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Abstract—Physical-layer key generation (PKG) establishes
cryptographic keys from highly correlated measurements of wire-
less channels, which relies on reciprocal channel characteristics
between uplink and downlink, is a promising wireless security
technique for Internet of Things (IoT). However, it is challeng-
ing to extract common features in frequency-division duplexing
(FDD) systems as uplink and downlink transmissions operate
at different frequency bands whose channel frequency responses
are not reciprocal anymore. Existing PKG methods for FDD
systems have many limitations, i.e., high overhead and security
problems. This article proposes a novel PKG scheme that uses
the feature mapping function between different frequency bands
obtained by deep learning to make two users generate highly
similar channel features in FDD systems. In particular, this is
the first time to apply deep learning for PKG in FDD systems.
We first prove the existence of the band feature mapping func-
tion for a given environment and a feedforward network with a
single hidden layer can approximate the mapping function. Then,
a key generation neural network (KGNet) is proposed for recip-
rocal channel feature construction, and a key generation scheme
based on the KGNet is also proposed. Numerical results verify
the excellent performance of the KGNet-based key generation
scheme in terms of randomness, key generation ratio, and key
error rate. Besides, the overhead analysis shows that the method
proposed in this article can be used for resource-constrained IoT
devices in FDD systems.
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(FDD), physical-layer security, secret key generation.
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I. INTRODUCTION

W ITH the rapid development of the fifth generation (5G)
and beyond communication systems, the security of

wireless communication has received increasing attention [1].
Due to the open nature of wireless channels, attackers can ini-
tiate various attacks such as eavesdropping, which pose a huge
threat to wireless security. Traditionally, the cryptographic
approaches, including symmetric key cryptography and asym-
metric key cryptography, have been used to protect confidential
information from eavesdroppers [2]. However, due to the
three typical characteristics of 5G Internet of Things (IoT)
networks, concerning mobility, massive IoT with resource
constraints, and heterogeneous hierarchical architecture, the
traditional cryptographic mechanisms face problems, such as
difficulty in key distribution, excessive reliance on mathemat-
ical complexity, etc., and are not suitable or efficient [3].
To mitigate these issues, researchers have developed a new
secure communication method from the physical layer in wire-
less communication, termed as physical-layer key generation
(PKG) [4]–[6]. This technique uses the inherent randomness
of fading channels between two legitimate users, namely,
Alice and Bob, to generate keys without the need for a third
party.

The realization of PKG depends on three unique propa-
gation characteristics of electromagnetic wave, namely, chan-
nel reciprocity, temporal variation, and spatial decorrelation.
Among them, channel reciprocity indicates that the same chan-
nel characteristics can be observed at both ends of the same
link, which is the basis for key generation [5], [6]. For time-
division duplexing (TDD) systems, both the uplink and down-
link are in the same carrier frequency band, and the channel
responses obtained by Alice and Bob are reciprocal. However,
for frequency-division duplexing (FDD) systems, the uplink
and downlink transmit over different carrier frequencies, and
the uplink and downlink experience different fading. Hence,
most of the mutually accessible channel parameters used in
TDD systems, such as received signal strength, channel gain,
envelope, and phase, may be completely different between the
uplink and downlink in FDD systems [7]. Therefore, it is chal-
lenging to find reciprocal channel features for key generation
in FDD systems. On the other hand, FDD dominates exist-
ing cellular communications, such as LTE and narrowband
IoT. Key generation for these FDD-based systems will pro-
vide information-theoretically secure keys for them, hence is
strongly desirable.

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on April 08,2022 at 06:15:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1267-5182
https://orcid.org/0000-0003-1145-1168
https://orcid.org/0000-0002-3502-2926
https://orcid.org/0000-0002-0398-4899
https://orcid.org/0000-0003-4223-8220


6082 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 8, APRIL 15, 2022

There have been several key generation methods developed
for FDD systems [8]–[14]. Those methods generate keys by
extracting frequency-independent reciprocal channel parame-
ters or constructing reciprocal channel gains, which have many
limitations, i.e., high overhead and security problems [10].
Therefore, how to design a key generation scheme in a secure
manner at a low communication overhead for FDD systems is
still an open question.

