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SCA: Sybil-based Collusion Attacks of IIoT Data
Poisoning in Federated Learning

Xiong Xiao, Zhuo Tang, Chuanying Li, Bin Xiao, and Kenli Li

Abstract—With the massive amounts of data generated by
Industrial Internet of Things (IIoT) devices at all moments,
federated learning (FL) enables these distributed distrusted
devices to collaborate to build machine learning model while
maintaining data privacy. However, malicious participants still
launch malicious attacks against the security vulnerabilities
during model aggregation. This paper is the first to propose
sybil-based collusion attacks (SCA) in the IIoT-FL system for the
vulnerabilities mentioned above. The malicious participants use
label flipping attacks to complete local poisoning training. Mean-
while, they can virtualize multiple sybil nodes to make the local
poisoning models aggregated with the greatest possibility during
aggregation. They focus on making the joint model misclassify the
selected attack class samples during the testing phase, while other
non-attack classes kept the main task accuracy similar to the non-
poisoned state. Exhaustive experimental analysis demonstrates
that our SCA has superior performance on multiple aspects than
the state-of-the-art.

Index Terms—IIoT, Federated learning, Label flipping attacks,
Sybil, Collusion attacks.

I. INTRODUCTION

W ITH the fast development of industry 4.0 and the
widespread popularity of industrial Internet of Things

(IIoT) applications makes applications such as smart trans-
portation and smart healthcare thrive and also makes the data
generated by the industrial devices exponentially grow. Such
as autonomous driving technology [1], it needs to train all data
generated by sensor and camera devices to build a stable joint
model to identify road conditions. And the distributed IIoT
devices can generate a large amount of data in a short time
[2]. In order to take into account the efficiency of processing
big data and protect the privacy of clients. A novel machine
learning paradigm named federated learning (FL) [3] was
proposed, which is a new solution based on distributed train-
ing to alleviate the performance bottleneck and privacy risk
caused by centralized processing. Traditional machine learning
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methods [4] usually store and run these data centrally, which
will generate considerable computational and communication
overhead in involving millions of mobile devices or massive
data. This makes it unacceptable for sensitive IIoT applications
(e.g., autonomous driving, intelligent robots, smart medical)
that require real-time data transmission [5]. In addition, relying
on centralized storage will cause a huge risk of private leakage
[6]. Generally, when FL performs the collaborative training
process of multiple distributed participants (e.g., IIoT devices),
the sensitive information and private data of each client are
kept locally [7]. FL has demonstrated excellent performance
in the distributed execution process, while ensuring the privacy
of participants by performing independent local training and
model updates, so as to implement collaborative calculating in
a joint environment that includes malicious participants. This
also makes FL attract much attention in many fields including
smart healthcare [8] [9], smart feature prediction [10], and
Internet of Things in smart homes [11] [12].

The IIoT represents a distributed network composed of
intelligent and highly interconnected industrial devices, each
device can act as an FL participant to participate in training
and updating [13]. FL improves the performance of the model
for IIoT applications through continuous iterative training, and
finally obtains a stable global model when the iteration reaches
convergence. However, FL greatly exposes its weaknesses
to malicious adversaries during the process of performing
training [14]. Malicious adversaries can obtain the information
of the global model in each round and upload malicious pa-
rameters or perform a small part of the beneficial contribution
for collaborative training while avoiding anomaly detection
as much as possible. For instance, malicious adversaries use
contaminated data for training locally [15] [16], or tamper and
prune local models for poisoning aggregation [17] [18].

The existing works [12] [19] have shown that controlling
more malicious IIoT devices or using more direct poisoning
attacks during the execution of FL is more destructive to
the global model. Due to network, communication, power,
and other issues in a heterogeneous federated environment,
many IIoT devices are at risk of offline. Malicious partici-
pants will virtualize multiple malicious nodes in this unstable
communication network. With more significant damage to the
construction of the shared global model, this byzantine fault-
tolerance [20] problem usually uses the technology of fusion
sybil-based attacks. In addition, in the process of malicious
participants performing poisoning attacks, they usually use
mislabeled samples for training or upload the poisoned models
to the central server for aggregation. Compared with the
independent attacks by a single malicious participant, the
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collusion attacks by multiple malicious participants have a
higher attack success rate and can better obscure their attack
behavior. Meanwhile, due to the characteristics of data privacy
protection, the central server cannot verify the local data of
all participants, and the parameter transmission process of all
participants is anonymous, which provides more possibilities
for malicious participants to launch malicious attacks.

Therefore, in order to better focus on the implementation
of poisoning attacks in the IIoT-FL system, in this work,
we introduce an efficient sybil-based collusion attacks (SCA)
scheme. We represent the malicious IIoT device as a malicious
participant in our system. Precisely, first, in the FL computing
environment that we set, all the participants can only control
local data and cannot access the data of other participants.
This enables them to better manipulate local data for poisoning
training without being detected. The most commonly used data
poisoning methods are backdoor poisoning attacks [15] and la-
bel flipping attacks [16]. This paper uses label flipping attacks
to conduct poisoning training on the massive data generated
by IIoT devices, aiming to make the global model misclassify
the selected attack class samples. However, the attack effect
achieved by such an attack is insufficient. Second, we use
the cloning properties of sybil that all sybil nodes virtualized
by malicious participants will perform the same malicious
operations during the training process and have equal attack
influence. We consider making the malicious model has a
higher probability to be aggregated during FL aggregation.
Finally, we collude with all malicious participants to launch
the collusion attacks, aiming to replace the global model
using the poisoning model. Meanwhile, such collusion attacks
can better obscure their attack behavior. We utilize Fashion
MNIST and CIFAR-10 datasets to represent the data generated
by IIoT devices and conduct experiments. In summary, our
contributions to this work are mainly in four-fold as below.

