mature
database software, it can provide various data query services for
the application layer. Thus, the application layer can efficiently
conduct various data analysis and machine learning tasks based on
the blockchain data. Besides providing query services for normal
users and data platforms, our application layer can also support
public audit services for audit institutions. The auditors are able

Algorithm 1 Middleware update for Ethereum

Require: BC': Underlying blockchain
Ensure: D B: Middleware database
1: for each day do
2: Extract block, transaction and balance information from
BC;
3: Calculate balance records;
Construct a new micro database m DB containing blocks,
transactions and balance;
5: Fingerprint(mD B);
6: Merge mDB into DB,
7. end for
8: return DB;

to audit the information in the underlying blockchain using easily
verifiable evidence returned by the middleware layer.

3.2 Database Verification Scheme

In this subsection, we describe the verification scheme of
databases, which can be carried out by miners and public users,
that guarantees the consistency between the middleware and the
underlying blockchain.

3.2.1 Miner Verification Scheme

Figure 3 illustrates the database verification process of the middle-
ware based on the blockchain system. As shown in this figure, var-
ious transactions generated by users are stored in the blockchain
by the miners. First, the middleware layer extracts transactions
stored in the blockchain and reorganizes these data in the databases
to provide efficient query services. Second, to prevent falsified
data from being stored in the middleware, we generate a unique
fingerprint for each constructed database in the the middleware
layer. Finally, the constructed fingerprint of each database will be
verified by miners and then stored in the underlying blockchain.

3.2.2 User Database Verification Scheme

We provide a public database verification scheme to guarantee
that the data recorded in the middleware layer is consistent with
the blockchain and can be verified. Our proposed middleware layer
can be deployed in the cloud to be accessed by the public users for
data query. Query users can usually trust the query results returned
from the middleware layer since the databases stored in the layer
have already been verified by miners. In case users have questions
about the databases, they can fetch the block data from any honest
miner and verify the authenticity of databases using the database
fingerprint as the miners do.

3.2.3 Database Fingerprint

The database fingerprint uniquely represents the constructed in-
dividual database in the middleware layer. In our design, the
fingerprint of the database is determined by two terms, i.e., the data
content stored in the database and the property of the constructed
database. For the data stored in the database, we first export the
data in a unified and cross-platform format. Then a cryptographic
hash value of these data will be calculated based on this format of
file using a hash function, e.g., SHA-256. This hash value can be
used by miners to check the consistency between the data stored in
the database and the underlying blockchain data. The constructed
database property contains the database name, the database time,

4

Database Fingerprint

Middleware = = — [Hash value
DB DB o |+

Layer Properties

name, size, time,...

!
|
|
|
|
\

Database Fingerprint

i Hash value \1
| [[6d0a 45b2 s86¢ ...

| __ Properties
|

name, size, time,...

BLK
» —#300 e

Fig. 3: Database verification scheme.

DB +
Miner

\

the database size and the database software version. The property
of the database can be used to construct the database in the
subsequent database verification stage. Finally, the fingerprint can
be generated by hashing on the two elements above. It is noted
that the fingerprint value is calculated based on the data itself
rather than the files stored on the disk. Therefore, the fingerprint
is platform independent, which ensures that miners can obtain the
identical fingerprint as long as the data stored in the database is
the same.

3.2.4 Database Verification

Based on the database and its fingerprint, miners can verify the
constructed databases in the middleware to guarantee the consis-
tency between the middleware data and the underlying blockchain
data. After constructing a new micro database to support efficient
data query, the middleware layer will first give out its fingerprint.

The algorithm shown in Algorithm 2 describes the proposed
database verification scheme for the constructed middleware layer.
Since the miner stores the blockchain data locally, he can also
construct another database based on his own local data using the
same database generation program. The corresponding fingerprint
will then be generated by the miner using the predefined hash
function on this local database. Thus, for each miner, he can
verify the consistency of data between the middleware layer and
the underlying blockchain through comparing the two fingerprint
values, i.e., the database fingerprint published by the middleware
layer and the database fingerprint calculated by the miner based
on his blockchain data.

Finally, after successfully verifying the consistency between
the middleware layer and the underlying blockchain, miners will
store the database fingerprint in the form of a transaction in the
blockchain. The transaction transfers zero value from the miner
to our middleware with the fingerprint information filled in the
data field. The fingerprint is also inserted to an authenticated
data structure, i.e., MPT, whose state will be written into the
blockchain as well. Once the database fingerprint is recorded in
the blockchain, this record cannot be tampered with in terms of
the consensus scheme. In the application layer of our system,
applications can query data from the middleware layer with trust
after checking the database fingerprint stored in the blockchain.

3.2.5 Information Record in Blockchain

We propose to write the information regarding the database finger-
prints into the underlying blockchain and these information can be

1. The detailed explanation on the MPT update and synchronization will be
further elaborated on in Subsection 3.3.

Algorithm 2 Miner Database verification

Require: DB,,;4: The database constructed in the middleware
layer to be verified; D By.: The database constructed from
blockchain by miner; rooty.: Root of MPT that maintained
by miner; BC: Underlying blockchain.

Ensure: return ACCEPT if the database is verified correct; other-
wise, return REJECT.

1: Get Fingerprint(D B,,,;4) from middleware;

2: Construct D By, from BC,

3: if Fingerprint(D B,,,;4) = Fingerprint(D By) then

4: Insert Fingerprint(DB,,;q) into MPT and synchronize
MPT to middleware';

5: Write Fingerprint(D B,,,;4) and MPT root ooty into BC)

6: return ACCEPT;

7. else

8: return REJECT;

9: end if

assured to be immutable by the consensus algorithm. Each time
the miner verifies the validity of databases in the middleware layer,
in addition to the database fingerprints themselves, he also records
the root of Merkle Patricia Tree, which is used to store all database
fingerprints. This tree root is a deterministic hash generated by
all database fingerprints and provides a form of cryptographic
authentication to the data structure. In other words, the tree root
represents a unique state of the entire tree. Therefore, we write
the tree root hash into the blockchain as well for the application
layer to check. Note that, the information writing policy may differ
when our verification scheme is applied in diverse blockchain
systems, such as the public blockchain, private blockchain, and
consortium blockchain [19]. In case of private blockchain or
consortium blockchain, miners can be forced to write some
certain information into the block of specific height. However,
in the scenario of public blockchain, due to the propagation of
transaction information and the competition among transactions,
the information cannot be guaranteed to be written in the stipulated
block.

