
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

SymmeProof: Compact Zero-Knowledge Argument
for Blockchain Confidential Transactions

Shang Gao, Zhe Peng, Feng Tan, Yuanqing Zheng Member, IEEE, and Bin Xiao Senior Member, IEEE

Abstract—To reduce the transmission cost of blockchain con-
fidential transactions, we propose SymmeProof, a novel com-
munication efficient non-interactive zero-knowledge range proof
protocol without a trusted setup. We design and integrate two
new techniques in SymmeProof, namely vector compression and
inner-product range proof. The proposed vector compression
is able to reduce the communication cost to log(n) for n-
size vectors. The proposed inner-product range proof converts
a range proof relation into an inner-product form, which can
further reduce the range proof size with the vector compression
technique. Based on these two techniques, SymmeProof can
eventually achieve a log(n)-size range proof. The proposed
SymmeProof can be used in many important applications such
as blockchain confidential transactions as well as arguments for
arithmetic circuit satisfiability. We evaluate the performance of
SymmeProof. The results show that SymmeProof substantially
outperforms representative methods such as Bulletproofs in the
proof size without a trusted setup.

Index Terms—Blockchain, privacy preservation, confidential
transactions, zero-knowledge argument, range proofs, Bullet-
proofs.

I. INTRODUCTION

Blockchain-based cryptocurrencies can avoid tampering at-
tempts from minority attackers by maintaining a copy of
all transactions at distributed participants. Among all the
implementations, Bitcoin [1] is the first fully decentralized
cryptocurrency, which requires all details of transactions for
validation. Although Bitcoin can provide some weak anonymi-
ty by using many identities (pseudonyms), the amount of mon-
ey transferred in transactions (i.e., confidentiality) is public to
everyone. This serious limitation makes Bitcoin unsuitable for
confidential scenarios, such as a second-price auction which
requires confidentiality to incentivize truthful bidding.

To this end, confidential transactions (CT) [2], [3], [4],
[5] use homomorphic commitments to hide amounts. In or-
der to support public verifications on the transactions, zero-
knowledge proof or zero-knowledge argument techniques1 can
be applied by conducting verifications on the confidential

Shang Gao, Yuanqing Zheng, and Bin Xiao are with the Department
of Computing, The Hong Kong Polytechnic University, Hong Kong (e-
mail: shanggao@comp.polyu.edu.hk, csyqzheng@comp.polyu.edu.hk, csbxi-
ao@comp.polyu.edu.hk).

Zhe Peng is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong (e-mail: pengzhe@comp.hkbu.edu.hk).

Feng Tan is with the Shanghai Artificial Intelligence Institute, China (e-
mail: Tf.uestc@gmail.com).

1Precisely, zero-knowledge proofs (with statistical soundness) are different
from zero-knowledge arguments (with computational soundness). In this
paper, we only discuss “arguments” and use “proofs” and “arguments” inter-
changeably since “proofs” cannot have communication less than the witness
size, which makes “proofs” impractical in most real-world applications.

transactions (commitments). Some current CT zero-knowledge
argument (e.g. zero-knowledge succinct non-interactive ar-
gument of knowledge, zk-SNARK) requires a trusted setup
[6], [7], [8]. The security of these protocols is based on the
assumption that the setup is performed properly. Zk-SNARK
can be further improved by replacing the costly setup with an
updatable and universal setup [9], such as Sonic [10], PLONK
[11], and Lunar [12]. However, the universal setup is still
not practical without a trusted third party, which breaks the
decentralized property of the blockchain systems. The zero-
knowledge scalable and transparent argument of knowledge
(zk-STARK) [13] can reduce the trusted setup procedure
and has many promising applications in cryptocurrencies.
Unfortunately, the proof size of zk-STARK is much larger
than existing approaches. As the proofs need to be transmitted
over the whole network and stored for a long time, zk-STARK
incurs high communication and storage overhead.

To improve the efficiency of zk-STARKs while reducing
the trusted setup (transparent zk-STARKs), Supersonic [14]
is proposed. With a new µ-multivariate polynomial com-
mitment scheme, the proof size of Supersonic is reduced
to O(µ log(n)). Dory [15] reduces the prover’s time com-
plexity in Supersonic but incurs a larger proof size. Fractal
[16] further enables the post-quantum property in transparent
proofs. Bootle et al. [17] present another “two-set splitting”
technique for vector compressing which can reduce the size
of an inner-product argument to 6 log(n) for arithmetic cir-
cuit satisfiability. Bulletproofs protocol [18] further leverages
Bootle’s vector compressing idea and applies to range proofs.
By simultaneously dealing with three elements, a more com-
pressed inner-product argument with 2 log(n) size is proposed.
Besides, since Bulletproofs protocol optimizes the underly-
ing range proof technique of blockchain, it is compatible
with current application-level compression approaches such
as Mimblewimble [19], [20]. Though the verification time
of Bulletproofs is polynomial which is less efficient than
some zk-SNARK approaches, Bulletproofs protocol is built
on the falsifiable2 discrete logarithm assumption. Based on
the result from Gentry and Wichs, “there is no black-box
reduction security proof for any (zk-)SNARK under falsifiable
assumptions” [21], which implies poly-logarithm verification
is impossible for Bulletproofs.

Our goal is to design more efficient protocols for range
proofs without a trusted setup, which significantly reduces
the cost of transmission and storage. Specifically, we aim to

2A cryptographic assumption is falsifiable if it can be modeled as a game
between an adversary and an efficient challenger which the challenger can
finally determine whether the adversary won the game [21].



reduce the size of range proof, which could eventually make
CT techniques practical in the real-world applications such as
cryptocurrencies.

In this paper, we propose SymmeProof, a logarithmic-size
honest verifier zero-knowledge range proof argument. Com-
paring with the previous logarithmic-size Bulletproofs, the size
of SymmeProof is only half of the Bulletproofs under the same
setting. SymmeProof has perfect completeness, perfect honest
verifier zero-knowledge, and computational soundness (based
on challenge space size and discrete logarithm assumption).
Meanwhile, it preserves most of advantages of Bulletproofs,
such as reducing setup procedures, aggregating multiple proof-
s, and is compatible with other compression techniques [22],
[20]. Furthermore, SymmeProof can also be generalized to
other applications such as arithmetic circuit satisfiability. We
summarize our contributions as follows:

• Vector compression. We analyze the techniques in Bullet-
proofs and propose a more compact vector compression
technique based on randomization and quadratic residue,
which can reduce the size of existing proofs by half.
Based on this technique, we construct inner-product ar-
guments with only log(n) communication cost.

• Fewer challenges. We propose a new technique that can
convert range proofs to an inner-product form with fewer
challenges. Comparing with the existing range proof
protocol (e.g., Bulletproofs), our technique can reduce
the communication size in interactive scenarios and the
computational cost (hash function) in non-interactive s-
cenarios.

• Combination of techniques. We combine our proposed
techniques to build a range proof protocol named Symme-
Proof, which can significantly reduce the communication
cost (log(n) proof size) without a trusted setup. We also
compare SymmeProof with the state-of-the-art methods
and evaluate its performance.

• More applications. We discuss describe the generalization
of SymmeProof to many important applications such as
multi-party computation protocol and arithmetic circuit
satisfiability. As a matter of fact, since SymmeProof
optimizes the underlying vector compression techniques,
it can be applied to most of today’s vector argument,
inner-product argument, and range proof applications to
improve their performances.

The rest of this paper is organized as follows. Section
II present some related work and background knowledge of
range proofs and zero-knowledge arguments. In Section III, we
analyze Bulletproofs and present our new techniques. Based
our new ideas, we construct inner-product arguments and range
proofs in Section IV and Section V respectively, and further
build SymmeProof, a logarithm-size range proof protocol in
VI. Evaluations are conducted in Section VII. We discuss
SymmeProof in general settings and further applications in
Section VIII. Finally, we conclude this paper in Section IX.

II. PRELIMINARIES

A. Related Work

Range proof. To keep the amount of transactions as a secret,
confidential transactions [2] hide the input and output amounts
in Pedersen commitments and encapsulate zero-knowledge
proofs to ensure (1) all the inputs and outputs are positive, and
(2) the sum of inputs equals outputs. The requirements can be
converted into range proofs to show the secret (amount or sum)
lies in a range [18]. Today’s implementations (e.g. Provisions
protocols [23]) heavily rely on range proofs to avoid malicious
transactions, which becomes a bottleneck of the protocols
since they have a O(n) proof size. For instance, records in
Provisions protocol (about 2 million accounts) contain proofs
of 18GB. More than 70% space (about 13GB) is used for
range proofs.

Mimblewimble [19] explores the fact that the difference
between outputs, inputs, and transaction fees should be 0 for
a valid transaction. Therefore, by regarding an ECDSA public
key as a commitment to 0, the verifier can use the public
key as the signature of the difference. This idea reduces the
transmission of scriptSig (the signatures of unspent transaction
outputs) as well as the proof size. A further improvement
[20] presents a blockchain compression technique which only
contains some block headers and unspent addresses (outputs).
Meanwhile, verifiers can also verify the entire blockchain
without having spent addresses. Though Mimblewimble can
compress the blockchain to reduce the size, the proof size is
still linear.

Bootle et al. propose a vector compression technique for
arithmetic circuit satisfiability [17], which can reduce the size
of a vector argument to 2 log(n). By adopting this technique
in the inner-product argument, the proof size is reduced to
6 log(n) (individually dealing with the two vectors and their
product, which is three times of a single vector argument).
Motivated by Bootle’s idea, Bulletproofs protocol [18] simulta-
neously deals with vectors and the product in an inner-product
argument and reduces the range proof size to 2 log(n). Since
these approaches optimize the range proof technique, they can
work with Mimblewimble to build a more practical blockchain
which significantly reduces the size of the Bitcoin network.

Zero-knowledge argument. To enable the programmability
of Bitcoin, Ethereum [24] adopts the idea of smart contract
to support complex transactions for different applications.
For some privacy-related scenarios, a non-interactive zero-
knowledge (NIZK) technique can be used to protect the
users’ inputs [25], [26], [27], [28], [29], [30]. However,
the communication and computation cost makes NIZK not
suitable for smart contracts since the communication over
the blockchain network is expensive and the computational
power is limited. A further improvement, zero-knowledge
succinct non-interactive argument of knowledge (zk-SNARK)
[7], [8], can reduce the communication and computation cost.
Unfortunately, some zk-SNARK techniques require a trusted
setup. The cost of a trusted setup is also significant. For
instance, HAWK [31] with zk-SNARK technique needs a
trusted third party, or a costly multi-party computation to
generate long common reference strings for different smart



contracts.
The trusted setup can be replaced with a universal setup:

a one-time setup for any computations [9], which is used in
Sonic [10], PLONK [11], and Lunar [12]. These systems com-
bine a reduction of circuit satisfiability (for the probabilistic
tests of polynomials) with polynomial commitment schemes to
build SNARKs. The polynomial commitment scheme’s setup
also needs to be trusted, but can be updated and reused for
any computations, which only needs to be performed once.
However, these systems still need to involve a trusted party to
perform the setup (at least once).