• We explore sybil-based collusion attacks of IIoT data
poisoning for the IIoT-FL application, and implement
poisoning training and model collusion attacks in this
IIoT-FL system.

• We make minimal malicious assumptions for malicious
adversaries and integrate the label flipping poisoning
attacks to make the global model misclassify the selected
attack class samples while maintaining the main task
accuracy of other non-attack classes.

• We further propose an efficient sybil-based collusion
attacks (SCA) method, which aims to make the poisoning
collusion models to be aggregated with greater proba-
bility during aggregation, and successfully obscure their
attack behavior.

• We utilize F-MNIST and CIFAR-10 datasets to represent
the data generated by IIoT devices. Exhaustive experi-
mental analysis demonstrates that our SCA has superior
performance than the state-of-the-art.

The remainder of this paper is organized below. Section
II primarily describes the background knowledge and cor-
responding comments of the relevant literature. Section III
mainly focuses on introducing the FL problem formulation and
threat model. Section IV discusses the proposed SCA based

on the IIoT-FL computing environment. Section V analysis the
performance results of our proposed SCA in multiple attack
scenarios. Section VI summarizes the full paper.

II. RELATED WORK

A. Poisoning Attacks in Federated Learning System

In distributed training for large-scale IIoT devices, FL has
demonstrated excellent performance while maintaining data
privacy. In the FL system, although all participants do not
share data and will not disclose local data to the central server
simultaneously, such a system still has a huge security risk
during the training process. Malicious participants manipulate
the local poisoning data for training or tamper with the local
model for poisoning aggregation, which will undoubtedly
make the performance of the global model have a significant
impact. This kind of poisoning attack will also make some
IIoT applications cause fatal security accidents in actual sce-
narios [21]. Specifically, it is divided into the following two
attack scenarios: Model poisoning attacks: It occurs in the
local model update stage. Malicious adversaries update the
poisoned local model to the central server for aggregation. The
attack effect is global, and the attack target is arbitrary. Data
poisoning attacks: It usually attacks the local data of edge
devices. The malicious adversary uses the poisoned data for
training, and this type of attack is specific to the attack class.
The data-based attacks include two methods, label flipping
poisoning attacks and backdoor poisoning attacks. Xie et
al. [22] manipulated a subset of training data by injecting
adversarial triggers to perform the wrong prediction on images
embedded with triggers in a distributed heterogeneous dataset.
Sun et al. [23] injected backdoor tasks into a part of the images
to damage the global model’s performance on the target task.
Although it has a high attack success rate, it can cause much
overhead to inject backdoor triggers into large-scale training
samples. In addition, the goal of our attack is to misclassify
the selected attack class samples. So in this work, we use
the label flipping poisoning attacks. Malicious adversaries can
perform label flipping attacks without conducting parameter
interaction, changing the FL architecture, and pre-training.
They use the dirty data with the wrong label for training
locally. This attack method is both concealed and direct.

B. Sybil-based Attacks on Federated Learning Model

In a federated learning system involving a large number
of mobile devices or IIoT sensors, these devices are usually
disconnected or inactivated due to network (e.g., 5G, 4G,
WIFI), communication delay, power, and other issues. A
computing system that supports such participants to leave or
join intermittently is vulnerable to sybil-based attacks [24].
Generally speaking, sybil attack nodes will create multiple
malicious identities by forging or compromising other honest
IIoT devices. They focused on malicious attacks to damage the
federated learning model’s performance by using false iden-
tities under multiple aliases to enhance their attack influence.
All false nodes will perform the same malicious operations and
have an equal attack impact. Jiang et al. [25] proposed a sybil-
based attacks method. Sybil clients compromised the infected



3

device to update the poisoning model directly. They proved
their effectiveness on several advanced defense methods, while
also slowing down the convergence of the global model.
Fung et al. [26] also designed a novel sybil-based attacks
technology, it has shown the effectiveness on multiple recent
distributed machine learning fault tolerance protocols. The
sybil attacks also showed an excellent attack effect in IoT
applications [27]. Although they have shown reliability in the
attack effect, the drift gradient of their local poisoning model
is very easy to detect and remove. In this paper, we integrate
the sybil-based collusion attacks technology to make the local
poisoning model have a higher possibility of aggregation and
help malicious participants better obscure the attack behavior.

C. Collusion Attacks for IIoT in Federated Learning

When training a global model of IIoT application, multiple
malicious adversaries can collude to launch joint attacks. They
uploaded the collude malicious parameters to the server for
aggregation simultaneously, and performed iterative attacks
to destroy the performance of the model. Taheri et al. [28]
proposed two dynamic poisoning attack strategies that inte-
grate Generative Adversarial Network (GAN) and Federated
Generative Adversarial Network (FedGAN) on the side of the
participants, and evaluated them on IIoT applications. Lim
et al. [29] studied the collusion attacks between dishonest
participants and the server. The malicious participant uploads
the poisoning model during the aggregation stage, and the
server also leaks the parameters of other participants to the
malicious participant. They aim to achieve the purpose of
reducing the global model’s performance while analyzing the
local model of other participants to avoid anomaly detection
[30] during the poisoning process. However, this method needs
to make more malicious assumptions about the federated
system. Meanwhile, it also generates a lot of communication
overhead during the collusion phase between the participants
and the server. In this paper, we just focus on collusion attacks
between malicious participants. They only manipulate local
data and control sybil nodes without destroying the overall
architecture of federated learning. Such potentially malicious
scenarios exist in most IIoT applications.