To address this open problem, we consider how to con-
struct the reciprocal features used to generate the key in FDD
systems first. In [15], the channel-to-channel mapping func-
tion in frequency is proved to exist under the condition that
the channel mapping of the candidate position to the antenna
is bijective, and the condition is realized with high probabil-
ity in several practical multiple-input–multiple-output (MIMO)
systems. Inspired by this, we reveal the existence of a band
feature mapping function for a given environment in an FDD
orthogonal frequency-division multiplexing (OFDM) system,
which means that the feature mapping can be used to construct
reciprocal features in FDD systems. However, the feature
mapping between different frequency bands is difficult to be
described by mathematical formulas. To solve this problem, we
construct the reciprocal channel features by using deep learn-
ing to learn the channel mapping function between different
frequency bands. Then, a new key generation method based on
the band feature mapping is proposed for FDD systems. The
features of one frequency band are estimated simultaneously
by both Alice and Bob to generate the key. In particular, this is
the first time to apply deep learning for secret key generation
in FDD systems. The main contributions of this article are as
follows.

1) We prove the existence of the channel feature map-
ping function between different frequency bands for a
given environment under the condition that the map-
ping function from the candidate user positions to the
channels is bijective. Then, we prove that the channel
feature mapping between different frequency bands can
be approximated by a feedforward network with a single
hidden layer. The above conclusions prove the feasibility
of using deep learning to construct reciprocity features
and provide a new solution for the PKG in FDD systems.

2) We propose a key generation neural network (KGNet)
for band feature mapping to generate reciprocal channel
features and verify the performance in the simula-
tion. Compared with three benchmark deep learning
networks, the performance of KGNet can achieve good
fitting and generalization performance under low signal-
to-noise ratio (SNR). In addition, we artificially add
noise by combining the noise-free and 0-dB data set
at a certain size to construct the training data set, which
improves the robustness of KGNet under low SNR.

3) Based on the KGNet, we propose a novel secret key
generation scheme for FDD systems, in which Alice
and Bob both estimate the features of one frequency
band without any loopback. Numerical results verify the
excellent performance of the KGNet-based key genera-
tion scheme in terms of randomness, key generation ratio

(KGR), and key error rate (KER). Besides, the overhead
analysis shows that the method proposed in this article
can be used for resource-constrained IoT devices in FDD
systems.

The remainder of this article is structured as follows.
Section II presents the related work. The system model for
FDD systems is introduced in Section III. In Section IV,
we prove the existence of the band feature mapping for a
given environment under a condition that the mapping function
from the candidate user positions to the channels is bijec-
tive, and a feedforward network with a single hidden layer
can approximate the mapping. The channel feature construc-
tion algorithm based on KGNet is presented in Section V.
Section VI designs the key generation scheme. The simulation
results for evaluating the performance of the KGNet and the
proposed key generation scheme are provided in Section VII,
which is followed by conclusions in Section VIII.

II. RELATED WORK

This section introduces related work, including the previous
FDD key generation methods and the application of deep
learning in the wireless physical layer.

A. Secret Key Generation for FDD Systems

In the past few years, several secret key generation methods
have been developed for FDD systems. The main methods of
FDD key generation are summarized as follows.

1) Extracting the frequency-independent reciprocal chan-
nel parameters to generate the key [8], [9]. In [8], the
angle and delay are used to generate the key as they
are supposed to hold the reciprocity in FDD systems.
However, the accurate acquisition of the angle and delay
requires a lot of resources, such as large bandwidth
and multiple antennas [16]. In addition, a secret key
generation method based on the reciprocity of chan-
nel covariance matrix eigenvalues is also proposed in
FDD systems [9]. But this method requires a special
configuration of the antenna array.

2) Establishing the channel with reciprocal channel gain by
means of the additional reverse channel training phase
to generate the key, called the loopback-based meth-
ods [10]–[13]. In [10], Alice and Bob generate the
key by estimating the channel impulse response (CIR)
of the combinatorial channel which is the combination
of uplink and downlink channels. In [11], instead of
the CIR of the combinatory channel, only the uplink
channel state information (CSI) is estimated by both
sides of the communication using a special CSI probing
method to generate the key. Furthermore, there are two
secret key generation schemes, which generate a secret
key by exploiting shared physical channel information
on nonreciprocal forward and reverse channels [12].
However, the loopback-based key generation methods
require additional reverse channel training and multiple
iterative interactions, which not only increase the com-
plexity of channel detection but also increase the risk
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of eavesdropping. Furthermore, it has been proved not
security in [17].