One can fully reduce the setup by adopting scalable com-
putational integrity (SCI) [32] or zero-knowledge scalable and
transparent argument of knowledge (zk-STARK) [13] with
succinct proofs and efficient verifiers. Zk-STARK uses public
and random parameters to generate proofs, which completely
removes the need for a trusted third party or a costly multi-
party computation. Furthermore, the proofs with zk-STARK
can be extended to quantum-secure range proofs (using ElGa-
mal commitments instead of Pedersen commitments), which
have a longer life cycle than those under discrete logarithm
settings (can resist potential attacks from quantum computers).
Though zk-STARK is promising, its limitation is also obvious:
the proof size is too large which makes it impractical to be
applied to most blockchain applications. Comparing with a
288B zk-SNARK proof, zk-STARK requires 45KB to 200KB
storage, which is more than 160 times of zk-SNARK.

Supersonic uses a new polynomial commitment scheme
for µ-multivariate polynomials [14] based on the Diophantine
Arguments of Knowledge (DARK) proof system [33]. The
commitment scheme can fully remove the trusted setup with
class groups of an imaginary quadratic order. Supersonic
can build O(µ log(n))-size proofs which are verifiable in
O(µ log(n)) time. The size can be less than 10% of the
STARK’s proof size. However, Block et al. identify a gap in
the soundness proof of DARK and modify DARK to overcome
the gap [34]. Recently, Bünz and Fisch derive a tight upper
bound on the Schwartz-Zippel lemma to fill the gap [35].

Compressing the secret can also reduce the proof size of zk-
SNARK [18]. Revealing the witness of a compressed secret
is sufficient to convince the verifier about the validity of the
original secret [36]. Bootle et al. leverage this idea to compress
an n dimensional vector to n/2 dimensions and recursive-
ly reduce to 1 size with 2 log(n) additional transmissions.
Furthermore, they adopt the compression technique to build
inner-product arguments for arithmetic circuits satisfiability
with 6 log(n) size [17]. Motivated by Bootle’s compression
idea, Bulletproofs protocol optimizes Bootle’s inner-product
arguments to build range proofs with 2 log(n) size [18].
Though the verification time of Bulletproofs (O(n)) is longer
than Supersonic, its proof size is only 10% of Supersonic’s
proof size.

The compression technique can efficiently generate small-
size proofs without the trusted setup. In this paper, we also
discuss new compression techniques to generate proofs which
has much smaller size than both Bootle’s proofs and Bullet-
proofs.

B. Pedersen Commitment

Definition 1. Commitment [18]. A non-interactive commit-
ment scheme is a pair of probabilistic polynomial time al-
gorithms, (CGen,Com). CGen is a setup algorithm which
generates a commitment key ck ← CGen(1λ) with a secure
parameter λ. Comck is a commitment algorithm which maps
from the message space Mck and randomness space Rck to
the commitment space Cck, Mck × Rck → Cck (Mck, Rck, and
Cck are defined by ck). For a message m ∈ Mck, we can
uniformly pick a random r ∈ Rck and compute the commitment
c = Comck(m, r) ∈ Cck.

For simplicity, we use Com to represent Comck.

Definition 2. Hiding Commitment [18]. A non-interactive
commitment scheme (CGen,Com) is a hiding commitment if
it reveals no information about the committed message. For all
non-uniform polynomial time stateful interactive adversaries
A, there exists a negligible function µ(λ) such that∣∣∣∣∣∣P

A(c) = b

∣∣∣∣∣ck← CGen(1λ); r ← Rck;
(m0,m1) ∈ M2

ck ← A(ck);
b← {0, 1}; c← Com(mb, r)

− 1

2

∣∣∣∣∣∣ 6 µ(λ).

The scheme is perfectly hiding when µ(λ) = 0.

Definition 3. Binding Commitment [18]. A non-interactive
commitment scheme (CGen,Com) is a binding commitment
if a commitment can only be opened to one message. For all
non-uniform polynomial time stateful interactive adversaries
A, there exists a negligible function µ(λ) such that

P

[
Com(m0, r0) = Com(m1, r1)
∧ m0 6= m1

∣∣∣∣∣ ck← CGen(1λ);
(m0, r0,m1, r1)←A(ck)

]
6µ(λ).

The scheme is perfectly binding when µ(λ) = 0.

Definition 4. Pedersen Commitment [18]. A Pedersen com-
mitment ensures the security based on discrete logarithm
assumptions. Mck,Rck = Zp,Cck = G of order p.

CGen : g, h← G
Com(m, r) = gmhr.

Definition 5. Pedersen Vector Commitment [18]. A Pedersen
vector commitment also ensures the security based on discrete
logarithm assumptions. Mck = Znp ,Rck = Zp,Cck = G of
order p.

CGen : g = [g1, · · · , gn]← Gn, h← G

Com(m, r) = hr
n∏
i=1

gmi
i = gmhr.

The Pedersen vector commitment is perfectly hiding and
computational binding under the discrete logarithm assump-
tion. Specifically, the commitment scheme is binding un-
der the assumption that a prover cannot find a non-zero
vector (r,m1, · · · ,mn) such that hr

∏n
i=1 g

mi
i = 1. The

(r,m1, · · · ,mn) is also known as a non-trivial discrete log-
arithm relation for (h, g1, · · · , gn). In some cases that hiding
is not required, we can ensure binding by setting r = 0.



C. Zero-Knowledge Argument of Knowledge
Let R be a relationship that defines a language in NP. w is

called a witness for a statement u if (u,w) ∈ R.
We consider a prover P and a verifier V , both of which

are probabilistic polynomial time interactive algorithms. When
P and V are interacting on inputs s and t, the transcript
produced by them is denoted by tr ← 〈P(s),V(t)〉. We write
〈P(s),V(t)〉 = b depending on whether the verifier rejects
(b = 0), or accepts (b = 1).

Definition 6. Argument of Knowledge [18]. (P,V) is an
argument of knowledge for the relationship R if perfect
completeness and computational witness-extended emulation
(defined as follows) hold.

Definition 7. Perfect Completeness [18]. (P,V) has perfect
completeness if for all non-uniform polynomial time stateful
interactive adversaries A:

P

[
〈P(u,w),V(u)〉 = 1
∨ (u,w) 6= R

∣∣∣∣∣ (u,w)← A(1λ)

]
= 1.

Definition 8. Computational Witness-Extended Emulation
[18]. (P,V) is computational witness-extended emulation if
for all deterministic polynomial time P∗ there exists an ex-
pected polynomial time emulator E such that for non-uniform
polynomial time stateful interactive adversaries A there exists
a negligible function µ(λ) such that:∣∣∣∣∣∣∣
P
[
A(tr) = 1

∣∣∣(u, s)← A(1λ); tr ← 〈P∗(u, s),V〉]−
P

[
A(tr) = 1 ∧

(tr is accepting⇒ (u,w) ∈ R)

∣∣∣ (u, s)← A(1λ)
(tr, w)← EO(u)

] ∣∣∣∣∣∣∣ 6 µ(λ),

where O = 〈P∗(u, s),V(u)〉. The oracle called by EO can
rewind to a specific point and resume with fresh randomness
for the verifier from this point onwards.

Definition 9. Public Coin [18]. (P,V) is called public coin
if all messages sent from the verifier to the prover are directly
and uniformly chosen at random, and are independently of
the prover’s message, i.e., the challenges correspond to the
verifier’s randomness ρ.

An argument is zero-knowledge if it does not leak informa-
tion about w except what can be inferred from the truth of the
statement. We will present arguments that have special honest-
verifier zero-knowledge, which means that given the verifier’s
challenge values in advance, it is possible to efficiently simu-
late the entire argument without knowing the witness.

Definition 10. Perfect Special Honest-Verifier Zero-
Knowledge [18]. A public coin argument (P,V) is perfect
special honest-verifier zero-knowledge (SHVZK) for R if there
exists a probabilistic polynomial time simulator S such that
for all interactive non-uniform polynomial time adversaries A

P

[
(u,w) ∈ R ∧ A(tr) = 1

∣∣∣ (u,w, ρ)← A(1λ);
tr ← 〈P(u,w),V(u; ρ)〉

]
=P

[
(u,w) ∈ R ∧ A(tr) = 1

∣∣∣ (u,w, ρ)← A(1λ);
tr ← S(u, ρ)

]
,

where ρ is the public coin randomness used by the verifier.

Lemma 1. Forking Lemma [18]. Let (P,V) be a public coin
interactive protocol with (2k + 1) moves. Let (n1, · · · , nk)-

tree be an extraction tree of accepting transcripts that can
be efficiently built by distinct challenges and E be a witness
extraction algorithm that always succeeds in extracting a wit-
ness from an (n1, · · · , nk)-tree in probability polynomial time.
Suppose

∏k
i=1 ni is bounded by a polynomial in the security

parameter λ. Then (P,V) has witness-extended emulation.

The proof of Lemma 1 can be referred to [17], [18].

D. Notations

We use G to denote a cyclic group with p order3 (for an
elliptic curve E , p = |E |), and Zp to the ring of integers mod-
ulo p. We use C to represent a challenge space. Accordingly,
the size of the challenge space is |C|. Gn be the n-dimension
vector space over G (similar for Znp ). Let g, h, u ∈ G denotes
generators of G. Commitments (which are group elements) are
capitalized and blinding factors are denoted by Greek letters,
i.e., C = gahα is a commitment to a. We use x ← Zp to
represent the uniform sampling of an element from Zp. For
m,n ∈ Z, gcd(m,n) denotes the greatest common divisor of
m and n.

Vector notations are defined as follows. We use bold font to
represent vectors. For instance, g ∈ Gn denotes a vector with
group elements g0, g1, · · · , gn−1, where gi ∈ G. Suppose k ∈
Zp, we denote kn as kn = [1, k, k2, · · · , kn−1]. Furthermore,
for a,b ∈ Znp and g ∈ Gn, we denote

∏n−1
i=0 g

ai
i as ga and

the Hadamard product of a and b as a ◦ b = [a0 · b0, a1 ·
b1, · · · , an−1 · bn−1].

We write a vector polynomial p(X) ∈ Znp [X] as p(X) =∑d
i=0 pi ·Xi, where each pi is a vector in Znp as a coefficient.

The inner product of two vector polynomials l(X) and r(X)
is defined as follows:

〈l(X), r(X)〉 =

d∑
i=0

i∑
j=0

〈li, rj〉 ·Xi+j ∈ Zp[X]. (1)

Clearly, based on this definition, we can prove that evaluating
the polynomials at x and then taking the inner product is same
as evaluating a new inner-product polynomial at x. Therefore,
there exists an inner-product polynomial such that t(X) =
〈l(X), r(X)〉.