3.2.6 Failed Verification Situation

During the database verification process, we also consider the
failed verification situation. If the local fingerprint calculated by
the miner is different from that provided by the middleware,
an error report will be sent to the middleware layer. When the
middleware layer receives a certain amount of failed verification
reports, it will execute a diagnostic procedure to check the correct-
ness of database until no error reports arrive. In case of extreme
situations, e.g., a fork due to network partition, the middleware and
miners will find the correct chain to catch up with. Meanwhile,
the databases will be rebuilt and the fingerprints are revoked.
The failed verification report scheme will help the middleware
to correct false database fingerprints.

3.3 Simplified Query Result Verification Scheme

The database verification scheme in the last subsection is designed
for the miners. For query users without blockchain data, they need
to download the entire blockchain from credible miners and verify
all databases by constructing them. It is a quite radical method
to guarantee the authenticity of databases, but sometimes it is
unnecessary for an ordinary user to download all data for just

5

one simple query. To remedy this issue, we propose to employ the
authenticated data structure for fingerprint management and put
forth a simplified query result verification algorithm to ease the
process of result verification for query users.

3.3.1 Merkle Patricia Tree for Database Fingerprints

Due to the uncertain factors in public blockchain systems, e.g.,
network delay and transaction fee, the middleware and users
cannot get the height of the block where the database fingerprint
is stored in advance. The block height is determined only after
the fingerprint is indeed written into one block and confirmed
by miners. Thus, we employ Merkle Patricia Tree to store these
[fingerprint, height] pairs since it is able to prove the existence or
non-existence of a given database fingerprint. In this way, query
users can directly check the correctness of the given database
fingerprint without searching the block containing the information.
It is noted that the MPT is maintained by miners and will be
updated each time miners finish verifying the validity of databases
and writing database fingerprints into the blockchain. Moreover,
the MPT data will also be synchronized to the middleware layer by
miners so that the cloud can provide Merkle proofs for query users.
The reason why miners adopt MPT instead of directly returning
true or false for every fingerprint request from users is because
providing all users with validation services is over-demanding for
miners. The MPT enables miners only need to show the MPT root
while leaving the proof work to cloud servers.

We use an example shown in Fig. 4 to instantiate the database
fingerprints storage in MPT. We presume that initially there are
four database fingerprints as presented in the key-value list, in
which the key is the database fingerprint hash and the value
represents the height of the block where the fingerprint informa-
tion is written. Using these fingerprints, we can build the Merkle
Patricia Tree as given in the figure. Here we neglect the detailed
descriptions of the operations in MPT, e.g., insertion, update and
deletion, since there have already been some implementations
available.

3.3.2 Simplified Query Result Verification Process

Fig. 5 illustrates the relationships among the miners, users and
the middleware-based cloud in our data verification scheme. Our
system comprises three parties: miners, who mine the blocks and
maintain credible block data in the underlying blockchain layer;
users, who lie in the application layer and send queries to the
cloud about the data in blockchain; cloud query services, which
belong to the middleware layer and provide query services for
users. The dashed arrow from miners to the cloud services signifies
the aforementioned miner database verification, while the solid
arrows represent the interactions in the simplified query result
verification scheme. In our simplified scheme, miners only need to
synchronize the MPT to the cloud services and provide the MPT
root hash for query users if they request verification. Each time the
user sends a data query to the cloud, the server will return a query
result along with the database back-up files that this query involves
and their corresponding Merkle proofs. This function of database
back-up and reconstruction can be supported by some commercial
database systems, e.g., MongoDB. Combining with the credible
MPT root hash obtained from miners, the user can easily check
the validity of those database fingerprints based on the Merkle
proofs. If the user wants to further confirm the information about
the root hash and database fingerprints, he can search the blocks
according to the corresponding block height stored in MPT.

Database Fingerprint Block Height
‘d‘3‘1‘f‘4‘2‘ ‘ 563684 ‘
Proof list of the existing fingerprint ‘ddca73’
Extension Node(EN1) ‘ d ‘ d|c|al|7 ‘ 3 ‘ ‘ 12846 ‘
e | Key | vame || (T
‘d‘d c| a Z‘f‘ ‘ 32375 ‘ Po ﬂn
EN d .
‘\ ‘ d ‘ fla|d ‘ fla ‘ 566876 ‘ P1 BN | 3 |IN1| d ‘ P2 | f |LN2
Branch Node(BN1) P2 nnﬂ
Type 0| 1 2 (3| 4|5 6 7| 8|9 | al|b c|d|e | f ps BN 2 | N3 7 o
BN | |
Pa LN 12846
Leaf Node(LN1) Extension Node(EN2) Leaf Node(LN2)
Type Key Value Type Key Value Type Key Value
LN 142 | 563684 EN ca e LN adfa | 566876
Branch N'ode(BNZ) Proof list of a not existing fingerprint ‘dfadad’
Twe | 0| 1| 2|3|4|5|6|7|8|9|a|b|lc|d|el|f o mnn
0
BN | » [¥ ‘ ‘
/' ' BN | 3 |LN1| d |EN2| f ‘ P2
Leaf Node(LN3) Leaf Node(LN4) P2 ‘ LN ‘ adfa ‘ 566876‘
Type Key Value Type Key Value
LN f 32375 ‘ LN 3 12846

Fig. 4: An illustrative example of database fingerprints MPT.

Cloud query services
— — —» database verification
— query result verification

¥ Uy
< 0,
& &Y (8
@‘ Aé\ 4 Olle".y »
8, Yo
g Mo, %, S
s ~ (s
' ¢ %/ l’ﬁs* *
L,
% O

Verification request

\J

MPT root

Miners Users

Fig. 5: Data verification scheme.