III. PRELIMINARIES AND THREAT MODEL

A. IIoT Based on Federated Learning

The computing scenario that integrates IIoT and federated
learning (IIoT-FL) supports distributed multiple participants
(e.g., sensors, IIoT devices) for collaborative training. In
general, such a pattern is set to client-server. As shown in
Fig.1, each IIot device (C = {ci}ni=1) uses their local data
(D = {Dci}

n
i=1) to build a local machine learning model

MLoc. Then update the local model to the central server
for aggregation (Agg) to train a new global model MGlo.
This distributed training process guarantees the same model
quality as the centralized training method and maintains the
data privacy of the participants. The four main execution steps
of IIoT-FL include system initialization, local training, model
update, and aggregation. When iterative training converges,
a stable global model will be constructed. Specifically, the

training data of each participant consists of multiple samples
Dci = (s1,s2,...sn). Each sample si is composed of a set of
features fi and corresponding class labels yi, yi ∈ Y , where
Y is the set of classes of all labels in the dataset. When the
sample is input, the output result obtained by the Softmax
function is a set of predicted classification probabilities (pcpy)
corresponding to all classes. For each sample, the global
model calculates MGlo(si) = argmax(pcpy) for correct
classification. Meanwhile, the cross-entropy loss function L
is calculated to find the parameter value of the minimized
loss through continuous iterative calculations. Each participant
minimizes the local loss by executing the Stochastic Gradient
Descent (SGD) algorithm in the local training phase. FL aims
to train a global model that can correctly identify all test
samples. Otherwise, when the autonomous vehicles recognize
the stop sign as a walking sign, a serious traffic accident may
occur [31]. In addition, in each round r of iteration, the server
randomly selects a group of o participants Po, and adopts the
Federated Averaging (FedAvg) algorithm [3] to aggregate their
local model MLoc. The aggregation process is denoted as Eq.1

M
(r)
Glo =

1

o

o∑
k=1

M
(r)
Lock

(1)

In the next round, the newly aggregated global model M (r)
Glo

is distributed to all n participants in the FL system. After all
the participants get the global model M

(r)
Glo from the server,

they execute the following SGD algorithm as Eq. 2 locally to
build a new local model of r + 1 round and upload it.

M
(r+1)
Loc = M

(r)
Glo − η · ∇L(M (r)

Glo, Dci) (2)

where ∇L and η represent gradient and learning rate, respec-
tively. Until all R rounds are executed, the iterative training
is completed, and the global model MGlo is obtained.

Fig. 1. The execution workflow and architecture of IIoT-FL system (e.g.
autonomous driving system). The four main communication processes in
current system have been highlighted.

B. Adversary Objective and Capabilities

Adversary model: We focus on studying sybil-based collu-
sion attacks in IIoT-FL. As shown in Fig.2, n IIoT clients are
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trained in collaboration in the current FL system. We highlight
in black for honest participants and highlight in red for
malicious participants. Moreover, each malicious participant
can virtualize multiple sybil malicious nodes to participate in
malicious attacks on the system. We consider that all malicious
participants are the main adversaries of the system, and they
use poisoned data for training. Among n IIoT clients, we
set k% as the proportion of malicious adversaries. Therefore,
the total number of malicious adversaries is represented by
K = n ∗ k%. Meanwhile, each malicious adversary can
virtualize v sybil nodes. MA = K∗v+K malicious nodes will
participate in the system for aggregation. They have a higher
probability of being aggregated, and the selected sybil node
will eventually execute the attacks of the original malicious
node. In addition, we assume that the server of the current
IIoT-FL system is legitimate, and malicious adversaries will
not damage the algorithm and network architecture.

Adversary objective: In our attack settings, we perform
targeted collusion attacks. We consider the scenario that the
malicious adversary uses the label flipping strategy to train
the poisoning data locally and collude with other poisoning
models. Meanwhile, the malicious adversary virtualizes mul-
tiple sybil nodes in the system, so that the server selects the
collusion model to perform aggregation with greater prob-
ability, thereby constructing a global poisoning model. All
malicious adversaries have the defined and same goal: to
make the global model misclassify the source class samples
while maintaining the classification accuracy of other main
task classes. Furthermore, the collusion attacks by malicious
participants aim to evade parameter anomaly detection more
effectively.

Fig. 2. Adversary model in IIoT-FL system, and n IIoT clients in current
IIoT-FL system. We highlight the adversaries in red, and others in black.

Adversary capabilities: All participants in the federated
environment aim to make the most outstanding contribution
to improving the global model’s performance, except the
malicious participants. Malicious adversary must exert greater
influence on the model than honest participant that can achieve
an effective attack. In addition, we assume that the server in
the FL system is legitimate, it will not collude with malicious
adversaries to destroy the model, nor will it disclose the private
information of all participants. This also gives malicious

participants more space for local poisoning training. In this
paper, the malicious adversary will not steal the data privacy
of other participants, nor will it destroy the model structure and
the integrity of aggregation algorithm. They have the ability
to create sybil nodes and launch collusion attacks invisibly.