Finally, we use “{(Public Input; Witness) : Relation}”
format to denote the “Relation” of the “Public Input” and
“Witness”.

III. MOTIVATION AND KEY IDEAS

A. Bulletproofs Analysis

Bünz et al. introduce Bulletproos [18] with a logarithmic-
size range proof to show a secret v is in [0, 2n−1]. Specifically,
it presents a new inner-product argument and writes the
range proof relation in an inner-product form for the inner-
product argument. We first describe how the new inner-product
argument works.

3p is not necessarily be a large prime to ensure the hardness of discrete
logarithm problems. Based on Pohlig-Hellman algorithm, we need at least
one factor of p (e.g. q0) is a large prime, which ensures a same security with
curves of q0 order.



The inner-product argument literately compresses two vec-
tors in an inner-product relation into two scalars. Consider
two n-size vectors a,b ∈ Znp . For g,h ∈ Gn and u ∈ G,
the commitment of a and b and their inner-product is A =
gahbu〈a,b〉. The prover will first make a “two-set splitting”
to split an n-size vector into two (n/2)-size vectors, i.e.,
a = [a1,a2], b = [b1,b2], g = [g1,g2], and h = [h1,h2],
where a1 = [a0, · · · , an/2−1] and a2 = [an/2, · · · , an−1], etc.
Then, based on a compressing scalar (i.e., a random challenge)
x ∈ Zp provided by the verifier, the prover compresses a, b,
g, and h to â, b̂, ĝ, and ĥ as follows:

â = xa1 + x−1a2, ĝ = gx
−1

1 ◦ gx2 ,

b̂ = x−1b1 + xb2, ĥ = hx1 ◦ hx
−1

2 .
(2)

Since the new commitment Â becomes

Â = ĝâ · ĥb̂ · u〈â,b̂〉

= ga1
1 ga2

2 ·
(
ga1

2

)x2

·
(
ga2

1

)x−2

· hb1
1 hb2

2 ·
(
hb2

1

)x2

·
(
hb1

2

)x−2

· u〈a1,b1〉+〈a2,b2〉 ·
(
u〈a1,b2〉

)x2

·
(
u〈a2,b1〉

)x−2

= A · Lx
2

·Rx
−2

,

where L = ga1
2 hb2

1 u〈a1,b2〉 and R = ga2
1 hb1

2 u〈a2,b1〉, the
prover must also publish L and R before receiving x. By
iterating the compression process from “a,b to â, b̂”, the
prover can reduce the n-size vectors a and b to two scalars
a and b. Therefore, instead of sending two n-size vectors, the
prover only needs to send 2 log(n) group elements (L and R
in each round of iteration), which can significantly reduce the
proof size.

Note that the inner-product argument dose not ensure hid-
ing. In the range proof of Bulletproofs, it needs to mask the
secret and convert into an inner-product form before applying
the inner-product argument. Specifically, for a range proof of
v ∈ [0, 2n − 1], the prover can express the proof as having
a secret vector aL = [a0, · · · , an−1] such that: (1) aL is
the binary encoding of v, i.e., v =

∑n−1
i=0 2iai; and (2) each

element of aL (ai) is either 0 or 1. Setting aR = aL−1n, we
have the following relations:

aL ◦ aR = 0n,

aL − 1n − aR = 0n,

〈aL,2n〉 = v.

(3)

Taking two challenges y, z ∈ Zp, the prover can prove that
Equation (3) hold by proving that

z2 · 〈aL,2n〉+ z · 〈aL − 1n − aR,y
n〉+ 〈aL,aR ◦ yn〉

=z2 · v, (4)

which can be further converted to an inner-product form of
aL and aR (actually (aL − z · 1n + sL · x) and (yn ◦ (aR +
z · 1n + sR · x) + z2 · 2n) with another challenge x and some
masking vectors sL and sR) [18]. Therefore, the prover needs
to send two n-size vectors l = aL − z · 1n + sL · x and
r = yn ◦ (aR + z ·1n + sR ·x) + z2 ·2n that blindly represent
aL and aR.

Finally, the prover can adopt the inner-product argument to
compress l and r to two scalars l and r. The proof includes
(2dlog2(n)e + 4) group elements, 5 Zp elements, and (4 +
dlog2(n)e) challenges.

We have three observations in Bulletproofs. First, in the
inner-product argument, x and x−1 in Equation (2) reduce the
challenge space. Writing â = x−1 · (x2a1 + a2), the value of
x2 (mod p) maps to a much smaller space than the space of
x. Specifically, suppose C = {x} and C′ = {x2|x ∈ C}, we
have |C′| 6 0.5 × |C|. Thus, the prover will have a higher
chance to correctly guess x2 and pass the verification without
knowing the secret. However, this is not a serious security
problem as the |C′| is still super-poly. Even the attacker’s
winning advantage is increased, it is still negligible.

The second observation is the proof size of Bulletproofs is
mainly contributed by the L’s and R’s in the inner-product
argument. If we can send one group element X instead of
L and R in each iteration, the communication complexity
is reduced by half of the Bulletproofs. However, this is a
challenging problem as the exponents of L and R are different.
It is important to find a practical approach while maintaining
the security of the protocol.

Finally, Bulletproofs protocol uses two challenges, y and z,
to mask the equations in Equation (3). If we regard them as
a (2n+ 1)-size vector,

[aL ◦ aR, aL − 1n − aR, 〈aL,2n〉] = [02n, v],

the prover only needs one challenge y from the verifier to
build the equation:

y2n · 〈aL,2n〉+ yn · 〈aL − 1n − aR,y
n〉+ 〈aL,aR ◦ yn〉

=y2n · v. (5)

This is based on the fact that in a Σ-protocol for an n-size
vector (b0, · · · , bn−1), using n−1 challenges, (x1, · · · , xn−1),
to build the response as f = b0 +

∑n−1
i=1 xibi is equivalent to

build f =
∑n−1
i=0 x

ibi with only one challenge.

B. New Techniques
Reducing additional commitments. Recall the improved

inner-product argument of Bulletproofs, the prover must sepa-
rately publish L and R parts in each iterated step as they share
different exponents. As L and R only contribute to deriving
the new commitment for the verifier, we may reduce the
communication cost if we find new approaches to derive the
new commitment with fewer parameters. For instance, if we
can find an approach to batch L and R parts with X = L ·R,
the prover only needs to send one group element, X , in each
step. Therefore, the communication complexity is reduced by
half of Bulletproofs.

Consider the common input of an argument of knowledge
of one vectors, (G, p,g, A), where g can be split into two
(n/2)-size vectors g1 and g2. We try to prove knowledge of
a vector a = [a1,a2] such that

A = ga = ga1
1 · g2

a2 .

We compress a and g with the challenge x provided by the
verifier: â = a1 +xa2 and ĝ = g1 ◦gx

−1

2 . Therefore, the new



commitment Â becomes

Â = ĝâ = ga1
1 · g

a2
2 · (g

a2
1 )x · (ga1

2 )x
−1

.

If we want to send one group element which contains both
ga2

1 and ga1
2 , the exponents of the two parts must be equal.

Note that these calculations are conducted on a cyclic group
G with order of p. Therefore, the challenge x should satisfy
a quadratic residue

x2 = 1 mod p. (6)

Hence, when the verifier challenges with an x that satisfies
the quadratic residue in Equation (6)4, the prover only needs
to send one group element X = ga2

1 ga1
2 before the challenge.

Both the prover and verifier can compute the new commitment
Â to â:

Â = ga1
1 ·g

a2
2 ·(g

a2
1 )x ·(ga1

2 )x
−1

=ga1
1 ·g

a2
2 ·(g

a2
1 ·g

a1
2 )x=A·Xx.

Since x must satisfy Equation (6), the size of challenge
space can be reduced accordingly (smaller than p)5. We discuss
how to derive the challenge space and its size, and build
a super-poly size space in Appendix A. We also provide
approaches to generate appropriate curves and give a specific
curve in Section VII-B. When the challenge space size is
not be super-poly, the protocol is not secure. An attacking
strategy against a small challenge space size is presented in
Appendix A. Nevertheless, we still consider this approach can
be practical with new secure elliptic curves. We also hope our
solution could provide some insights into other settings such
as lattice, where q does not need to be prohibitively large.

Fewer challenges. Besides vector compression, we also
propose new approaches to reduce the challenges in a range
proof protocol. Based on our previous observation, the prover
only needs one challenge y from the verifier to build the
Equation (5), which can be further converted to an inner-
product form of l = aL − yn · 1n + sL · x and r =
yn ◦(aR+yn ·1n+sR ·x)+y2n ·2n with another challenge x
and some masking vectors sL and sR. The prover can further
run the inner-product argument to reduce the proof size to
logarithmic.

For interactive proof protocols, fewer challenges can reduce
the computational cost of the verifier (generating fewer se-
cure random numbers) and the communication cost. In non-
interactive scenarios, the prover and verifier can invoke fewer
hash functions under Fiat-Shamir heuristic [37], which will
save computational power.

IV. NEW VECTOR COMPRESSION PROTOCOLS

Both [17] and [18] adopt compression techniques to re-
duce the communication cost when dealing with vectors.
These techniques can be used in inner-product arguments
to build communication efficient zero-knowledge proofs for

4In fact, the requirement can be x2 = k mod p, where k ∈ Z∗p. X will
become (ga2

1 )kga1
2 .

5To ensure a large challenge space size, we build p = q0q
e1
1 · · · q

ek
k ,

which q0 is a large prime and others are small primes. Details are presented
in Appendix A.

range proofs or arithmetic circuit satisfiability. When dealing
with n-size vectors, the communication complexity of an
inner-product argument in [17] and [18] is 6 log(n) and
2 log(n) respectively. Based on the idea of reducing additional
commitments in Section III-B, we present a new compression
technique to reduce the communication complexity to log(n),
which is sound but not zero-knowledge. Furthermore, for
inner-product argument, the communication complexity of our
approach is log(n), which is only half of the Bulletproofs size
[18] and 1/6 of Bootle’s proof size [17].

A. Single Vector Argument

We formally describe the argument of knowledge of an n-
size vector a between a prover P and a verifier V .

Common input: (G,C, p,g, A) such that C ⊂ Z∗p, g ∈ Gn,
and A ∈ G.

Prover’s witness: a that satisfies ga = A.
Argument if n = 1:
P → V : a.
V → P : ACCEPT if A = ga, otherwise REJECT.