Algorithm 3 shows the simplified query result verification
algorithm performed by query users. When the user requests a data
query to the middleware, he will get a query result result,,;q from
the server together with the fingerprints of all databases involved,
i.e., DBs. After downloading the corresponding database back-
up files, the user can reconstruct these databases and calculate
their fingerprints. Meanwhile, he will send a verification request
to the miners and thereby get the latest MPT root hash 7rooty.,
which signifies the newest state of all verified databases. With
the database fingerprints calculated, the user can send them to

the middleware layer and obtain the Merkle proof for every
fingerprint. Based on the proof for each fingerprint, he will
calculate the root hash root,, by themselves and then compare
with the true root hash root,.. When the two root hashes are
equal and the key is in accord with the path, the correctness of this
fingerprint can be guaranteed. The process of proving the presence
of the fingerprint using MPT root and Merkle proof is included in
Prove function and will be detailed in the Merkle proof part. If
all databases involved are confirmed correct, then the user can
query the databases that are locally constructed from back-up files
and get the query result result;. When this result is identical to
the previous result result,,;q from the middleware, the user can
finally trust and accept the result.

3.3.3 Merkle Proof for Fingerprints

Now suppose a query user wants to check the existence of the
database fingerprint ’ddca73’ which already exists in the MPT (see
Fig. 4). The value of this key is stored in the leaf node LN4 and
its search path from root to leaf is {EN1,BN1,EN2,BN2,LN4}.
Based on the path, our middleware layer can provide a Merkle
proof, which is a list of RLP code of the nodes along the path
(see the right part of Fig. 4), for the user to prove the existence
of the key. In this case, the Merkle proof for ’ddca73’ is a 5-
element array, i.e., pg to p4. Each node is referenced inside the
previous element except the root node pg. Using this list, the
user can check the correctness of the value and RLP code of
each element in the array successively from head to tail, i.e., in
the order from root to leaf. If the root hash finally calculated is
identical to the publicly known root value and the prefixes along
the path equal to the fingerprint, then this database fingerprint is

Algorithm 3 Simplified query result verification

Algorithm 4 Prove algorithm

Require: root,.: Root of MPT that stored in blockchain;
DBs: Middleware databases that the user query involves;
result,;q: Query result provided by middleware layer;
proof: Merkle proof of a given database fingerprint;

Ensure: return ACCEPT if result,,;q is correct; otherwise, return

REJECT.
1: Get the latest MPT root rooty. recorded in blockchain from
miners;

2: verified < FALSE;

3: for each DB € DBs do

4: Construct DB from the back-ups in the middleware layer;
5 Send Fingerprint(D B) to the middleware layer;

6: Get the Merkle proof proof from the middleware layer;
7. wverified < Prove(rooty., fingerprint, proof);

8: if not verified then

9: break;
10: end if

11: end for

12: if verified then

13: Query D Bs locally and get the query result result;;
14: if result,,;q = result; then

15: return ACCEPT;

16: else

17: return REJECT;

18: end if

19: else
20: return REJECT;
21: end if

considered to truly exist. Algorithm 4 shows the pseudo-code of
the Prove algorithm executed by the query user to verify whether
the database fingerprint exists in MPT.

Similarly, we can also utilize the Merkle proof to prove
the non-existence of a given key. Suppose a user reconstructs
a database using broken or tampered files and thus calculates a
wrong fingerprint, e.g., ’dfadad’ in the figure, which does not exist
in the MPT. Our server will return the Merkle proof based on
the search path {EN1,BN1,LN2}, i.e., py to po as shown in the
figure. Here the hash of root py can be verified by calculating from
head to tail and still equals to the root hash obtained from miners.
Nevertheless, the prefixes generated by the proof differ from the
fingerprint key, which means the fingerprint does not exist in the
MPT.

3.4 Data Authenticity Analysis

Since the user receives the query result from the middleware, as
long as the queried database is consistent with the underlying
blockchain, the authenticity of the queried data is guaranteed.
Thus, we conduct the data authenticity analysis from three aspects:
the rewarding scheme for miners, the integrity of databases and the
verifiability of query results.

3.4.1 Rewarding Scheme for Miners

In our cloud service, the verification of databases in the middle-
ware layer is realized by miners, which may cost some computing
resources and storage space. Thus, a rational rewarding scheme is
required to incentivize miners to verify the databases. Owing to
the different demands and scenarios of the blockchain systems, the

Require: root,.: Root of MPT that stored in blockchain;
fingerprint: Fingerprint of the database to be checked;
proof: a n-element list of p;, i.e., Merkle proof of the given
database fingerprint;

Ensure: return TRUE if fingerprint exists in MPT; otherwise,
return FALSE.

1: if Hash(pg) # rooty. then

2 return FALSE;

3: end if

4: fori <~ Oton —1do

5. ift =n — 1 then

6 if key in p; conforms to fingerprint then

7 return TRUE;

8

9

else
return FALSE;

10: end if
11: endif
12: if7 <n — 1 then
13: if key in p; conforms to fingerprint and key’s value =

RLP(pi+1) then
14: continue;
15: else
16: return FALSE;
17: end if
18: end if
19: end for

rewarding schemes for miners in our query model may differ. For
the private blockchain system, since the miners and middleware
layer are private to provide services, the verification and record
fees are not needed. As for the consortium blockchain system,
depending on the various agreements between communities in the
consortium, the middleware layer may need to pay the fees or not.
When applied to the public blockchain system, our middleware
will give some rewards to the miners or mining pools [20] who
successfully validate the databases.

Since the above rewarding scheme for database verification is
not supported by the existing blockchain systems, we give two
possible solutions to make our verification scheme practical. First,
we can implement a new blockchain system based on an existing
open-source project, incorporating the incentive mechanism for
verification. In order to get the rewards, miners can validate the
middleware databases and record corresponding database finger-
prints into the blockchain. The validation process, the rewarding
mechanism and the management of fingerprints are all hard-
coded in the blockchain peer nodes. Second, we can deploy the
smart contract on the current blockchain system to facilitate the
verification process of miners. Miners can construct the database
from their own blockchain data using the same database generation
code provided by our middleware. Then the database fingerprint
can be calculated and sent to the smart contract for confirmation.
Finally, our middleware will announce the correct fingerprint and
send the rewards to the miners who correctly verified the database.
More miners will participate in the verification task if the reward
is attractive enough. The smart contract can also maintain the
MPT storage of database fingerprints in the simplified query result
verification process.