IV. SYBIL-BASED COLLUSION ATTACKS STRATEGIES

A. Label Flipping Poisoning Attacks in IIoT-FL System

The malicious adversary aims to make the IIoT-FL global
model misclassify the attacked selected class without interfer-
ing with the normal classification of other classes. Therefore,
using label flipping attacks is the best way. It can poison
the entire selected class of the dataset without the need for
additional pre-training. The malicious adversary can launch
such an attack invisibly and achieve a more direct attack effect.
All malicious participants use label flipping attacks locally to
generate selected poisoned samples. Specifically, for a certain
class of samples in the dataset, the malicious adversary only
modifies its label without performing other operations (e.g.,
adding noise, marking features). For the selected source class
label ysrc and a given target class label ytar from Y , the
malicious adversary will replace the selected attack class label
with the source class label to launch a data poisoning attacks.
In order to show the effectiveness of our proposed attack
strategy more clearly in the IIoT-FL system. We set two goals
for the attack. We take the two groups of samples (containing
source and target classes) that are the hardest and easiest to
misclassify among all samples as our experimental baseline.

B. SCA Based on Label Flipping Poisoning Attacks

1) Sybil nodes virtualization: The computing system that
supports participants to leave or join intermittently is vulnera-
ble to sybil-based attacks. The poisoning model of malicious
participants are cloned by their sybils, which is denoted as
below.

M
(r+1)
Locsybi

= M
(r)
Glo − η · ∇L(M (r)

Glo, Dcsybi
) (3)

where M
(r+1)
Locsybi

and M
(r)
Glo represent the local sybil poisoning

model of r + 1 round and the global model of r round.
They aim to poison the global model during aggregation.

Due to the characteristics of privacy protection in federated
learning [14], the IIoT-FL system cannot verify the local data
of all participants, nor will it detect their local training process,
and the parameter transmission process of all participants is
anonymous. Meanwhile, all the participants can only control
local data and cannot access the data of other participants,
which gives sybils more space for poisoning. Besides, more
virtual sybils will have a considerable malicious impact on the
overall system, and they have a greater possibility of aggrega-
tion. The updates of honest participants will be overwhelmed
by the poisoned updates of malicious adversaries, thus making
the global model develop in a malicious direction.

2) SCA on IIoT-FL model: All malicious adversaries (in-
cluding original malicious participants and sybil nodes) get
their local poisoning model by using Eq. 3. Although they can
make the global model misclassify the samples of attack class.
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Algorithm 1: SCA Algorithm in IIoT-FL System

Input: Initial global model M (0)
Glo, Local training data

(Involving poisoning data) Dci ,
Communication round r, Virtual sybil nodes v,
Learning rate η, Loss function L, Epoch E and
Batch size of local dataset b

Output: M (r+1)
Glo

Initialize malicious participants K in C;
//Server executes AGGREGATE(r+1);
for ci ∈ Po do

M
(r+1)
Locci

= LOCALUPDATE(M
(r)
Glo)

end
M

(r+1)
Glo = 1

o

∑o
k=1 M

(r+1)
Locci

;
//Sybil virtualization from Malicious Participants;
Sybil nodes = K ∗ v;
C = C +K ∗ v;
malicious participants {cadvi}Ki=1;
for cadvi = (1...K) do

for Sybils i ∈ v ∗K do
M

(r+1)
Locsybi

= M
(r)
Glo − η · ∇L(M (r)

Glo, Dcsybi
)

end
end
//Clients executes LOCALUPDATE(M (r)

Glo);
//Local Updates from Honest Participants;
honest participants ci = 1, ci ∈ (C −MA) ;
for epoch i = (1...E) do

for localbatch b ∈ Dci do
M

(r+1)
Locci

= M
(r)
Glo − η · ∇L(M (r)

Glo, b)

end
end
M

(r+1)
Locci

← M
(r)
Glo;

//Local Updates from Malicious Adversaries;
malicious adversaries cadvi = 1, cadvi ∈MA ;
MA = K ∗ v +K;
for epoch i = (1...E) do

for localbatch b ∈ Dcadvi
do

M
(r+1)
Locadvi

= M
(r)
Glo − η · ∇L(M (r)

Glo, b)
end

end
M

(r+1)
Locadv

= 1
MA

∑MA
i=1 M

(r+1)
Locadvi

;
for cadvi = (1...MA) do

M
(r+1)
Locadvi

← M
(r+1)
Locadv

;
end
M

(r+1)
Locadvi

← M
(r)
Glo;

return M
(r+1)
Glo ;

However, due to the differences in the local data trained by
each malicious participant, the gradient of the model training
has a high drift, so it is easy to be found by the parameter
detection method (e.g., anomaly detection) [30]. In order
to better obscure their attack behavior, we merge all local
poisoning models to perform collusion attacks operations,
update the gradient parameters after fine-tuning, and perform

aggregation. The collusion attacks is denoted as Eq. 4

M
(r+1)
Locadv

=
1

MA

MA∑
i=1

M
(r+1)
Locadvi

(4)

where M
(r+1)
Locadv

is the collusion model, and the adv includes
all malicious participants and sybil nodes. Then the collusion
model will be redistributed to all malicious adversaries. They
have a greater probability of aggregation and a significant
adverse effect on the global model. After executing SCA, if the
server aggregates the poisoned local models, the aggregation
process will be transformed as follows:

M
(r+1)
Glo =

1

o
(

o−u∑
k=1

M
(r+1)
Lock

+

u∑
k=1

M
(r+1)
Locadvk

) (5)

where u represents the number of aggregated malicious adver-
saries (including malicious participants and sybils). If all local
models come from malicious adversaries, that is, when o = u,
then the global model M (r+1)

Glo will be directly replaced by the
malicious model MMal, which is represented as Eq. 6

MMal =
1

o

o∑
k=1

M
(r+1)
Locadvk

(6)

Algorithm 1 describes the execution process of SCA in
detail. The entire IIoT-FL system is coordinated by n par-
ticipants to train a global model, including multiple malicious
adversaries, who use local poisoning data for training. Besides,
they receive the initial model as other honest participants and
use the same loss function as well as aggregation algorithm.

V. EXPERIMENTS ANALYSIS

A. Datasets, Model Architecture and Experiment Setup

Datasets: We verify the attack performance of our designed
SCA to the image classification task and implement a federated
learning prototype on two widely adopted benchmark datasets
(Fashion-MNIST and CIFAR-10) to evaluate our method. F-
MNIST [32] and CIFAR-10 [33] are used to represent the
data generated by IIoT devices. The F-MNIST dataset includes
60,000 gray-scale images (28×28) for training and 10,000
images for testing. The CIFAR-10 dataset contains 50,000
color images (32×32) for training and 10,000 images for
testing. Meanwhile, we study our attack performance on two
data distributions, including iid and Non-iid. For iid, we shuffle
the data and divide it into all the participants. For Non-
iid, where the data is non-uniformly partitioned through the
Dirichlet distribution [34]. Finally, the data distributed to all
participants involve uneven data samples, and the data sample
sizes may vary widely among all participants. This is a more
realistic scenario.

Model Architecture: We train the shared model as a classifier
and classify the test set of the above two datasets. For different
datasets, we have implemented two different Convolutional
Neural Networks (CNN). We utilize two convolutional layers
and one fully connected layer to train F-MNIST, while using
six convolutional layers and two fully connected layers to
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train CIFAR-10. Relu and Softmax are adopted as the activate
functions of the convolutional layer and the output layer.

Training Settings: We use the following settings for the
overall training process. First, we adopt the PyTorch (version
1.3.1) to build FL architecture in Ubuntu (version 18.04).
Second, we set the number of participants in our joint training
system to n = 50. Third, according to the rounds of training to
the convergence state for the two datasets, we set the number
of training rounds R for F-MNIST and CIFAR-10 to 100 and
200, respectively. Fourth, all participants (including malicious
participants) train their data locally to build a local model,
so that malicious participants can covertly perform label flip-
ping poisoning attacks locally. Each malicious participant can
virtual v sybil nodes to participate in the model aggregation.
The system will randomly select o = 5 participants (including
malicious adversaries) during aggregation to execute FEDAVG
to build a shared model. Finally, for all the experiments, we
perform distributed simulations on a single machine configu-
ration with an Intel Xeon E5-2678 CPU, 32 GB RAM, and
four NVIDIA GTX 1080 TI GPUs.

Attack Settings: In the baseline FL system without any
malicious participants, we train a global model by using clean
dataset and count the cases in which all classes are classified
incorrectly during the testing under the conditions described
in [35]. We record the global model accuracy and use this
method as the baseline attack, and then compare the effect
with our SCA. In order to eliminate the random influence of
o in the aggregation stage, we repeated each experiment five
times and calculated the average as the final result. Moreover,
for the malicious adversary settings, we limit the total number
of malicious participants that do not exceed half of the total
participants (k%<50%), and each malicious participant can
have no more than 10 virtual sybil nodes (v<10). For the label
flipping attacks setting, we set two attack goals: Goal1: The
easiest case to be misclassified in the test phase. We choose
(6, 0) in the F-MNIST and (5, 3) for CIFAR-10. Goal2: The
hardest case to be misclassified in the test phase. We choose
(1, 3) in the F-MNIST and (0, 2) for CIFAR-10.

B. Performance Evaluation Metrics
We utilize the two performance evaluation metrics to assess

our proposed SCA. (1) Global Model Accuracy (GMAcc):
we calculate the percentage of all correctly classified samples
as the GMAcc value. (2) Attack Success Rate: this definition
is used to assess the attack success rate of selected samples
using the final poisoning global model obtained by our pro-
posed SCA. Through the adversary objective mentioned above,
we respectively define two performance metrics poison task
accuracy (pta) and main task accuracy (mta) to show the
attack effectiveness of our method more specifically. Where
pta represents the percentage of source class samples classified
as target class to the total samples of source class. Moreover,
mta represents the percentage of samples from other non-
attack classes that are correctly classified.

C. Performance of SCA
In evaluating the effectiveness of our SCA, we explore

the impact of different k values and v values on attack

performance, where k and v represent IIoT malicious devices
and the virtualized malicious sybil nodes. Meanwhile, we
verify the attack effectiveness of our SCA against non-iid data
distribution. We finally analyze the convergence of the global
model.