Reduction if n 6= 1:
P computes:

a1 = [a0, a1, · · · , an/2−1],a2 = [an/2, an/2+1, · · · , an−1],

g1 = [g0, g1, · · · , gn/2−1],g2 = [gn/2, gn/2+1, · · · , gn−1],

X = ga2
1 ga1

2

P → V : X .
V : x← C.
V → P : x.
P and V compute:

ĝ = g1 ◦ gx
−1

2 ∈ Gn/2, Â = A ·Xx ∈ G.

P computes:

â = a1 + xa2 ∈ Zn/2p .

P and V recursively compute a reduced statement from
(G,C, p, ĝ, Â), where P’s witness is â.

Since the prover only transmits one X in each iteration, the
communication complex is only log(n).

Theorem 2. Single Vector Argument. When |C| is super-poly,
the above protocol of argument of knowledge of one vector
has perfect completeness and computational witness-extended
emulation for either extracting a non-trivial discrete logarithm
relation in g or extracting a valid witness a.

The proof of Theorem 2 are presented in Appendix B.

B. Inner-Product Argument

We extend the compression technique to the inner-product
argument of knowledge of two vectors a,b ∈ Znp . The inner-
product relation can be expressed as follows:

{(g,h ∈ Gn, u, P ∈ G;a,b ∈ Znp ) : P = gahbu〈a,b〉}. (7)

Common input: (G,C, p,g,h, u, P ) such that C ⊂ Z∗p,
g,h ∈ Gn, u, P ∈ G.



Prover’s witness: a and b that satisfy:

ga · hb · u〈a,b〉 = P.

Argument if n = 1:
P → V : a, b.
V → P : ACCEPT if P = gahbuab, otherwise REJECT.

Reduction if n 6= 1:
P computes:

a1 = [a0, a1, · · · , an/2−1],a2 = [an/2, an/2+1, · · · , an−1],

b1 = [b0, b1, · · · , bn/2−1],b2 = [bn/2, bn/2+1, · · · , bn−1],

g1 = [g0, g1, · · · , gn/2−1],g2 = [gn/2, gn/2+1, · · · , gn−1],

h1 = [h0, h1, · · · , hn/2−1],h2 = [hn/2, hn/2+1, · · · , hn−1],

zX = 〈a1,b2〉+ 〈a2,b1〉, X = ga2
1 ga1

2 hb2
1 hb1

2 uzX .

P → V : X .
V : x← C.
V → P : x.
P and V compute:

ĝ = g1 ◦ gx
−1

2 ∈ Gn/2, ĥ = h1 ◦ hx2 ∈ Gn/2

P̂ = P ·Xx ∈ G.

P computes:

â = a1 + xa2 ∈ Zn/2p , b̂ = b1 + x−1b2 ∈ Zn/2p . (8)

P and V recursively compute a reduced statement from
(G,C, p, ĝ, ĥ, u, P̂ ), where P’s witness is â and b̂.

Similar to the single vector argument scenario, the compu-
tation complexity is log(n), which is much less than the size
of Bulletproofs [18] and Bootle’s proof [17].

Theorem 3. Inner-Product Argument. When the challenge
space size is super-poly, the above protocol of inner-product
argument of knowledge of two vector has perfect complete-
ness and computational witness-extended emulation for either
extracting a non-trivial discrete logarithm relation between
g,h, u or extracting a valid witness a,b.

The proof of Theorem 3 is given in Appendix C.

V. NEW RANGE PROOF PROTOCOL

We propose a zero-knowledge protocol to use the inner-
product argument for range proofs, which reduces the number
of challenges without sacrificing challenge space size (i.e.,
independent from the vector compression technique).

The range proof can be constructed with a Pedersen com-
mitment V ∈ G that is used for the inner-product argument.
Specifically, let V ∈ G be the Pedersen commitment on
v ∈ Zp with randomness γ. Formally speaking, the range
proof relation can be expressed as:

{(V, g, u ∈ G; v, γ ∈ Zp) :V = gvuγ ∧ v ∈ [0, 2n−1]}. (9)

A. Inner-Product Range Proof

Recall the “fewer challenges” idea in Section III-B. We use
an n-size vector aL to encode the secret v, i.e., 〈aL,2n〉 = v,
and another vector aR which aR = aL − 1n. Based on a

challenge y from the verifier, the prover can use Equation (5)
to prove Equation (9). We further re-write Equation (5) into
an inner-product form:〈

aL − yn · 1n, yn ◦ (aR + yn · 1n) + y2n · 2n
〉

= y2n · v + δ(y),
(10)

where δ(y) = (yn − y2n) · 〈1n,yn〉 − y3n · 〈1n,2n〉 ∈ Zp.
Thus, we can leverage the idea of inner-product argument to
compress each vector.

Notice that we also need two random vectors, sL, sR ∈ Znp ,
to hide aL and aR. The zero knowledge protocol is:
P computes:

aL ∈ {0, 1}n s.t. 〈aL,2n〉 = v

aR = aL − 1n

α, ρ← Zp
A = uαgaLhaR ∈ G // commitment to aL,aR

sL, sR ← Znp // blinding vector for aL,aR

S = uρgsLhsR ∈ G // commitment to sL, sR

P → V : A,S
V : y ← Z∗p // challenge space is Z∗p instead of C
V → P : y

To build the two vectors in an inner-product argument, the
prover defines two linear vector polynomials r(X), l(X) ∈
Znp [X] and one polynomial t(X) ∈ Zp[X]:

l(X) = (aL − yn · 1n) + sL ·X,
r(X) = yn ◦ (aR + yn · 1n + sR ·X) + y2n · 2n,
t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2.

Since the constant terms of t(X), t0, is the result of Equation
(10), the prover needs to prove t0 satisfies:

t0 = y2n · v + δ(y).

Therefore, the prover needs to commit all other coefficients
of t(X), t1, t2 ∈ Zp, and engage in a polynomial identity test
with the verifier to show t(X) = 〈l(X), r(X)〉 as follows:
P computes:

τ1, τ2 ← Zp // blinding t1 and t2
Ti = uτigti ∈ G, i ∈ {1, 2} // commitment to t1 and t2

P → V : T1, T2

V : x← Z∗p // challenge space is Z∗p instead of C
V → P : x
P computes:

l = l(x) = (aL − yn · 1n) + sL · x ∈ Znp
r = r(x) = yn◦ (aR + yn ·1n+ sR ·x) + y2n · 2n ∈ Znp
t̃ = 〈l, r〉 ∈ Zp
τx = y2n · γ + τ1 · x+ τ2 · x2 ∈ Zp
µ = α+ ρ · x ∈ Zp (11)

P → V : l, r, t̃, τx, µ
Notice that we cannot directly apply the compression s-

trategy of inner-product argument to l and r. It is because
aR part in r contains the coefficient yn. When adopting



the inner-product argument directly, yn will be “mixed into”
r̂ = r1 +zr2 (z is a challenge in the inner-product argument).
Since the commitment A = uαgaLhaR does not contain yn,
it is important to cancel out yn in r to make the coefficient of
aR being 1 (or a constant). Therefore, we change the group
elements h with the following transfer:

h′i = hy
−i

i ∈ Z, i ∈ [0, n− 1]. // h′ = [h0, h
y−1

1 , hy
1−n

n−1 ]

Then we have hyn◦aR = (h′)aR , which can be used to
construct gl(h′)ruµ as A · Sx · g−yn · (h′)y

n·yn+y2n·2n

.
Therefore, we build a commitment of l and r, P = gl(h′)ruµ,
on group elements g, h′, and u.

The verifier further checks: (1) t̃ ?
= t0+t1 ·x+t2 ·x2; (2) l ?

=

(aL−yn·1n)+sL·x; (3) r ?
= yn◦(aR+yn·1n+sR·x)+y2n·2n;

and (4) t̃ ?
= 〈l, r〉. Thus, the final steps of the range proof

protocol are:
V → P: ACCEPT if

gt̃uτx = V y
2n

· gδ(y) · T x1 · T x
2

2 , // checking (1)

and gl(h′)ruµ = A · Sx · g−y
n

· (h′)y
n·yn+y2n·2n

,

// checking (2) and (3)

and t̃ = 〈l, r〉; // checking (4)

otherwise REJECT.
In the above range proof protocol, the prover needs to

transmit two n-size vectors l and r, four group elements
A,S, T1 and T2, and three Zp elements (t̃, τx, µ). The verifier
needs to send two random challenges x and y. Please note
that since the challenges are generated from Z∗p, this approach
will not sacrifice challenge space size and is compatible with
existing prime order elliptic curves.

Corollary 4. Range Proof. The above protocol of inner-
product range proof has perfect completeness, perfect honest
verifier zero-knowledge and computational special soundness.

Proof: The range proof is a special case of the aggregated
range proof when m = 1 without compression. Therefore, it
is a direct corollary of Theorem 6.

VI. SYMMEPROOF

A. Logarithmic Range Proof

We leverage the inner-product argument (Section IV-B)
to improve the efficiency of range proof (Section V-A) by
literately reducing l and r to a single scalar.

We briefly describe the compression protocol as follows:
Common input: (G,C,g,h, g, u, V,A, S where g,h ∈ Gn

and g, u, V,A, S ∈ G.
Prover’s witness: sL, sR, aL, aR and v that satisfy:

〈aL,2n〉 = v, aR = aL − 1n, aL ◦ aR = 0n,

V = gvuγ , A = uαgaLhaR , S = uρgsLhsR .

Inner-product range proof: (Section V-A)
V generates y ∈ Z∗p and sends to P .
P generates τ1, τ2 ∈ Zp, computes and sends T1 =

uτ1gt1 and T2 = uτ2gt2 to V .
V generates x ∈ Z∗p and sends to P .

P computes τx, µ, t̃, l, r based on Equation (11) and sends
τx, µ, t̃ to V .

P and V compute:.

h′, g′ = g, n = size(l),

P =A · Sx · g−y
n

· (h′)y
n·yn+y2n·2n

.

V generates z ∈ Z∗p and sends to P .
P and V compute:.

P ′ = P · uz·t̃.

Argument if n = 1:
P → V : l, r.
V → P : ACCEPT if:

gt̃uτx = V y
2

· gy
2−3y3· T x1 · T x

2

2 ,

and (g′)l(h′)ruµ = A · Sx · (g′)−y · (h′)3y2 ,

and t̃ = l · r;

otherwise REJECT.
Reduction if n 6= 1, on (G,C,g′,h′, u, P ′; l, r): (Section

IV-B)
P computes X and sends it to V .
V generates x′ ∈ C and sends to P .
P and V compute ĝ′, ĥ′, û, P̂ ′ based on Equation (2).
P computes l̂, r̂ based on Equation (2).
P and V recursively compute a reduced statement from

(G,C, ĝ′, ĥ′, û, P̂ ′; l̂, r̂), where P’s witness is l̂ and r̂.

Corollary 5. Logarithmic Range Proof. The above protocol
of logarithmic range proof has perfect completeness, perfec-
t honest verifier zero-knowledge and computational special
soundness.