3.4.2 The Integrity of Databases

The consistency between the databases in the middleware layer
and the underlying blockchain data is realized through the
database verification scheme by the miners. Each time a new
database is constructed, the middleware layer will back up the
database and publish the back-up files and its fingerprint. In the
meantime, miners can construct another database based on his
blockchain data following the same rules and calculate its finger-
print using the predefined hash function. If the fingerprint of this
database is the same as the one given by the middleware, then the
database is verified correct. Moreover, the integrity information is
immutable since the fingerprint will be written into the blockchain
after verification and managed by the MPT structure.

3.4.3 The Verifiability of Query Results

After the integrity of databases in the middleware layer is guaran-
teed, the query results that users receive should also be consistent
with the middleware databases. We provide two methods to
realize the verifiability of query results, i.e., user verification in
the database verification scheme and the simplified query result
verification scheme. The user database verification requires users
to download all blockchain data and check the consistency like
miners, the authenticity analysis of which is just conducted. It
is noted that when we request data from the miners, we will
firstly connect to the anchor nodes in the blockchain network,
which means the miners we query are assumed to be absolutely
reliable. Therefore, the situation of malicious miners is trivial
and out of the scope of this paper. The simplified query result
verification scheme allows users to download only the involved
databases rather than all databases and check the validity of their
fingerprints by leveraging the MPT structure. Since the databases
are reconstructed based on the back-up files and their fingerprints
are calculated locally by users, the authenticity of the involved
databases can be ensured if these fingerprints indeed exist in the
MPT maintained by miners. Finally, users can query the valid
databases locally and check whether the result is consistent with
the query result returned by the middleware layer.

4 IMPLEMENTATIONS AND EVALUATION

To test the feasibility and performance of our cloud query ser-
vice, we implement a prototype on a testnet of the well-known
blockchain system Ethereum.

4.1 Prototype Implementation

Our middleware supports user-friendly APIs for user applications
and APIs for the underlying blockchain. The user application APIs
support various queries and database verification for auditing,
including the query interface and validation interface for the
block, the transaction and the balance information. Meanwhile, the
blockchain APIs support query functions to collect records from
the blockchain, e.g., the data request interface for the block, the
transaction and the global state of the blockchain. We employ the
popular document-oriented database MongoDB for data storage
of the middleware. The reason why we use the MongoDB is
that it can support efficient query on general and rich data, e.g.,
arbitrary forms of transactions and smart contracts. It can also
achieve good reading performance by building the indexes. The
MPT for fingerprint storage is implemented in JavaScript and
stored in LevelDB. To evaluate the system performance without

8

the interference of network communication, we build up the
experiment platform on a cloud server with Intel Xeon 2.67GHz
CPU and 32 GB RAM, running Ubuntu 16.04 LTS. Our data query
services are based on the blockchain data of Rinkeby network, one
of the popular Ethereum testnets, with block height varying from
0 to 8,000,000.

4.2 Performance Evaluation

The process of synchronization from scratch in blockchain sys-
tems usually needs to be done only once because of the fact
that blockchain data is immutable. Moreover, the time cost of the
synchronization process is generally dominated by the network
bandwidth and the performance of the physical machine. Nodes
with low network bandwidth or bad performance may take several
days to catch up with other peers. Therefore, the evaluation of
blockchain synchronization is out of the scope of this paper. We
test various data query services in terms of throughput, block
query, transaction query, account query and range query. We
contrast our proposed VQL with the Geth client, which is an
official Go implementation of the Ethereum protocol, in terms
of query efficiency.

4.2.1 Throughput

We first evaluate the throughput performance of our proposed
system VQL comparing with ETH client. The ETH client syn-
chronizes the blockchain to about 8,000,000 and our VQL also
organizes all information within the same block height. In ad-
dition to the comparison between the ETH client and VQL, we
also evaluate the query efficiency of VQL with different blocks
synchronized, i.e., 500,000, 4,000,000 and 8,000,000. Three kinds
of queries are conducted, including querying a block by the block
number, querying a transaction by transaction hash, and querying
the balance of an account by address. As shown in Fig. 6a, the
throughput of VQL is about 13.2, 2.1, 5.5 times as that of ETH
client in terms of block, transaction and account query respec-
tively. When we query a block by the block number, the VQL
and ETH client can support 1.88K queries/s and 142 queries/s,
respectively. For querying a transaction by the transaction hash,
the VQL and ETH client are able to process about 70.6 queries/s
and 33.5 queries/s. If we query the balance of an account by
address, both systems can achieve higher throughput (i.e., 2.14K
queries/s and 387.9 queries/s) because of the relatively smaller
amount of accounts. The results show that our proposed VQL can
achieve a higher throughput than the native ETH client. From the
performance of VQL under different load scenarios, we can see
that the increasing number of synchronized blocks will degrade
the query throughput of all query categories. The throughput of
transaction query drops rapidly because the amount of transactions
increases sharply as the block height grows.

4.2.2 Block Query

In our experiments, query efficiency is a critical criterion for
the proposed query supported system. In the blockchain, various
transactions generated by users are stored in the blocks. Thus,
we first compare the block query time of different systems (e.g.,
ETH client and VQL) to show the query efficiency of our system.
ETH client provides a JSON RPC API to support the block
query. Accordingly, we develop an API in the middleware layer to
provide query services about blocks.

Since a single block query can usually be completed in
milliseconds, we query for a randomly selected list of blocks

2500
2000 M
o
c
g EETH dlient
. 1500 EEVQL (5x10° blks)
8 EvaL (4x10° biks)
81000 CvaL (8x10° blks)
g
(o4
500
([}
Block Transaction Account
Query category
(a) Throughput
25 =
200 = ~
il &
2% oL S T
] 2 4 &
£ .
15 <10
> -
g s
51 2T —=—ETH dient
—=-VQL (5x10° blks)
5r &7 ~%-VQL (4x10° blks)
& 4 yQL (8x10° blks)
0
1 2 3 4 5
Number of blocks %10*
(b) Block query
1500
—=—ETH client
~©-VQL (5x10° blks)
- ~ % -VQL (4x10° blks)
& 10001 | -2~ vQL (8x10° biks)
£
= N
g .
>
& 500 1 L
-7
A _ -
e
G}/;m, I N So |
1 2 3 4 5
Number of transactions x10*
(c) Transaction query
25—
/100
20t / 60 }/’{
_ 204 td o
2. 2 4 at
@ / z
2r) %1044 -7
[= P4
>
g 10 AL
& " —=—ETH client
e ~&-VQL (5x10° blks)
S5r #7 ~¥ ~VQL (4x10° blks)
L 2+ vQL (8x10° blks)
0 | | | |
1 2 3 4 5
Number of accounts x10*