1) Evaluate the effectiveness of k: To demonstrate the
performance impact of k on the attack effectiveness in our
IIoT-FL system, we set k to a level lower than 50%, ranging
from 4% to 40%. Moreover, each malicious participant only
creates 5 sybil nodes. We consider that 4% is 2 malicious
participants in our network. It is the case of the least number of
malicious participants in a collusion attack. One can see from
Fig.3, we can observe the performance metrics defined in the
figure. Base GMAcc represents the global model accuracy
of the baseline attack in the convergence state, Base Mta
and Base Pta are the main task accuracy and poison task
accuracy calculated in this state. In Fig.3 (a) and Fig.3 (b),
we can find that with the proportion of malicious participants
k increases, the global model accuracy of (1, 3) GMAcc and
(6, 0) GMAcc are gradually decreasing. Because the global
model is gradually being guided by malicious models and is
developing in a bad direction. Once k reaches the maximum
value of 40%, this also produces the largest accuracy dif-
ference, and the result of performance degradation becomes
more and more obvious. However, the main task accuracy
calculated is different, because (6,0) is more likely to be mis-
classified than (1,3). The influence of the poisoning strategy
makes the selected samples more likely to be misclassified, so
(6, 0) Mta is higher than (1, 3) Mta, but they all maintain
similar accuracy as before, which shows that our attack will
not interfere with the normal classification of other classes.
Fig.3 (c) shows the poison task accuracy. It can be clearly
observed that as k increases, (1, 3) Pta and (6, 0) Pta are
gradually increasing. When k reaches the maximum value of
40%, the poisoning effect is most obvious. Even when k is 4%,
our proposed attack strategy makes the global model produce
a larger classification error rate than the baseline.

2) Evaluate the effectiveness of v: To verify the impact of
the number of sybil nodes created by malicious participants
on the model in our IIoT-FL system. We limit the number
of v to less than 10, and we do not affect the global model
performance by virtualizing too many sybils. In addition, the
proportion of malicious participants k is set to 10% in the
computing environment. We observe the attack effectiveness
of our proposed SCA by creating different numbers of sybil
nodes. One can see from Fig.4 (a) and Fig.4 (b), we observe
the impact of v on the model performance by setting the range
of v from 5 to 9. With the number of sybil nodes v gradually
increasing, the global model accuracy of (0, 2) GMAcc and
(5, 3) GMAcc gradually decreases. Because more and more
sybils participate in model aggregation, and they inject poi-
soned local models into global models. When v reaches 9, the
performance degradation becomes more significant. The main
task accuracy remains similar to the baseline, with only 0.02%
accuracy difference, which is acceptable. This shows that our
SCA has little effect on other non-attack classes. Fig.4 (c)
shows a more obvious effect in the poison task accuracy. Even
if the system only sets 5 sybil nodes, the poison task accuracy
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(a) GMAcc and Mta for F-MNIST(1,3). (b) GMAcc and Mta for F-MNIST(6,0). (c) Pta for F-MNIST(1,3) and F-MNIST(6,0).

Fig. 3. The performance results (GMAcc, Mta, and Pta) of F-MNIST(1,3) and F-MNIST(6,0) with different k%. For each value of k%, we set v = 5, and
use the average of 5 runs as the final result.

(a) GMAcc and Mta for CIFAR-10(0,2). (b) GMAcc and Mta for CIFAR-10(5,3). (c) Pta for CIFAR-10(0,2) and CIFAR-10(5,3).

Fig. 4. The performance results (GMAcc, Mta, and Pta) of CIFAR-10(0,2) and CIFAR-10(5,3) with different v. For each value of v, we set k%= 10%, and
use the average of 5 runs as the final result.

of (0, 2) Pta and (5, 3) Pta is more than double the baseline.
It shows that our proposed SCA makes the global model have
a huge impact on the classification of specified attack class.

3) Effectiveness of non-iid data distribution: Devices in
the IIoT-FL system are usually at risk of offline due to
network (such as 5G, 4G, WIFI), communication delays,
power supply, and other problems, which will result in non-iid
distribution of data generated by many devices. To study the
attack performance of our proposed SCA against non-iid data
distribution, we utilize F-MNIST(1,3) and CIFAR-10(0,2) for
testing (as k increases from 4% to 40%, v = 5), and utilize
F-MNIST(6,0) and CIFAR-10(5,3) for testing (as v increases
from 5 to 9, k = 10%). In our experimental setup, the malicious
adversaries launch attacks according to the data distribution
described in V-A. We show the GMAcc and Mta of the two
benchmarks in Fig.5. One can observe that as k increases,
GMAcc gradually decreases in (a) and (b), because the global
model is gradually guided by the malicious model. When k
reaches the maximum value of 40%, the difference in accuracy
is more obvious. While Mta maintains similar performance as
before, compared with the baseline, the maximum difference is
within 0.05, which is acceptable. The same effect can also be
found in (c) and (d). As v increases, the local poisoning model
is aggregated with a greater probability, and the collusion
model misclassifies more source class samples as target class.
Meanwhile, more malicious adversaries participate in training.
The poisoning parameters are rarely compromised by the
parameters of clean data training during aggregation, which
also potentially maintains the attack performance.