Proof: The range proof is a special case of the aggregated
range proof when m = 1. Therefore, it is a direct corollary of
Theorem 6.

B. Aggregating Range Proofs

Many scenarios require the prover to perform multiple range
proofs at the same time. One application is one confidential
transaction always involves multiple outputs (i.e., unspent
transaction outputs) to allow the sender to collect unspent
funds, which requires one range proof for each account. We
show how to aggregate m range proofs into one to reduce the
communication cost. The multiple range proofs relation is:

{(g, u ∈ G,V ∈ Gm;v,γ ∈ Zmp ) :

Vj = gvjuγi ∧ vj ∈ [0, 2n − 1] ∀j ∈ [1,m]}.
(12)

The main idea of this approach is to use one nm-size vector
to represent all vj . We describe how to aggregate range proofs
with our inner-product argument. Specifically, we generate
one vector aL,j for each vj that satisfies Equation (9), and
combine all aL,j into one (2nm + m)-size vector, [aL ◦
aR,aR−1nm−aL, 〈aL,2,2n〉, 〈aL,2,2n〉, · · · , 〈aL,m,2n〉] =
[02nm, vi, v2, · · · , vm]. The aggregated protocol is similar to
the single range proof protocol described in Section V-A, with
the following adjustments (more specifically, we only modify
the inner-product range proof part).



Firstly, let’s define an nm-size vector 2nmj =

[0(j−1)n,2n,0(m−j)n], and an n-size vector
hj = [h(j−1)n, h(j−1)n+1, · · · , hjn−1] (i.e., (j − 1)n to
jn − 1 elements of the nm-size vector h). After the verifier
challenges with y ∈ Z∗p, Equation (5) will become:

y2nm ·
m∑
j=1

yj−1 · 〈aL,j ◦ 2n,yn〉+

ynm · 〈aL − 1nm − aR,y
nm〉+ 〈aL,aR ◦ ynm〉

=

m∑
j=1

y2nm+j−1 · vj . (13)

Accordingly, Equation (10) will become:〈
aL−ynm· 1nm,ynm◦ (aR+ynm· 1nm)+

m∑
j=1

y2nm+j−1· 2nmj
〉

=

m∑
j=1

y2nm+j−1vj + δ(y),

where δ(y) = (ynm − y2nm) · 〈1nm,ynm〉 −
∑m
j=1 y

2nm+j ·
〈1n,2n〉.

Secondly, since sL and sR become nm-size vectors, we
should also adjust r(X), l(X), t(X), and τx accordingly:

l(X) =aL − ynm · 1nm + sL ·X ∈ Znmp [X]

r(X) =ynm ◦ (aR + ynm · 1nm + sR ·X)

+

m∑
j=1

y2nm+j−1 · 2nmi ∈ Znmp [X]

τx =τ1 · x+ τ2 · x2 +

m∑
j=1

y2nm+j−1γj ∈ Zp.

Finally, the verifier will check

gt̃uτx
?
= Vy2nm·ym

· gδ(y) · T x1 · T x
2

2 , and

gl(h′)ruµ
?
= A · Sx·g−y

nm

·(h′)y
nm·ynm

m∏
j=1

(h′j)
y2nm+j−1·2n

,

and t̃
?
= l · r.

The aggregated range proof requires a prover to send
dlog2(n · m)e + 4 group elements and 5 elements in Zp.
Therefore, the proof size only grows by dlog2(m)e, which is
much less than treating them individually (multiplied by m).

Theorem 6. Aggregated Range Proof. The above protocol
of aggregated range proof has perfect completeness, perfec-
t honest verifier zero-knowledge and computational special
soundness.

The details of the proof of Theorem 6 are given in Appendix
D.

C. Non-Interactive Range Proof

Though we only discuss interactive range proof protocols so
far, we can convert our logarithmic range proof protocols into
non-interactive ones with Fiat-Shamir heuristic [37]. All chal-
lenges are generated by hashes of the transcript of the inter-

TABLE I: Performance of Multiple Range Proof Arguments
under m range proofs.

Setup #G elements #Zp elements

Groth’16 [8] yes 3 0
Sonic [10] universal 20 16
PLONK [11] universal 7 7
Lunar [12] universal 10 2
Σ-Protocol no mn 3 ·mn+ 1
Mimblewimble [19] no 0.63 ·mn 1.26 · nm+ 1
Supersonic [14] no d2 log2(mn)e d(µ+ 1) log2(mn)e
Dory [15] no d6 log2(mn)e+13 8
Bulletproofs [18] no d2 log2(mn)e+ 4 5
SymmeProof no dlog2(mn)e+ 4 5

action up to that point. For instances, y = H(g,h, u, V,A, S)
and x = H(g,h, u, V,A, S, y, T1, T2) in the logarithmic range
proof. Please note that when the challenge space is C, the hash
function should map to C instead of Z∗p. We suggest to use
a hash function that maps to Z|C|, and then maps Z|C| to C
based on the approach discussed in Appendix A.

To avoid a trusted setup in each protocol, approaches such
as adopting a common random string, or using a small public
seed to generate public parameters with hash functions can be
used.

VII. EVALUATION

A. Theoretical Analysis

Considering m range proofs, we compare the range proof
performance of SymmeProof other approaches, including
trusted setup zk-SNARK systems [8], universal setup systems
[10], [11], [12], and transparent systems (no setup is required)
[20], [14], [15], [18]. The theoretical communication cost of
each protocol is depicted in Table I. The µ in Supersonic
indicates evaluating µ points of the polynomial in quadratic
arithmetic programs. For simplicity, G elements include all
group points even for different curves.

Please note we do not include the challenge size when
calculating proof size, since challenges can be replaced by the
results of hash functions in non-interactive protocols based
on the Fiat-Shamir heuristic (Section VI-C). Nevertheless,
reducing the challenges can improve the computational ef-
ficiency of non-interactive protocols (fewer hash functions).
The communication cost the SymmeProof is significantly
lower than other transparent systems, which is only half of
the Bulletproofs size. Besides, SymmeProof preserves the
nice features of Bulletproofs: the proof size only grows by
dlog2(m)e for m range proofs, while the proof size of Σ-
protocol and Mimblewimble grows by m times.

B. Performance Evaluation

We evaluate the performance of SymmeProofs. Since Sym-
meproofs require |C| must be super-poly to ensure security, it
may not be adopted on today’s prime order elliptic curves. We
have shown the strategy to find a secure |C| in Appendix A.
Methods of finding elliptic curves with a specific composite
order can be referred to [38], [39]. We generate a simple
composite order elliptic curve based on [38], the parameters
of the curve E is as follows. This curve E is secure based



10 20 30 40 50 60
Range (bit)

0

2

4

6

8

10

12
Pr

oo
f 

Si
ze

 (
K

B
)

 Protocol
Mimblewimble
Bulletproof
SymmeProof

Fig. 1: Range proof size of different proofs.

on the Pohlig-Hellman algorithm. More secured curves can
be generated via Cocks-Pinch method [39].

E : y2 = x3 + 1 mod q, (14)

where q = p × 8 ×
∏24
i=1 pi − 1. p is the order of NIST P-

256 curve (a big secure prime), and
∏24
i=1 pi is the product of

24-smallest odd primes (in [3, 97])6. The order of the curve is
|E | = p+1 (as with the approach in Appendix A). Specifically,
we give the values of q, |E |, and the base point (Gx, Gy) as
follows:

q =0x6f0251b8ffc37d37974f63154276f8240f3661e026c615

ff7008db6bf1d078a73930ae91e68da9e4739879c5c9e6817.

|E | =0x6f0251b8ffc37d37974f63154276f8240f3661e026c615

ff7008db6bf1d078a73930ae91e68da9e4739879c5c9e6818.

Gx =0x7c9402ba2a66450571c1bcdb1e74c4f3259d71331f428ec

b1c849a9dae9cf39c132e1089c77efedc5f6ee7796a2945.

Gy =0x81e2c493c34bbca6ca6ec554ac4daf9df84a2ed38386954

23c38afe7e660bceb91aa5888d39fec9e4db535eb20d342.

For G elements, we use the compressed format which stores
each element in 48 bytes. SymmeProof is implemented with
Golang based on the self-implemented elliptic package (the
curve E showed above). A reference implementation is shown
in [40]. All tests are run on a computer equipped with an i7-
8750H CPU and 8GM memory.

The range proof size of Σ-protocol [41], Mimblewimble
[20], Bulletproofs [18], and SymmeProof is depicted in Figure
1. When the range is small (less than 3 bit), SymmeProof is
not efficient due to the constant elements and additional bits
of the curve points in transmissions. When the range is large,
SymmeProof is the best. It seems that the SymmeProof’s size
is more than half of the Bulletproofs. It is because we only
evaluate the range up to 64 bits. Considering log2(64) = 6,
the log(n) part is not significant comparing with the constant
part. When n is large, we can regard SymmeProof is only half
of the Bulletproofs size.

We show the size of multiple proofs in Figure 2. We zoom in
proof size in range [0, 8] to more clearly compare SymmeProof
and Bulletproofs. As expected, Σ-protocol and Mimblewimble

6In the lattice settings, q does not need to include a large prime, which
indicates q does not need to be prohibitively large.

2 3 4 5 6 7 8 9
Number of Proofs

20

30

40

50

60

Pr
oo

f 
Si

ze
 (

K
B

)

 Protocol
Mimblewimble
Bulletproof
SymmeProof

1 2 3 4 7 8 9 105 6 
0

2

4

 Protocol
Mimblewimble
Bulletproof
SymmeProof

10
0

10

6

8

1

Fig. 2: Multiple range proofs size of different proofs under 32
bits of range.

4 8 16 24 32 40 48 56 64
Range (bit)

0

100

200

300

400

500

600

T
im

e 
(m

s)

Prover (SymmeProof)
Prover (Bulletproofs)
Verifier (SymmeProof)
Verifier (Bulletproofs)

Fig. 3: Time cost of the prover and verifier under Symme-
Proofs.

grow linearity with the number of proofs. While both Bul-
letproofs and SymmeProof only grow an additional log2(m)
size, which is much smaller than other proofs. Meanwhile,
SymmeProof is smaller than Bulletproofs regardless of m. As
we discussed earlier, SymmeProof’s size is more than half of
the Bulletproofs since we fix n at 32.

Finally, we compare the time cost of the prover and verifier
in our approach with Bulletproofs. All of them grow linearity
with the range size. As SymmeProof is built on the “two-set
splitting” technique, its performance is similar to Bulletproofs.
Our performance is a little bit better since 1) we compute
â = a1+xa2 rather than â = xa1+x−1a2 to avoid computing
xa1 in each iteration, 2) we do not need to compute the inverse
values since x−1 = x mod p, and 3) we use fewer challenges
(fewer hash function calls). The prover’s cost is higher than the
verifier’s cost since it needs to conduct more group operations



such as generating commitments to sL and sR. As all tests
are run on our curve E defined in Equation (14), which does
not have assembly codes to speed up group field operations,
our result (time) is much higher than Bulletproofs in [18]. The
time to generate a proof for a range with 64 bits is 561ms, and
the verification time is 169ms. Nevertheless, our performance
can be significantly improved by assembling implementations.