(d) Account query

Fig. 6: Query performance of ETH client and VQL.

and record the time of completing these queries. We conduct
experiments of block query based on scenarios with block number
from 0 to 50,000. As shown in Fig. 6b, the block query time is
compared with ETH client and VQL will different loads. With
more blocks queried, the query time is significantly increased
using ETH client, while the time of VQL can still remain at a
relatively lower level. This ETH client requires plenty of query
time, for example, 351.9 seconds in the evaluation of the 50,000-
block scenario. On the contrary, our proposed system VQL can
save much query time, which optimizes the data storage for faster
queries (e.g., 26.6 seconds in 50,000-block scenario). From the
comparison between different loads of VQL, we observe that the
number of synchronized blocks has limited effects on the query
efficiency since the query time only increases slightly.

4.2.3 Transaction Query

The query about individual transaction information is also sup-
ported in our system and we conduct experiments on the query
time of transactions. The native ETH client provides limited APIs
for the retrieval of transaction details while our VQL can support
queries on transactions by all attributes that a transaction has. In
this experiment, we choose the common API, i.e., query by the
transaction hash, to present the comparison of the query efficiency.
As shown in Fig. 6c¢, the transaction query time is compared
between ETH client and VQL with different loads. Since a single
transaction query can usually be completed very fast, we query for
a bunch of randomly selected transactions to evaluate the time. We
test cases with different numbers of transactions in the experiment,
from O to 50,000 transactions. The number of transactions almost
linearly promotes the query time in all cases. But VQL takes
only about half of the time that ETH client uses to query the
same amount of transactions under the same data load. As for
the comparison between different number of synchronized blocks
in VQL, the query time of 8,000,000-block scenario is much
longer than that of 500,000-block case. It is because the volume of
transactions grows dramatically when the block height increases.

4.2.4 Account Query

In our middleware layer, each constructed micro database contains
two parts of data: the transaction details and the balance details of
all accounts. Apart from the original blockchain data, the account
balance also provides an extra historical balance description for
each account, e.g., balance change in each day. Since the native
ETH client only provides the API for current balance query, we
also test the same function in our VQL system.

As shown in Fig. 6d, we conduct experiments to evaluate the
query time of account balance for ETH client and VQL. Because
the query time of a single account is too small to measure, we still
query for a randomly selected list of accounts to test the efficiency
of balance queries. Scenarios with different numbers of accounts,
from 0 to 50,000 accounts are tested in the experiment. We can
see that the query time of account balance increases linearly as
the number of accounts grows. The query of account balance with
the same amount in VQL can be completed within one fifth of the
time that the ETH client takes, i.e., 128.9s. This is because that, in
our proposed middleware, the information of account balance is
calculated in advance and well organized in databases. In addition,
the comparison between different loads in VQL shows that the
number of synchronized blocks slightly promotes the query time.

4.2.5 Range Query

Besides the individual account query, range query is also sup-
ported by the middleware layer since the application layer is
usually required to conduct various data analysis and machine
learning tasks. For these tasks, many features will be extracted
through a range of data, e.g., accounts that have transactions in one
day or transactions with amount over 100 ETH. Our middleware
can provide this ability of data query within a specific range while
the native ETH client cannot perfectly support.

In our experiments, we conduct performance evaluation about
range query for block, transaction and account, respectively. Con-
sidering many applications related to data analysis, we implement
two kinds of range queries, i.e., temporal range query and nu-
merical range query, for the information of block, transaction and
balance. The temporal range query means the query on blockchain

ETH client VQL
Temporal Blockl 40.53s 0.04ms
range query Transaction 1625.88s 0.036ms
Balance 10.23s 0.041ms
Numerical Block. — 0.034ms
range query Transaction — 0.033ms
Balance — 0.036ms

TABLE 1: Evaluation of range query.

data within a specific time range, e.g., the transactions generated
last month. The numerical range query represents the query on
some numerical fields of the data, e.g., the transactions with value
less than 1 ETH. As shown in Table 1, the time of different range
query categories is compared with ETH client and VQL. We query
blocks generated in one day and record the query time. The VQL
can finish the query with 0.04ms while the ETH client needs
40.53s. Then we query transactions within a randomly chosen
day and record the time used. Our VQL completes the query
within 0.036ms and the ETH client costs 1625.88s. Finally, we
query the account balances that have changes in one day, which
means transactions are performed between these accounts. The
experiment result shows that the VQL needs 0.041ms while the
ETH client uses 10.23s. It is noted that the ETH client does not
directly support temporal range query. To achieve it, we traverse
the blocks using the block number and get the transactions inside.
However, the numerical range query cannot be supported even
using this method since the ETH client has to read all blockchain
data to judge the numerical values, which is excessively time-
consuming. Therefore, we mark the inapplicability using '—' in
the table for numerical range query. In general, the proposed VQL
needs much less time to finish different range queries than the ETH
client. Our VQL shows remarkable advantages over the ETH client
due to the well-organized micro databases in the middleware,
which are very efficient for range queries.

4.2.6 Database Verification

Database verification efficiency is also an important criterion for
our proposed system. We set the generation frequency of database
fingerprint to once a day, which means the middleware produces
the fingerprints for block, transaction and balance using the respec-
tive daily data. As shown in Fig. 7a, we record the time of database
verification after the blocks are generated in the blockchain each
day. When the middleware layer has constructed databases based
on the blockchain for 180 days, the verification time of block
databases for a miner is 242.4s and that of transaction databases is
75.6s. The balance databases take the least time, i.e., 2.98s for 180
days, since the size of involved information is quite small. With
more daily databases generated by the middleware, the database
verification time increases. We can see that there is a fluctuation in
the transaction database between 50 and 100 days. This is because
the amount of transactions in these days suddenly grows, which
leads to more verification time. Thus, our proposed system is able
to efficiently verify databases constructed in the middleware layer
and applicable to practical blockchain systems.