4) Convergence analysis: To verify the convergence of our
proposed SCA, we use F-MNIST(6,0) and CIFAR-10(5,3) for

testing in iid data distribution scenario, and use F-MNIST(1,3)
and CIFAR-10(0,2) for testing in non-iid data distribution
scenario. Specifically, for iid, the experimental setting is set to
k = 10% and v = 5, and for non-iid, the experimental setting
is set to k = 20% and v = 5, malicious participants launch the
collusion attacks. We show the convergence curves of GMAcc
and Pta in all training rounds in Fig.6. It can be found that
after the injection attack, the GMAcc gradually increases
with continuous training and is smaller than the baseline. Pta
exhibits higher values with stronger attack effects, and finally
converges. Our attack target is only for the selected source
class, and does not interfere with other non-attack classes and
the convergence of the global model. This result also shows
that our SCA algorithm is effective in launching the poisoning
collusion attack. Based on previous experimental studies and
analysis, we propose the following proposition.

Proposition 1. Under the condition of limited malicious par-
ticipants and the total number of virtual sybil nodes, the upper
limit of the aggregated malicious model is 1

o

∑o
k=1 M

(r+1)
Locadvk

.

MMal upp =
1

o

o∑
k=1

M
(r+1)
Locadvk

(k → advk, advk ∈ o) (7)

Due to the randomness of the participants o selected for
aggregation in each update process, our SCA strategy aims to
make more malicious adversaries selected to perform aggre-
gation with greater probability. It is obvious that the global
model is updated in the honest direction without aggregating
malicious adversaries. When increasing the number of mali-
cious participants or sybil nodes, the new global model will
be guided by more malicious adversaries, who are updated in
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(a) (GMAcc/Mta) for F-MNIST(1,3) (b) (GMAcc/Mta) for CIFAR-10(0,2) (c) (GMAcc/Mta) for F-MNIST(6,0) (d) (GMAcc/Mta) for CIFAR-10(5,3)

Fig. 5. The performance results (GMAcc and Pta) of F-MNIST(1,3) and CIFAR-10(0,2) with different k in (a) and (b) under non-iid data distribution. For
each value of k, we set v = 5. The performance results (GMAcc and Pta) of F-MNIST(6,0) and CIFAR-10(5,3) with different v in (c) and (d) under non-iid
data distribution. For each value of v, we set k= 10%, and use the average of 5 runs as the final result.

(a) iid F-MNIST(6,0) (b) iid CIFAR-10(5,3) (c) non-iid F-MNIST(1,3) (d) non-iid CIFAR-10(0,2)

Fig. 6. The convergence curves (GMAcc and Pta) for (a) iid F-MNIST(6,0), (b) iid CIFAR-10(5,3), (c) non-iid F-MNIST(1,3) and (d) non-iid CIFAR-10(0,2),
and use the average of 5 runs as the final result.

the malicious direction. When all the aggregated participants
are malicious adversaries (advk ∈ o), the malicious model
will compromise the update of the honest model, and finally
aggregate into a purely malicious global model.

D. Comparison with the State-of-the-art

This module mainly compares our proposed SCA with the
state-of-the-art in performance analysis (including GMAcc,
SCAcc, aggregation possibility, and effectiveness of obscuring
attack behavior). In the literature [16], the authors used label
flipping attacks for local poisoning training in a federated
environment, and committed to making the global model
more direct to misclassify the attack targets. In order to
compare with this method more intuitively and make a fairer
performance analysis. We use the same set of participants,
training dataset, and model architecture. Besides, we define a
new evaluation metric, the source class accuracy (SCAcc),
which represents the proportion of source class samples that
can be correctly classified. We use it to verify the effectiveness
of these attack methods against source class samples.

1) Evaluation of GMAcc: This section performs global
model accuracy (GMAcc) analysis on the attack goals for
two datasets. As shown in Fig.7, SCA GMAcc represents
the global model accuracy in the experimental setting (v =
5, k increased from 4% to 40%). SCA2 GMAcc represents
the global model accuracy for (k=10%, v increased from 5
to 9). Com GMAcc represents the global model accuracy of
the comparison method for (k increased from 4% to 40%).
Base GMAcc represents the global model accuracy of the
baseline attack. One can see from Fig.7 that compared to
the baseline attack, the other three attack methods all show
lower model accuracy. This is because affected by the attack

of malicious participants, the server aggregates the poisoned
models, which makes the global model misclassify the selected
samples. Meanwhile, the accuracy of our proposed SCA under
the two different experimental settings is lower than that of
Com GMAcc. The reason is that the sybils in the system
help the local poisoning model to be aggregated by the global
model with a greater probability. Although when the value of
k/v is small, there is little difference in accuracy, with the
increase of k/v, the difference in performance becomes more
obvious. It can be found in Fig.7 (c) that when k = 20%,
v = 5 the global model accuracy of SCA GMAcc and the
global model accuracy of SCA2 GMAcc obtained when k =
10%, v = 7 can be equivalent to the global model accuracy
of Com GMAcc under the setting of k = 40%. This result
also shows that we only need a small number of malicious
participants to achieve the attack effect obtained by a large
number of malicious participants in the comparison method.

2) Evalution of SCAcc: We analyze the source class
accuracy (SCAcc) of these attack methods in this section.
Fig.8 summarizes the source class accuracy of SCA SCAcc,
SCA2 SCAcc, Com SCAcc, and Base SCAcc respec-
tively. It can be clearly found that compared to the baseline
attack, the other three attack modes all show lower source
class accuracy. Due to the influence of poisoning training on
these selected attack classes, as the value of k/v increases, the
global model will misclassify these samples more. Moreover,
the source class accuracy of our proposed SCA under the
two different experimental settings is lower than that of
Com SCAcc. The reason is that the sybil nodes in our
computing environment make the local poisoning model more
likely to be injected into the global model. This advantage
is shown more clearly in Fig.8 (c) and Fig.8 (d), although
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(a) MGAcc for F-MNIST(1,3) (b) MGAcc for F-MNIST(6,0) (c) MGAcc for CIFAR-10(0,2) (d) MGAcc for CIFAR-10(5,3)

Fig. 7. The performance results (MGAcc) of F-MNIST and CIFAR-10. We use the average of 5 runs as the final result.