VIII. DISCUSSION

A. SymmeProof in Power-of-k Settings

In our design of SymmeProof, we consider the challenge x
satisfies a quadratic equation in Equation (6). Here we discuss
a more general case that x satisfies

xk = 1 mod p. (15)

Equation (6) is a special case when k = 2.

Similar to our analysis in Appendix A, we can compute
challenges and derive the size of the challenge space by
solving the module functions

xk = 1 mod qeii , i ∈ [0, n], (16)

where qi’s and ei’s are defined in Appendix A (by replacing
the power-of-2 as k in Equation (18)). Based on Lagrange’s
theorem, Equation (16) has at most k solutions. Thus, the
challenge space size may increase with k. For instance, when
k and q are distinct odd primes, there are gcd(k, qe − qe−1)
solutions to xk = 1 mod qe.

Equation (15) indicates “k-set splitting”. We further de-
scribe how “k-set splitting” works in the single vector argu-
ment (Section IV-A). For two vectors a ∈ Znp and g ∈ Gn,
we first split a and g into k parts, a = [a1, · · ·ak], g =
[g1, · · ·gk]. Second, with a challenge x (xk = 1 mod p), we
reduce a and g by:

â =

k∑
i=1

xiai, ĝ =

k∏
i=1

gx
−i

i .

We use a matrix to represent the commitment of the reduced
vector â:



a1 a2 · · · ak−1 ak

g1 ga1
1 (ga2

1 )x · · · · · · (gak
1 )x

k−1

g2 (ga1
2 )x

−1

ga2
2

. . . · · · · · ·
...

...
. . . . . . . . .

...

gk−1 · · · · · ·
. . . g

ak−1

k−1 (gak

k−1)x

gk (ga1

k )x
−k+1 · · · · · · (g

ak−1

k )x
−1

gak

k

.

The new commitment ĝâ is the product of all elements in
the matrix. We denote elements that share the same exponent
with the same color. Based on Equation (15), we have xk−m =
x−m mod p, which indicates we can further batch xk−m and

x−m exponent parts. Therefore, the new commitment becomes



a1 a2 · · · ak−1 ak

g1 ga1
1 (ga2

1 )x · · · · · · (gak
1 )x

−1

g2 (ga1
2 )x

−1

ga2
2

. . . · · · · · ·
...

...
. . . . . . . . .

...

gk−1 · · · · · ·
. . . g

ak−1

k−1 (gak

k−1)x

gk (ga1

k )x · · · · · · (g
ak−1

k )x
−1

gak

k

,

which can be formally expressed as

ĝâ =

k∏
i=0

Ax
i

i , where Ai =
∏

t−s=i mod k

gat
s and A0 = A.

Accordingly, the communication cost with “k-set splitting” is
(k − 1) logk(n).

B. More Applications

Σ-protocol. Σ-protocols [41] (e.g. Schnorr protocol) for
an n-size vector argument require the prover to send n
elements in Zp (the response to the challenge) and one group
element (the commitment). Therefore, we can apply our vector
compression technique in Section IV-A directly to Σ-protocols
to reduce the communication size. Instead of sending an n-
size response, the prover follows the protocol in Section IV-A
to reduce the response vector to a single scalar with log(n)
group elements. The communication cost of the compressed
Schnorr’s protocol is log(n) + 1 group element and one Zp
element.

Aggregate transactions. In many cases, one confidential
transaction may contain multiple parties and each party only
knows some of the inputs and outputs to create range proofs
for his own part. This technique has been widely used in
CoinJoin transactions [42]. Bünz et al. introduce a secure
multi-party computation (MPC) protocol to aggregate multiple
range proofs into one based on the inner-product argument
[18]. With our compression technique, we can further improve
the performance of the MPC protocol by replacing the inner-
product argument with our approach in Section IV-B.

Mimblewimble. Mimblewimble [19], [20] compresses the
blockchain-based on two facts: (1) for valid transactions, the
difference between outputs, inputs, and transaction fee should
be 0; and (2) an ECDSA public key can be regarded as
a commitment to 0. Therefore, Mimblewimble regards the
public key as the signature of the difference, and thus reduces
the transaction of scriptSig. Since it does not optimize the
underlying range proof technique, SymmeProof can be used
as a plug-in component to replace the range proofs.

Arithmetic circuit satisfiability. Bootle et al. [17] present
an efficient zero-knowledge argument for arithmetic circuits
satisfiability with 6 log(n) + 13 elements by converting the
Hadamard-product into a single inner-product relation. The
further improvement, Bulletproofs [18], reduces the size to
2 log(n) + 13 elements by converting the circuits satisfiability
into an inner-product form and reducing the communication
cost with the improved inner-product argument. Considering
our inner-product argument technique in Section IV-B, we



can further reduce the communication cost to log(n). Thus, a
protocol of argument for arithmetic circuits satisfiability with
our inner-product argument technique only needs log(n) + 13
elements.

IX. CONCLUSION

Range proofs have a wide application in today’s blockchain-
based cryptocurrencies. Previous techniques can be used in
blockchain confidential transactions, but the communication
cost of those techniques are prohibitive in practice. We propose
SymmeProof, which significantly reduces the range proof size
of Bulletproofs from 2 log(n) + 9 to log(n) + 9. Meanwhile,
our technique can also be applied to other approaches such
as the arithmetic circuit satisfiability argument to reduce the
proof size. Evaluation results show that the proof size of
our approach is the smallest among all approaches. Besides
discrete logarithm implementations, we also wish our solution
could provide some insights into lattice settings.

ACKNOWLEDGEMENT

We would also like to thank the editor and reviewers of
their constructive comments to improve our work. This paper
is partially supported by HK PolyU ZVUE A0035279, HK
RGC GRF PolyU 15216721/Q86A, and Guangdong Basic and
Applied Basic Research Foundation 2020A1515111070.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[2] G. Maxwell, “Confidential Transactions.” https://github.com/lgrkvst/ele

mentsproject.github.io/blob/master/confidential values.md, 2015.
[3] S. Ma, Y. Deng, D. He, J. Zhang, and X. Xie, “An Efficient

NIZK Scheme for Privacy-preserving Transactions over Account-model
Blockchain,” in IEEE Transactions on Dependable and Secure Comput-
ing (TDSC), 2020.

[4] S. Gao, T. Zheng, Y. Guo, and B. Xiao, “Efficient and Post-Quantum
Zero-Knowledge Proofs for Blockchain Confidential Transaction Proto-
cols,” IACR Cryptology ePrint Archive, 2021.

[5] T. Zheng, S. Gao, B. Xiao, and Y. Song, “Leaking Arbitrarily Many Se-
crets: Any-out-of-Many Proofs and Applications to RingCT Protocols,”
IACR Cryptology ePrint Archive, 2021.

[6] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge,” in Annual Cryptology Conference (CRYPTO), Springer,
2013.

[7] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic Span
Programs and Succinct NIZKs without PCPs,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), Springer, 2013.

[8] J. Groth, “On the Size of Pairing-based Non-interactive Arguments,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), Springer, 2016.

[9] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers,
“Updatable and Universal Common Reference Strings with Applications
to zk-SNARKs,” in Annual Cryptology Conference (CRYPTO), Springer,
2018.

[10] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic: Zero-
Knowledge SNARKs from Linear-Size Universal and Updateable Struc-
tured Reference Strings,” IACR Cryptology ePrint Archive, 2019.

[11] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive Arguments of
Knowledge,” IACR Cryptology ePrint Archive, 2019.

[12] M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodrı́guez, “Lu-
nar: A Toolbox for More Efficient Universal and Updatable zkSNARKs
and Commit-and-Prove Extensions,” in International Conference on
the Theory and Application of Cryptology and Information Security
(ASIACRYPT), Springer, 2021.

[13] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, Trans-
parent, and Post-Quantum Secure Computational Integrity,” in IACR
Cryptology ePrint Archive, 2018.

[14] B. Bünz, B. Fisch, and A. Szepieniec, “Transparent SNARKs from
DARK Compilers,” IACR Cryptology ePrint Archive, 2019.

[15] J. Lee, “Dory: Efficient, Transparent Arguments for Generalised Inner
Products and Polynomial Commitments,” in Theory of Cryptography
Conference, Springer, 2021.

[16] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-Quantum and
Transparent Recursive Proofs from Holography,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), Springer, 2020.

[17] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient
Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete
Log Setting,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), Springer,
2016.

[18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short Proofs for Confidential Transactions and More,” in
Proc. of the IEEE Symposium onSecurity and Privacy (Oakland), IEEE,
2018.

[19] T. E. Jedusor, “Mimblewimble.” https://github.com/mimblewimble/docs,
2022.

[20] A. Poelstra, “Mimblewimble.” https://cyber.stanford.edu/sites/g/files/sbi
ybj9936/f/andrewpoelstra.pdf, 2016.

[21] C. Gentry and D. Wichs, “Separating Succinct Non-Interactive Argu-
ments from all Falsifiable Assumptions,” in Proc. of the annual ACM
Symposium on Theory of Computing (STOC), ACM, 2011.

[22] H. Chung, K. Han, C. Ju, M. Kim, and J. H. Seo, “Bulletproofs+: Shorter
Proofs for Privacy-Enhanced Distributed Ledger,” IACR Cryptology
ePrint Archive, 2020.

[23] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions:
Privacy-Preserving Proofs of Solvency for Bitcoin Exchanges,” in Proc.
of the ACM Conference on Computer & Communications Security
(CCS), ACM, 2015.

[24] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” in Ethereum Project Yellow Paper, 2014.

[25] Y. Lu, Q. Tang, and G. Wang, “Zebralancer: Private and Anonymous
Crowdsourcing System Atop Open Blockchain,” in Proc. of the IEEE
International Conference on Distributed Computing Systems (ICDCS),
IEEE, 2018.

[26] Y. Lu, Q. Tang, and G. Wang, “Dragoon: Private Decentralized Hits
Made Practical,” in Proc. of the IEEE International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2020.

[27] H. Feng and Q. Tang, “Witness Authenticating NIZKs and Applications,”
in Annual Cryptology Conference (CRYPTO), Springer, 2021.

[28] K. Yang, P. Sarkar, C. Weng, and X. Wang, “QuickSilver: Efficient
and Affordable Zero-knowledge Proofs for Circuits and Polynomials
over any Field,” in Proc. of the ACM Conference on Computer &
Communications Security (CCS), ACM, 2021.