3) Constructing reciprocal features based on the prior
knowledge of the channel model by separating channel
paths to generate keys [14]. However, in the complex
multipath environment, separating the channel paths is
not simple.

Through the analysis of the previous FDD key generation
methods, the existing key generation methods in the FDD
systems have problems, such as large overhead and insecu-
rity. The key generation method proposed in this article uses
the mapping function between different frequency bands to
construct reciprocal channel features from a new perspective.
Alice and Bob only need to probe the channel once, with-
out additional reverse channel training. In addition, we use
deep learning to learn the mapping function between frequency
bands, which is data driven, so there are not many restrictions
on the model, and no complicated calculations are needed to
extract reciprocal channel parameters.

B. Deep Learning for Wireless Physical Layer

Deep learning has been introduced to the wireless physical
layer and achieved excellent performance in many areas, such
as channel estimation [18], CSI feedback [19], downlink CSI
prediction [20], modulation classification [21], etc.

Gao et al. [22] proposed a direct-input deep neural network
(DI-DNN) to estimate channels by using the received signals
of all antennas. Wen et al. [19] used deep learning technol-
ogy to develop CSINet, a novel CSI sensing and recovery
mechanism that learns to effectively use channel structure from
training samples. Yang et al. [23] used a spare complex-valued
neural network (SCNet) for the downlink CSI prediction in
FDD massive MIMO systems. Safari et al. [24] proposed a
convolutional neural network (CNN) and a generative neural
network (GAN) for predicting downlink CSI by observing the
downlink CSI. To the best of our knowledge, there is no study
on deep-learning-based secret key generation method for FDD
systems.

Alrabeiah and Alkhateeb [15] used a fully connected neu-
ral network to learn and approximate the channel-to-channel
mapping function. Inspired by this, we propose KGNet to gen-
erate reciprocal channel features and propose a KGNet-based
key generation scheme for FDD systems. The KGNet is able
to learn the mapping function by offline training. After train-
ing, KGNet is used to directly predict the reciprocal features.
Therefore, the method proposed in this article has a small over-
head in practical application and great potential for practical
deployment. In particular, this article applies deep learning to
key generation for the first time.

III. SYSTEM MODEL

A. Channel Model

Key generation involves two legitimate users, namely, Alice
(one base station) and Bob (one user) as well as an eavesdrop-
per, Eve, located d m away from Bob. Alice and Bob will send
signals to each other alternately and obtain channel estimation

ĥA and ĥB. In a TDD system, the channel estimation of Alice
and Bob is highly correlated based on the channel reciprocity.
Hence, we can design a key generation protocol, K(·), which
will convert the analog channel estimation to a digital binary
sequence. The process can be expressed as

KA = K
(

ĥA

)
(1)

KB = K
(

ĥB

)
. (2)

The above protocol has worked well in TDD-based systems,
e.g., WiFi [25], ZigBee [26], and LoRa [27], [28]. However,
its adoption in FDD systems is extremely challenging, because
the uplink and downlink are not reciprocal anymore. For the
first time, this article will employ deep learning to construct
reciprocal channel features at Alice and Bob and extend key
generation for FDD-based systems.

Specifically, this article considers Alice and Bob are
equipped with a single antenna and operate at the FDD mode.
Alice and Bob simultaneously transmit signals on different
carrier frequencies, fAB and fBA, respectively. We denote the
links from Bob to Alice and from Alice to Bob as Band1 and
Band2, respectively. The CIR consists of N paths and can be
defined as

h(f , τ ) =
N−1∑
n=0

αne−j2π f τn+jφnδ(τ − τn) (3)

where f is the carrier frequency, and αn, τn, and φn are the
magnitude, delay, and phase shift of the nth path, respectively.
Note that αn depends on 1) the distance dn between Alice and
Bob; 2) the carrier frequency f ; and 3) the scattering environ-
ment. The phase φn is determined by the scatterer(s) materials
and wave incident/impinging angles at the scatterer(s). The
delay τn = (dn/c), where c is the speed of light.