(a) SCAcc for F-MNIST(1,3) (b) SCAcc for F-MNIST(6,0) (c) SCAcc for CIFAR-10(0,2) (d) SCAcc for CIFAR-10(5,3)

Fig. 8. The performance results (SCAcc) of F-MNIST and CIFAR-10. We use the average of 5 runs as the final result.

when k reaches 40%, SCA SCAcc, SCA2 SCAcc and
Com SCAcc are basically reduced to 0. Because the global
model is affected by collusion attacks launched by malicious
participants in the system, and few source samples can be
correctly classified in the testing phase.

TABLE I
PERFORMANCE RESULTS OF AGGREGATION POSSIBILITY.

Dataset(F-MNIST&CIFAR-10) SCA ap SCA2 ap Com ap
k=4%,v=5 / k=10%,v=5 0.22 0.27 0.03
k=10%,v=5 / k=10%,v=6 0.27 0.34 0.11
k=20%,v=5 / k=10%,v=7 0.41 0.47 0.21
k=30%,v=5 / k=10%,v=8 0.58 0.56 0.3
k=40%,v=5 / k=10%,v=9 0.66 0.65 0.39

3) Evaluation of aggregation possibility: We select four
experimental groups of the two datasets (F-MNIST(1,3), F-
MNIST(6,0), CIFAR-10(0,2), and CIFAR-10(5,3)), and count
the total malicious participants chosen during aggregation. The
R of F-MNIST and CIFAR-10 are 100 and 200, respectively.
Five participants (including malicious adversaries) are selected
for aggregation in each round. Finally, we calculate the ag-
gregation probability of malicious adversaries in each set of
experiments, denoted as the proportion of the total number
of malicious adversaries counted in the total aggregation of
participants. SCA ap, SCA2 ap, Com ap and Com ap in
Table I are represented the aggregation possibility in above ex-
perimental settings. Each result in Table I is the average value
calculated for four experimental groups under the same experi-
mental setting. We can find that compared with Com ap, our
proposed SCA has a higher aggregation possibility, because
sybils play an essential role in the aggregation process. Even
if we use a small part of malicious participants to join the
training, we can achieve similar effects when the comparison
method uses many malicious participants.

4) Effectiveness of obscuring attack behavior: Malicious
adversaries utilize the vulnerability of FL aggregation to
upload and aggregate the poisoned local model, aiming to
damage the global model’s performance. Generally, anomaly
detection methods (such as identifying malicious updates [30])
are used to detect the uploaded anomalous parameters. To
show the characteristics of our collusion attack method more
reliably, we respectively use gradient detection to verify the
parameter update of the two attack methods. We aim to
demonstrate that our collusion attacks can effectively obscure
their attack behavior against anomaly detection. In addition,
for a fair comparison, we select two sets of experiments (F-
MNIST(6,0) and CIFAR-10(0,2) with the experimental setting
k = 10%, v = 6 for SCA, and k = 30% for Com) with similar
aggregation possibility shown in Table I for verification. One
can see from Fig.9, we visualize the gradient value of our
SCA in blue, and the other in green. It can be found from
Fig.9 (a) that the abnormal gradient is displayed on the right
side of the picture, which is the result of our counting. The
abnormal gradient detected is less than the count in Fig.9
(b). Similar performance comparison results are also can be
found in Fig.9 (c) and Fig.9 (d). Since the CIFAR-10 dataset
runs for 200 rounds, the effect is more obvious. Compared
with the independent attacks performed in Fig.9 (b) and Fig.9
(d), the collusion attacks we implemented perform a gradient
fine-tuning of the uploaded poisoning model. Our proposed
SCA can effectively obscure their attack behavior, and further
destroy the performance of the global model after aggregation.

VI. CONCLUSION

This paper analyzed the security vulnerabilities of joint
training in the IIoT-FL system, then proposed a sybil-based
collusion attacks (SCA) approach for the vulnerabilities.
Meanwhile, we also gave further details on the execution of
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(a) F-MNIST(6,0) for SCA (b) F-MNIST(6,0) for Com (c) CIFAR-10(0,2) for SCA (d) CIFAR-10(0,2) for Com

Fig. 9. An overview of performance results for F-MNIST(6,0) and CIFAR-10(0,2). Assess the effectiveness of obscuring their attack behavior for two attack
methods. The gradients of SCA we highlight in blue, and the other highlight in green.

related algorithms, model architecture, and analysis of the
effectiveness of the experiment. In this work, malicious par-
ticipants in our federated system can virtualize multiple sybil
nodes and perform malicious collusion attacks. The purpose is
to make the local poisoning model be aggregated with a greater
possibility. They aim to make the samples of the selected
attack class be misclassified, while other non-attack classes
maintain similar accuracy as before. Compared with the state-
of-the-art, our SCA can achieve a more substantial attack effect
under the condition of fewer malicious participants performing
collusion, and can successfully obscure their attack behavior.
Extensive experimental results show that our SCA has a more
robust attack performance on several evaluation metrics.
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