[29] J. Zhang, T. Liu, W. Wang, Y. Zhang, D. Song, X. Xie, and Y. Zhang,
“Doubly Efficient Interactive Proofs for General Arithmetic Circuits with
Linear Prover Time,” in Proc. of the ACM Conference on Computer &
Communications Security (CCS), ACM, 2021.

[30] Z. Wan, Y. Zhou, and K. Ren, “zk-AuthFeed: Protecting Data Feed to
Smart Contracts with Authenticated Zero-Knowledge Proof,” in IEEE
Transactions on Dependable and Secure Computing (TDSC), 2022.

[31] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving Smart
Contracts,” in Proc. of the IEEE Symposium onSecurity and Privacy
(Oakland), IEEE, 2016.

[32] E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner,
“Interactive Oracle Proofs with Constant Rate and Query Complexity,”
in Proc. of the International Colloquium on Automata, Languages,
and Programming (ICALP), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[33] H. Lipmaa, “On Diophantine Complexity and Statistical Zero-knowledge
Arguments,” in Annual International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT),
Springer, 2003.

[34] A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni,
“Time- and Space-Efficient Arguments from Groups of Unknown Or-
der,” in Annual Cryptology Conference (CRYPTO), Springer, 2021.

[35] B. Bünz and B. Fisch, “Schwartz-Zippel for Multilinear Polynomials
mod N,” in IACR Cryptology ePrint Archive, 2022.



[36] S. Bayer and J. Groth, “Efficient Zero-Knowledge Argument for Cor-
rectness of a Shuffle,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), Springer,
2012.

[37] M. Bellare and P. Rogaway, “Random Oracles Are Practical: a Paradigm
for Designing Efficient Protocols,” in Proc. of the ACM Conference on
Computer & Communications Security (CCS), ACM, 1995.

[38] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF Formulas on
Ciphertexts,” in Theory of Cryptography Conference, Springer, 2005.

[39] D. Boneh, K. Rubin, and A. Silverberg, “Finding Composite Order
Ordinary Elliptic Curves Using the Cocks–Pinch Method,” 2011.

[40] Gao, Shang, “SymmeProof Implementation.” https://github.com/GoldS
aintEagle/symmeproof code/tree/master, 2022.

[41] R. Cramer and I. Damgård, “Zero-Knowledge Proofs for Finite Field
Arithmetic, or: Can Zero-Knowledge be for Free?,” in Annual Cryptol-
ogy Conference (CRYPTO), Springer, 1998.

[42] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight Sublinear Arguments without a Trusted Setup,” in Proc. of
the ACM Conference on Computer & Communications Security (CCS),
ACM, 2017.

Shang Gao is currently a research assistant profes-
sor in the Department of Computing in the Hong
Kong Polytechnic University. He received his B.S.
degree from Hangzhou Dianzi University, China, in
2010, M.E. degree from Southeast University, China,
in 2014, and Ph.D. degree from the Hong Kong
Polytechnic University, Hong Kong, in 2019. After
graduation, he worked in Microsoft China for one
year. His research interests include information se-
curity, network security, software-defined networks,
blockchain security, and applied cryptography. His

work has been published in several top-tier conferences and journals, including
CCS, INFOCOM, TON, etc.

Zhe Peng is currently a research assistant profes-
sor in the Department of Computer Science, Hong
Kong Baptist University (HKBU). Before joining
HKBU, he was a blockchain technical director at
SF Technology in 2019. He received the Ph.D.
degree in Computer Science from the Hong Kong
Polytechnic University and the M.Sc. degree in Elec-
tronic Engineering and Information Science from
University of Science and Technology of China in
2018 and 2013, respectively. In 2010, he received the
B.Sc. degree in Communication Engineering from

Northwestern Polytechnical University. During 2017, he was a visiting scholar
in the Department of Electrical and Computer Engineering at Stony Brook
University, supervised by Prof. Yuanyuan Yang. His primary research interests
include blockchain system, mobile computing, data security and privacy. His
work has been published in several top-tier journals and conferences, such as
SIGMOD, TMC, TON, TASE, CCS, INFOCOM, etc.

Feng Tan is currently a senior researcher in Shang-
hai Artificial Intelligence Institute (SAIRI). Before
joining SAIRI, he was a blockchain technical di-
rector at DianRong Fintech from 2016 to 2019.
He received the Ph.D. degree in Computer Science
from the Hong Kong Polytechnic University and
the M.Sc. degree in Industrial Engineering from
University of Electronic Science and Technology
of China in 2016 and 2012, respectively. During
2013, he was a visiting scholar in the Department
of Electrical and Computer Engineering at Darmstat

University, supervised by Prof. Neeraj Suri. His primary research interests
include blockchain system, Cyber-Physical System (CPS) and dependable
distributed system. His work has been published in several top-tier journals
and conferences, such as DSN, ICCPS, TCPS and TPDS, etc.

Yuanqing Zheng is an associate professor in the De-
partment of Computing, the Hong Kong Polytechnic
University. Previously, he was an assistant professor
in the same department during 2014-2020. He re-
ceived the Ph.D. degree in Computer Science from
Nanyang Technological University, Singapore. He
received the B.S. degree in Electrical Engineering
and the M.E. degree in Communication and Infor-
mation System both from Beijing Normal University,
Beijing, China. Dr Zhengs research interests include
human centered computing, mobile and network

computing, wireless networks, and RFID systems. He has published several
papers in premier journals including IEEE/ACM TON, IEEE TMC, ACM
TOSN, and top conferences including ACM MobiCom, MobiSys, MobiHoc,
SenSys, IEEE INFOCOM, ICNP, ICDCS, etc. He won the Best Demo Award
in IEEE SECON 2014. Currently, he is on the editorial board of IEEE
Transactions on Wireless Communications. He is a member of IEEE, ACM,
and CCF.

Bin Xiao is a professor at Department of Computing,
the Hong Kong Polytechnic University, Hong Kong.
Prof. Xiao received the B.Sc and M.Sc degrees
in Electronics Engineering from Fudan University,
China, and Ph.D. degree in computer science from
University of Texas at Dallas, USA. His research
interests include AI and network security, data priva-
cy, and blockchain systems. He published more than
180 technical papers in international top journals and
conferences. Currently, he is the associate editor of
IEEE IoTJ, IEEE TCC, and IEEE TNSE. He has

been the associate editor of Elsevier JPDC from 2016 to 2021. He is the vice
chair of IEEE ComSoc CISTC committee. He has been the track co-chair
of IEEE ICDCS2022, the symposium track co-chair of IEEE ICC2020, ICC
2018 and Globecom 2017, and the general chair of IEEE SECON 2018. He
is a senior member of IEEE, the member of ACM and CCF.



APPENDIX

A. Challenge Space

1) Generate Challenges: We show how to generate chal-
lenges in the challenge space C = {x|x2 = 1 mod p}.
Suppose the prime factorization of p is p =

∏n
i=0 q

ei
i . We

need to solve each quadratic equation

x2 = 1 mod qeii , i ∈ [0, n] (17)

and get the results {xi,1, xi,2, · · · , xi,ki} which satisfy xi,ki =
ri,ki mod qeii . We choose one result in each equation,
x1,∗, · · · , xn,∗, and solve the module functions:

x = ri,∗ mod qeii , ∀i ∈ [0, n], (18)

where “∗” indicates any possible choice from 1 to ki. The
result is the one solution of Equation (6), which can be used
as a challenge in C. All results compose the challenge space.

2) Challenge Space Size: Similar to computing the chal-
lenge space, we can also use Equation (17) to derive the
challenge space size. Suppose x2 = 1 mod qeii has ki
solutions. The number of solutions to Equation (6) (i.e., the
challenge space size) is

∏n
i=1 ki.

3) Super-Poly Space: A simple approach to find a secure p
with a super-poly (2n) space is to find (n−3) small odd primes
p1, · · · , pn−3 and a large secure prime p0. Accordingly, p can
be constructed as

p = 8 ·
n−3∏
i=0

pi.

For instance, we can construct p with the 77-smallest odd
primes (in [3, 397]) and the order of NIST P-256 curve, which
has 280 space and 128 bits security.

4) Small Challenge Space Size Attack: We show that the
protocol is not secure when the challenge space size is small.
Specifically, we use the argument of knowledge of one vector
as an example to show the prover can pass the protocol without
the secret.

Since the challenge space size is small, we suppose the
prover guess a correct challenge x in any step of iteration. The
prover first randomly generates â and computes ĝ = g1◦gx

−1

2 .
Then, he computes X = (ĝ

â
)x
−1 ·A−x−1

and sends X to the
verifier before receiving the challenge x. Since ĝâ = A ·Xx,
the prover can use â in the following steps of verification to
pass the protocol even without the secret a.

B. Useful Lemmas in Composite-order Groups

Lemma 7. Let d = gcd(x1 − x2, p). When adopting the
forking lemma, for two accepted transactions in one iteration
of the single vector argument (Section IV-A), (X,x1, â1) and
(X,x2, â2), d|(â1,i− â2,i) holds for all i’s where â1,i and â2,i

are the i-th elements of â1 and â2 respectively.

Proof: Suppose d - (â1,i−â2,i). Let â1,i−â2,i = ki ·d+ri
for some ki ∈ Z and ri ∈ [1, d− 1]. We have

ĝ
â1,i
1,i /ĝ

â2,i
2,i = (g1,i · gx2

2,i)
ki·d+ri+â2,i/(g1,i · gx2

2,i)
â2,i

=g
(x1−x2)â2,i
1,i · (g1,i · gx1

2,i)
ki·d+ri .

By multiplying all n/2 elements, we get

n/2−1∏
i=0

ĝ
â1,i
1,i /ĝ

â2,i
2,i = ĝâ1

1 /ĝâ2
2 = (ĝâ1

1 )x1−x2 ·
n/2−1∏
i=0

ĝki·d+ri
1,i .

Considering ĝâ1
1 = A ·Xx1 and ĝâ2

2 = A ·Xx2 , we have

Xx1−x2 = (ĝâ1
1 )x1−x2 ·

n/2−1∏
i=0

ĝki·d+ri
1,i . (19)

Since we are working on a p-order group, the left-hand-side of
Equation (19) indicates the exponents of the right-hand-side
must contain the factor x1−x2 after adding an integer time of
q.7 Furthermore, for each i, (x1−x2)|(ki ·d+ri+si ·p) must
hold for some si, otherwise we can obtain nontrivial discrete
logarithm relations between ĝ1,i’s. As d = gcd(x1−x2, p), we
have d|(x1−x2) and d|p, which implies d|(ki ·d+ri+si ·p).
Thus, d|ri must hold. This contradicts with ri ∈ [1, d − 1].
Therefore, d|(â1,i − â2,i) holds for all i’s.