4.2.7 Database Size

Considering the storage space efficiency, we also test the size
of databases to be verified in the middleware layer during the
database verification process. We record the size of each database

10

9
250 4 x10 A
—=—Block —=—Block
200} |- o Transaction / 3 —-=-Transaction
. -~ Balance g T -=-Balance
7150 // g
[}
£ =2
£ 100 //] PR
/ (%]
/)Z/ g —imm =TT i 1
50 // o
el e
o N
= I S O¢—e—% %% v
0 50 100 150 0 1 2 3 4 5
Number of days Number of blocks «10°

(a) Verification time (b) Database size

Fig. 7: Performance of miner database verification.

for block, transaction and balance as the blocks are generated in
the blockchain. As shown in Fig. 7b, when the middleware layer
has constructed databases for 500,000 blocks in the blockchain,
the size of transaction database stored in the middleware layer
reaches about 4GB while the size of block database is around 500
MB. We can observe from the figure that the size of the transaction
database increases notably twice due to the large amount of trans-
actions in some blocks. The balance database always occupies the
least storage and its size is only 12MB even when the number of
blocks reaches 500,000. Thus, our proposed system can efficiently
store the databases constructed in the middleware layer to provide
query services and database verification.

4.2.8 Proof Cost in MPT

The cost of simplified query result verification is dominated by
the communication overhead incurred by Merkle proof. The size
of Merkle proof is mainly decided by the number of layers in MPT.
The deeper the leaf node locates in MPT, the longer its search path
becomes. Thus, we measure the size of proof that the middleware
layer returns for each database fingerprint. In our evaluation, we
employ SHA-256 hash function to generate the fingerprint for the
database, thus the key to be stored in MPT has 256 bits. We insert
2,000 keys into the MPT and record the average length of Merkle
proof that MPT provides by invoking the prove function for each
key. As presented in Fig. 8a, the size of Merkle proof is only a
few kilobytes and closely associated with the depth of key. The
depth of the fingerprint is principally distributed between 7 and
13, and the proof size gradually increases as the depth grows,
which conforms to our previous analysis. This is because Merkle
proof is a list of nodes along the path and the RLP code of one
node is about 100 bytes. Compared with the size of the block data
needed in miner database verification, the overhead of giving the
Merkle proof is practically negligible.

4.2.9 Storage Costin MPT

Since the MPT for database fingerprint is updated by miners
and will be synchronized to the middleware layer, it will cost
storage space in both miners and the middleware layer. In order
to show the storage cost of MPT with the amount of fingerprint
increasing, we investigate the size of the LevelDB database files
generated by the MPT when the total amount is 1,000, 5,000,
10,000, 20,000, 30,000, 50,000. Observing from Fig. 8b, we can
see that the amount of fingerprint linearly promotes the storage
cost, which indicates that MPT does not bring about much cost
of extra storage space as the amount of fingerprint grows. The
storage cost increases to 90 MB when the fingerprint amount
reaches 50,000, which is relatively small compared with the size of

databases constructed in the miner database verification process.
Therefore, the storage cost is acceptable to achieve our simplified
query result verification scheme.

4.2.10 Throughput and Proof Size

In our simplified verification scheme, the middleware layer will
return a Merkle proof for each query from users. Thus, we
investigate how many verification requests the middleware is able
to handle concurrently and how much overhead it costs to return
a Merkle proof. The performance is presented in Fig. 8c, which
includes the throughput and proof size under various number of
fingerprints. We observe that the throughput of returning proofs
decreases when the amount of fingerprints grows. This is because
the MPT becomes larger when more fingerprints are stored, which
leads to longer search time for each fingerprint. The middleware
can support 3,000 verification requests per second with 50,000
fingerprints stored, which is acceptable as well. Meanwhile, we
can also see that the average size of Merkle proof rises slowly
when the number of fingerprints increases.

4.2.11 Depth Distribution

We further investigate the reason behind the proof size and observe
that the distribution of fingerprint depth greatly change under
different cases. Fig. 8d shows how fingerprint depth distributes
under scenarios with different fingerprint amounts. When the
amount of fingerprints is 1,000, the depth mainly distributes
around 7 and the proportion of 7 exceeds 65%. As the amount
increases, the majority of fingerprint depth rises slightly. The
depth of 9 accounts for more than 60% of the whole fingerprints
when the total amount reaches 20,000. In the scenario with 50,000
fingerprints, the proportion of depth 11 gradually grows to about
30%, leading to a higher average depth. Combining with the
previous observation from the proof cost in Fig. 8a, the increasing
average proof size conforms to the distribution of fingerprints.
Compared with the size of database itself in the middleware, the
proof cost in our simplified query result verification is relatively
small.

5 RELATED WORK

Within a wide number of works on the blockchain-based data
query, our design is strongly related to the following research
categories.

5.1 Blockchain

As the first successful application of blockchain, Bitcoin [16] has
attracted much attention to the blockchain technique. It provides a
new way to store transactions on the distributed ledger without the
risk of tamper. Ethereum [18], as the successor of Bitcoin, expands
the functions by introducing the design of smart contract, which
enables more flexible operations on the cryptocurrency. Apart
from cryptocurrency, the blockchain methodology contributes to
other technologies as well. Provenance [21] establishes the au-
ditable records behind all physical goods for suppliers. ChainSQL
[22] combines blockchain with distributed databases to facilitate
a decentralized, auditable and efficient application platform for
database users. Other efforts have been done to improve the
anonymity and security of the blockchain [23], [24].

11
5.2 Efficient Query

Much effort has been made to support various query and ensure a
prompt response. Etherscan [25] is a block explorer and analytics
platform where users can explore and analyze data from Ethereum
blockchain. With the help of its virtual machine, Etherscan can
also provide extra information like internal transactions and state
changes in the smart contract. Project Toshi [8] is a fully imple-
mented Bitcoin protocol and supported by PostgreSQL. It offers a
RESTful API for large-scale web applications and blockchain data
analysis. Blockchain.com [11] provides developers with RESTful
service by encapsulating the blocks, transactions and address APIs
in the Bitcoin. Aiming to support efficient and accurate queries
for certificates, ECBC [9] utilizes a tree structure to facilitate
the retrieval of historical transactions. EtherQL [10] employs the
conventional database to provide efficient queries for blockchain
data analysis. BlockSci [12] can support versatile analysis tasks
for different blockchain systems by virtue of an in-memory and
analytical database.