Lemma 8. If d|(â1,i− â2,i) and d|(x1−x2), then d|(x1â1,i−
x2â2,i).

Proof: Let â1,i − â2,i = r · d and x1 − x2 = s · d. Then
x1â1,i − x2â2,i = (s · d+ x2)(r · d+ â2,i)− x2â2,i = d(s · r ·
d+ s · â2,i + r · x2). Thus d|(x1â1,i − x2â2,i).

C. Proof of Theorem 2

Proof: Perfect completeness. In one iteration, â = a1 +
xa2 and ĝ = g1 ◦ gx

−1

2 , we have

ĝâ =ga1
1 ·g

a2
2 ·(g

a2
1 )x ·(ga1

2 )x
−1

=ga1
1 ·g

a2
2 ·(g

a2
1 ·g

a1
2 )x=A·Xx.

Therefore, the single vector argument is perfect complete.
Witness extended emulation. We only consider how to

construct an extractor E in one iteration. The discrete logarithm
relations or the witness can be iteratively generated by E .

Based on the Pohlig-Hellman algorithm, the discrete loga-
rithm problem on a composite-order curve is as hard as the
problem on a prime-order curve where the prime order being
the largest prime factor of the composite order. Thus, the
discrete logarithm assumption holds on in this paper.

The extractor runs as the normal protocol till the prover
gets X . Then, with three different challenges x1, x2, x3, the
extractor gets â1, â2, and â3 such that:

A ·Xxi = (g1 ◦ g
x−1
i

2 )âi , ∀i ∈ [1, 3]. (20)

Since x−1
i = xi mod p, we have Xx1−x2 = gâ1−â2

1 ◦
gx1â1−x2â2

2 by subtracting the two equations of x1 and x2.
Let d = gcd(x1 − x2, p). Based on Lemma 7 and Lemma 8,
we get d|(x1−x2) and d|(x1â1−x2â2). Thus, X(x1−x2)/d =

g
(â1−â2)/d
1 ◦ g

(x1â1−x2â2)/d
2 on a p/d-order group. Since

d = gcd(x1 − x2, p), we have gcd((x1 − x2)/d, p/d) = 1.
Thus, (x1−x2)/d is invertible on the p/d-order group, which

7Suppose ĝâ1
1 = Xt and ĝ1,i = Xti for some unknown t and ti’s,

Equation (19) indicates x1−x2 = t(x1−x2)+
∑n/2−1
i=0 ti(ki ·d+ri)+s·p

for some s.



allows us to extract aX such that X = gaX .8

Taking aX into Equation (21), we can further derive aA
such that A = gaA . Set aA = [aA,1,aA,2] and aB =
[aB,1,aB,2]. When given the previously extracted witness a′,
we have

A ·Xx = gaA+xaX = g
aA,1+xaX,1

1 · gaA,2+xaX,2

2

=(g1 ◦ gx
−1

2 )a
′

= ga′

1 · gx
−1a′

2

=⇒ a′ = aA,1 + xaX,1 ∧ x−1a′ = aA,2 + xaX,2.

If the implication does not hold, we can directly obtain a
nontrivial discrete logarithm relation between g1 and g2 (and
iteratively obtain g1, · · · , gn). Otherwise, we consider all six
distinct challenges. To ensure the implication holds, we must
have aA,1 = aX,2 and aA,2 = aX,1 (x = x−1 mod p). Then
we have

a′ = aA,1 + xaA,2.

Therefore, the extractor E either extracts the discrete logarithm
relations, or efficiently computes the witness aA. We can
further conclude the protocol has witness-extended emulation
with the forking lemma in Lemma 1.

D. Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem
2. Here we only briefly describe the proof of witness extended
emulation.

Proof: After rewinding four times with x1, · · · , x4 and
computing a(1), · · · ,a(4) and b(1), · · · ,b(4), Equation (21)
becomes:

P ·Xxi =(g1 ◦ g
x−1
i

2 )a(i) ·(h1 ◦ hxi2 )b(i) ·u〈a(i),b(i)〉, ∀i ∈ [1, 4].

We use x1 and x2 to derive η1 and η2 such that η1 + η2 = 0
and x1η1 + x2η2 = 1, so do η′1 and η′2 such that η′1 + η′2 = 1
and x1η

′
1 + x2η

′
2 = 0. Based on Lemma 7 and Lemma 8, we

compute aX , bX , and cX with η1 and η2; aP , bP , and cP with
η′1 and η′2 such that X = gaXhbXucX and P = gaPhbP ucP .

Let aX = [aX,1,aX,2], bX = [bX,1,bX,2], aP =
[aP,1,aP,2] and bP = [bP,1,bP,2]. Given the previously
extracted witness a′ and b′, we have:

P ·Xx = gaP +xaX · hbP +xbX · ucP +xcX

=(g1 ◦ gx
−1

2 )a
′
· (h1 ◦ hx2)b

′
· u〈a

′,b′〉

=⇒ a′ = aP,1 + xaX,1 ∧ x−1a′ = aP,2 + xaX,2 ∧
b′ = bP,1 + xbX,1 ∧ xb′ = bP,2 + xbX,2 ∧
〈a′,b′〉 = cP + xcX .

The implication must hold, otherwise we can directly obtain a
nontrivial discrete logarithm relation between g1, g2, h1, h2

and u. Therefore, considering x = x−1 mod p, we must have
aP,1 = aX,2, aP,2 = aX,1, bP,1 = bX,2, and bP,2 = bX,1 to
also satisfy the third challenge x3, which make

a′ = aP,1 + xaP,2, b′ = bP,1 + x−1bP,2.

8When multiple aX ’s are extracted, e.g. both aX and aX + p/d are
acceptable solutions, we can efficiently use the equation of x3 to eliminate
unexpected ones.

Meanwhile, cP and cX are expected to have the relationship:

cP + xcX = 〈a′,b′〉
=〈aP,1 + xaP,2, bP,1 + x−1bP,2〉
=〈aP,1,bP,1〉+ 〈aP,2,bP,2〉+ x (〈aP,1,bP,2〉+ 〈aP,2,bP,1〉)
=〈aP ,bP 〉+ x (〈aP,1,bP,2〉+ 〈aP,2,bP,1〉) .

To also satisfy x4, we must have

〈aP ,bP 〉 = cP .

Therefore, the extractor either extracts the discrete logarithm
relations, or efficiently computes the witness aP ,bP . With the
forking lemma in Lemma 1, we can conclude the protocol has
witness-extended emulation.

E. Proof of Theorem 6

Proof: Since t0 = y2n · 〈(yn)m,v)〉 + δ(y), we can
directly prove perfect completeness of Theorem 6. For per-
fect honest-verifier zero-knowledge, we construct a simulator
which can generate a distribution of proofs from the statement
(u, g ∈ G,g,h ∈ Gnm,V ∈ Gm) that is indistinguishable
from valid proofs generated by an honest prover and an honest
verifier. Specifically, the verifier can randomly choose the
unknown elements in the conversation expect S and T1, and
use computes S and T1 as follows:

S =
(
u−µ ·A · g−y

nm·1nm−l · (h′)y
nm·ynm−r

·
m∏
j=1

(h′j)
y2nm+j−1·2n

−x
−1

;

T1 =(u−τxgδ(y)−t̃ ·Vy2nm·ynm

· T x
2

2 )−x
−1

.

(21)

As the simulator can run the inner-product argument with
the simulated witness (l, r) and the verifier’s randomness,
all elements in the proof are either independently randomly
distributed or their relationships are defined by Equation (21).
Since the range proof part is zero-knowledge, the inner-
product argument remains zero-knowledge with our simulated
witness. The simulator runs in time O(V + P) and is thus
efficient.

For computational special soundness, we construct an ex-
tractor E that runs the prover with 2nm + m differen-
t y and 3 different x, which result in 3m · (2n + 1)
valid transcripts. E first calls the inner-product extractor
EIP defined in Appendix E to extract l and r such that
t̃ = 〈l, r〉 and P = A · Sx · g−ynm · (h′)y

nm·ynm ·∏m
j=1(h′j)

y2nm+j−1·2n

= gl(h′)ruµ. Furthermore, we use A ·
Sx · g−ynm · (h′)ynm·ynm ∏m

j=1(h′j)
y2nm+j−1·2n

= gl(h′)ruµ

relationship to compute α, ρ,aL,aR, sL, sR such that A =
uαgaLhaR and S = uρgsLhsR with a fixed y and 2 different
x. If we can derive different A and S with different x, we then
find a non-trivial discrete logarithm relation between u,g,h.

With A,S, l, r, we can find for all challenges x and y, l =
aL−ynm ·1nm+sL ·x and r = ynm ◦ (aR+ynm ·1nm+sR ·
x)+

∑m
j=1 y

2nm+j−1 ·2nmi must hold, otherwise, we have two
distinct representations of the same group element using a set



of independent generators, which yields a non-trivial discrete
logarithm relation.

Furthermore, we can compute τ1, τ2, t1, t2 based on
gt̃uτx = Vy2nm·ynm · gδ(y) · T x1 · T x

2

2 with 3 different x and a
fixed y such that

T1 = gt1uτ1 , T2 = gt2uτ2 .

Meanwhile, we can compute v, γ such that gvuγ =∏m
j=1 V

y2nm+j−1

j . When repeating with m different y, we can
derive v1, · · · , vm and γ1, · · · , γm such that

gvjuγj = Vj , ∀j ∈ [1,m].

If t̃ = t2 ·x2+t1 ·x+
∑m
j=1 y

2nm+j−1 ·vj+δ(y) does not hold,
we can yield a non-trivial discrete logarithm relation between
g, u. Otherwise, for all 3 different x, we have

t0 + t1 · xi + t2 · x2
i − 〈l(xi), r(xi)〉 = 0, i ∈ [1, 6].

The left side of the equation has a degree of 2, but the equation
must satisfy 6 distinct challenges, it must be a zero polynomial.
Thus, we must have

t0 + t1 ·X + t2 ·X2 = 〈l(X), r(X)〉, (22)

Therefore, for 2nm+m different y challenges, the following
equation must hold:

m∑
j=1

y2nm+j−1 · 〈vj ,2n〉+ δ(y)

=〈aL,ynm ◦ aR〉+ ynm · 〈aL − aR,y
nm〉

+

m∑
j=1

y2nm+j−1〈aL,j ,2n〉

− y2nm〈1nm,ynm〉 −
m∑
j=1

y2nm−j · 〈1n,2n〉,

(23)

To ensure Equation (23) hold, we mush have

aL◦aR = 0nm ∧ aR = aL−1nm ∧ 〈aL,j ,2n〉 = vj ,∀j ∈ [1,m].

Therefore, extractor E either extracts the discrete logarithm
relations, or efficiently computes the witness aL and aR. Using
the forking lemma in Lemma 1, we can conclude the protocol
has witness-extended emulation.