The explorers above contain rich information and enable users
to explore blocks, transactions and accounts by providing basic
interfaces, but the functions of these public APIs are limited. More
complex queries (e.g., range queries) for blockchain data are not
supported. Moreover, these systems do not provide verification
functions to ensure the validity of the query result. In other words,
those limitations are great obstacles to providing versatile queries
and verifiable query services for blockchain systems.

5.3 Verifiable Query

Verifiable query technique that guarantees result integrity is also
a hot research topic and has been extensively studied [26], [27].
These studies mainly focus on outsourced databases and can be
categorized into two typical methods: circuit-based verifiable com-
putation (VC) techniques and authenticated data structure (ADS).
The VC approach like SNARKS [28] can support general queries
over databases since it is able to verify arbitrary computation
tasks from untrusted workers. But this method incurs a very high
and sometimes unacceptable overhead. In addition, it requires a
preprocessing step to hard code the data and query information
into the proving key and the verification key, which also degrades
the efficiency. To remedy this issue, Ben-Sasson et al. [29] propose
a variant of SNARKSs called zk-SNARKSs, where the size of the
output circuit depends on the upper-bound size of the query
program. More recently, vSQL [30] provides publicly verifiable
SQL queries for dynamic databases by utilizing the interactive-
proof protocol. However, it is only restricted to the relational
database scenario.

The ADS method employs data structures tailored to specific
queries, thus it is generally more efficient in comparison. One of
the ADS methods is digital signature scheme, which can be used
to authenticate the content of digital messages using asymmetric
cryptography. Pang et al. [31] present a verifiable B-Tree by
adding signed digests to the B+-tree to authenticate query results
based on digital signature. Merkle Hash Tree (MHT), which is
a hierarchical tree, belongs to the ADS method as well. GSSE
[32] utilizes Merkle Patricia Tree, which is a variant of MHT
combining with the prefix tree, to enable verifiable and secure data
search in cloud services. Xu et al. [14] design a framework named
vChain that adopts the accumulator-based ADS scheme to achieve
dynamic aggregation over various query attributes. However, this

=
3

100

16 g @)
a / o pd

15 g
< - % 60
E 14 T -ﬁ
- o & w0 e
S1s - g //
& ,)zf/ (2]

/ 20
12p ~ e
11 0=
7 8 9 10 1 12 13 0 1 2 3 4

Depth of fingerprint

Fingerprint amount (x 104)

(a) Proof cost with depth (b) Storage cost

Throughput

3300

3200

w
=
Q
=]

3000

(c) Throughput and proof size

Fingerprint amount (x 104)

12

Depth of fingerprints

1,000
60 ~-20,000
o < -+ -50,000
g & 7
g 540
- S R e

/ & &0 | .

, o/ N

o 1 2 3 4 6 8 0 12 14

(d) Depth distribution

Fig. 8: Performance of simplified query result verification.

approach entails great modification to the underlying blockchain
structure and numerous preprocessing operations.

To the best of our knowledge, no research has been done to
improve the efficiency of providing versatile query and public
verifiability without radically changing the current blockchain sys-
tems. This paper is an extension of our previous work [33], adding
details of the database verification scheme, the simplified query
result verification scheme and abundant performance evaluation.

6 CONCLUSION

In this paper, we propose VQL, a cloud query service layer
that can provide efficient and verifiable query services for the
blockchain system. The proposed framework has a three-layer ar-
chitecture, including the underlying blockchain network, the mid-
dleware layer and the application layer. To realize this system, first,
the middleware layer extracts the data stored in the underlying
blockchain and reorganizes them in databases to provide various
query services efficiently for the upper application layer. Second,
to prevent falsified data from being stored in the middleware, a
cryptographic hash value, named as fingerprint, is calculated based
on each constructed database. Finally, the database fingerprint is
recorded in the blockchain after being verified by miners. In order
to ensure the data integrity, we design the database verification
scheme for miners and the simplified query result verification
scheme for public users. We implement VQL on the cloud and
conduct extensive experiments based on a practical blockchain
system Rinkeby. The evaluation results demonstrate that VQL
can effectively and efficiently support various data query services
and guarantee the authenticity of query results for the blockchain
system. Our proposed query service can be deployed on the cloud
for practical applications and accessed by public users for efficient
and versatile data queries.

ACKNOWLEDGEMENT

This work was supported in part by the HK RGC GRF
PolyU 15217321 and PolyU 15216220, the HK ITF ITS/081/18,
and Guangdong Basic and Applied Basic Research Foundation
2020A1515111070.

REFERENCES

[1] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘“Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in I[EEE Symposium on Security and Privacy (SP), pp. 839—
858, 2016.

F. Tian, “An agri-food supply chain traceability system for china based
on rfid & blockchain technology,” in Proc. of IEEE Service Systems and
Service Management (ICSSSM), pp. 1-6, 2016.

(2]

(3]

(4]

(3]

(6]

(71

(8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani,
“Medshare: Trust-less medical data sharing among cloud service
providers via blockchain,” IEEE Access, vol. 5, pp. 14757-14767, 2017.
M. Alj, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains.,” in Proc. of USENIX
Annual Technical Conference (ATC), pp. 181-194, 2016.

A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘“Blockchain for
iot security and privacy: The case study of a smart home,” in Proc. of
IEEE PerCom, pp. 618-623, 2017.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp. 351-385,
1996.

X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
ultra-large key-value store for small data items,” in 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pp. 71-82, 2015.

“Coinbase: Toshi project..” https://github.com/martindale/toshi.

Y. Xu, S. Zhao, L. Kong, Y. Zheng, S. Zhang, and Q. Li, “ECBC: A high
performance educational certificate blockchain with efficient query,” in
International Colloquium on Theoretical Aspects of Computing, pp. 288—
304, Springer, 2017.

Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “EtherQL: A query
layer for blockchain system,” in International Conference on Database
Systems for Advanced Applications, pp. 556-567, Springer, 2017.
“Blockchain.com.” https://www.blockchain.com/explorer.

H. Kalodner, M. Méser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, and
A. Narayanan, “BlockSci: Design and applications of a blockchain anal-
ysis platform,” in 29th USENIX Security Symposium (USENIX Security
20), pp. 2721-2738, 2020.

K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69-73, 2012.

C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifiable boolean
range queries over blockchain databases,” in Proceedings of the 2019
international conference on management of data, pp. 141-158, 2019.

N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,” IEEE Transactions on Dependable and Secure
Computing, 2016.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
“Merkle patricia tree.” https:/github.com/ethereum/wiki/wiki/
Patricia-Tree.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32, 2014.

Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of things,”
IEEE Transactions on Industrial Informatics, 2017.

Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosen-
schein, “Bitcoin mining pools: A cooperative game theoretic analysis,”
in Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pp. 919-927, International Foundation
for Autonomous Agents and Multiagent Systems, 2015.

“Provenance.” https://www.provenance.org/.

M. Muzammal, Q. Qu, and B. Nasrulin, “Renovating blockchain with
distributed databases: An open source system,” Future Generation Com-
puter Systems, vol. 90, pp. 105-117, 2019.

E. B. Sasson, A. Chiesa, C. Garman, M. Green, 1. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in IEEE Symposium on Security and Privacy (SP), pp. 459-474, 2014.
A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proc. of ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 3—-16, 2016.

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

“Etherscan.” https://etherscan.io/.

Q. Chen, H. Hu, and J. Xu, “Authenticated online data integration
services,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 167-181, ACM, 2015.

C. Xu, J. Xu, H. Hu, and M. H. Au, “When query authentication meets
fine-grained access control: A zero-knowledge approach,” in Proceedings
of the 2018 International Conference on Management of Data, pp. 147—
162, ACM, 2018.

B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy, pp. 238-252, IEEE, 2013.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
USENIX Security Symposium (USENIX Security 14), pp. 781-796, 2014.
Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases,” in 2017 IEEE Symposium on Security and Privacy (SP),
pp. 863-880, IEEE, 2017.

H. Pang and K.-L. Tan, “Authenticating query results in edge computing,”
in Proceedings. 20th International Conference on Data Engineering,
pp- 560-571, IEEE, 2004.

J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling
generic, verifiable, and secure data search in cloud services,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 29, no. 8, pp. 1721-
1735, 2018.

Z. Peng, H. Wu, B. Xiao, and S. Guo, “VQL: Providing query efficiency
and data authenticity in blockchain systems,” in 2019 IEEE 35th Inter-
national Conference on Data Engineering Workshops (ICDEW), pp. 1-6,
IEEE, 2019.

Haotian Wu is currently a Ph.D. candidate at
Department of Computing, The Hong Kong Poly-
technic University. He received his B.Sc and
M.Sc degrees in computer science from South-
east University, Nanjing, China, in 2015 and
2018, respectively. His research interests in-
clude mobile computing, blockchain systems
and data security.

Zhe Peng received the B.S. degree from North-
western Polytechnical University, China, in 2010,
the M.S. degree from University of Science and
Technology of China in 2013, and the Ph.D.
degree in Computer Science from the Hong
Kong Polytechnic University in 2018. Currently,
he is a research assistant professor with the
Department of Computer Science at Hong Kong
Baptist University. His research interests include
blockchain system, mobile computing, data se-
curity and privacy.

13

Songtao Guo received the B.S., M.S., and
Ph.D. degrees in computer software and theory
from Chongqing University, Chongging, China,
in 1999, 2003, and 2008, respectively. He was
a professor from 2011 to 2012 at Chongqing
University and a professor from 2013 to 2018 at
Southwest University. He is currently a full pro-
fessor at Chongqing University, China. He was a
senior research associate at City University of
Hong Kong from 2010 to 2011, and a visiting
scholar at Stony Brook University, New York,
from 2011 to 2012. His research interests include wireless sensor net-
works, wireless ad hoc networks, data center networks, and mobile edge
computing. He has published more than 100 scientific papers in leading
refereed journals and conferences. He has received many research
grants as a principal investigator from the National Science Foundations
of China and Chongging as well as the Postdoctoral Science Foundation
of China. He is an IEEE/ACM Senior Member.

Yuanyuan Yang received the BEng and MS
degrees in computer science and engineering
from Tsinghua University, Beijing, China, and
the MSE and PhD degrees in computer science
from Johns Hopkins University, Baltimore, Mary-
land. She is a professor of computer engineering
and computer science at Stony Brook University,
New York, and the director in Communications
and Devices Division, New York State Center
of Excellence in Wireless and Information Tech-
nology (CEWIT). Her research interests include
wireless networks, data center networks, optical networks, and high-
speed networks. She has published more than 300 papers in major
journals and refereed conference proceedings and holds seven US
patents in these areas. She has served as an associate editor-in-chief
and associated editor for the /EEE Transactions on Computers and an
associate editor for the IEEE Transactions on Parallel and Distributed
Systems. She has also served as a general chair, program chair, or vice
chair for several major conferences and a program committee member
for numerous conferences. She is a fellow of the IEEE.

Bin Xiao received the B.Sc. and M.Sc. degrees
in electronics engineering from Fudan University,
Shanghai, China and Ph.D. degree in computer
science from University of Texas at Dallas, Dal-
las, TX, USA. He is currently a Professor with the
Department of Computing, the Hong Kong Poly-
technic University, Hong Kong. After the Ph.D.
graduation, he joined the Department of Com-
puting, The Hong Kong Polytechnic University
| as an Assistant Professor. He has authored or
coauthored more than 180 technical papers in
international top journals and conferences. His research interests in-
clude Al and network security, data privacy, and blockchain systems.
He is currently an Associate Editor for /EEE Internet of Things Journal,
IEEE Transactions on Cloud Computing, IEEE Transactions on Network
Science and Engineering, and the Elsevier Journal of Parallel and
Distributed Computing. He is the Vice Chair of IEEE ComSoc CISTC
committee. He is the Symposium Co-Chair of IEEE ICC 2020, ICC 2018,
and Globecom 2017, and the General Chair of the IEEE SECON 2018.
He is a Member of ACM and CCF.

K