In OFDM systems, the channel frequency response (CFR)
of the lth subcarrier can be expressed as

H(f , l) =
N−1∑
n=0

αne−j2π f τn+jφn e−j2πτnfl (4)

where fl is the frequency of the lth subcarrier relative to the
center frequency f . Now, we define the 1 × L channel vector
H(f ) = {H(f , 0), . . . , H(f , L − 1)} as the CFR of frequency f ,
and H1 = H(fBA) as the CFR of Band1, H2 = H(fAB) as the
CFR of Band2, where L is the total number of subcarriers.

B. Attack Model

Based on the assumptions of most key generation
schemes [29], [30], we also focus on the passive adversary.
The eavesdropper, Eve, is assumed to be located at least half
of the larger wavelength in Band1 and Band2 away from the
legitimate users, which can be mathematically given as

d > max

{
c

2fAB
,

c

2fBA

}
. (5)

Since wireless channel gains decorrelate over half a wave-
length in a multipath environment, Eve’s channel is assumed
to be independent of the channel of legitimate users. Therefore,
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Eve cannot infer the channel between legitimate users to
generate the key from the channels he listens on.

C. Key Generation Scheme for FDD Systems

According to the channel model, the carrier frequency will
affect the phase and amplitude of the CFR, and the CFR
difference is more obvious in the superposition of multiple
paths at different frequencies [31]. This article aims to con-
struct reciprocal channel features in FDD systems for Alice
and Bob based on the feature mapping function between
different frequency bands. In Section IV, we first proved
that there is a feature mapping function between different
frequency bands that can be obtained through deep learning.
We designed a KGNet-based key generation scheme, as shown
in Fig. 1. It consists of two stages, i.e., the KGNet training
and KGNet-based key generation stages.

1) We designed a KGNet model to learn the feature map-
ping function, which will be described in detail in
Section V. Specifically, Alice trains KGNet to learn the
feature mapping function between Band1 CFR H1 and
Band2 CFR H2 stored in the database. The data set in
the database can be obtained by Alice collecting the CSI
obtained by multiple channel detection measurements
and the CSI feedback from Bob. The trained KGNet
model will be used for key generation.

2) In the KGNet-based key generation stage, Alice and Bob
send a pilot signal at the same time and perform chan-
nel estimation to obtain H1 and H2, respectively. Alice
and Bob then preprocess their channel vector and obtain
channel features x1 and x2. Alice will use KGNet to map
the Band1 features x1 to the estimated Band2 features
x̂2, which enables Alice and Bob to obtain highly cor-
related channel characteristics x̂2 and x2, respectively.
They will finally perform quantization, information rec-
onciliation, and privacy amplification to generate the
same key. The key generation scheme will be described
in Section VI.

IV. DEEP LEARNING FOR BAND FEATURE MAPPING

In this article, our main theme is to construct reciprocal
channel features for the FDD system to generate a key accord-
ing to the feature mapping function between frequency bands.
However, according to (4), we cannot determine whether the
features between different frequency bands have a definite
mapping function. And if there is a mapping function, how
can we map the features on one frequency band to the features
on another frequency band?

In this section, we define the band feature mapping func-
tion according to the approach in [15]. Then, we prove that
leveraging deep learning can find the mapping function.

A. Existence of the Band Mapping

Consider the channel model in (4), the channel is completely
defined by the parameters αn, τn, and φn, which are the func-
tions of the environment and the carrier frequency. Supposed

that Alice is fixed, for a given static communication environ-
ment, there exists a deterministic mapping function from the
position PB of Bob to the channel H(f ) at every antenna ele-
ment m of Alice [32]. Therefore, when the number of antennas
is 1, there is also a deterministic position-to-channel mapping
function when Alice and Bob are both equipped with a single
antenna.

Definition 1: The position-to-channel mapping �f can be
written as follows:

�f : {PB} → {H(f )} (6)

where the sets {PB} represent the possible positions of Bob
and the sets {H(f )} represent the CFR of the corresponding
channels.

Then, we investigate the existence of the mapping from the
channel vector H(f ) to the position of Bob. For that, we adopt
the following assumption.

Assumption 1: The position-to-channel mapping
�f : {PB} → {H(f )} is bijective.

This assumption means that every position of Bob has a
unique channel vector H(f ). The bijectiveness of this mapping
depends on the number of subcarriers, the set of candidate
user locations, and the surrounding environment. In mas-
sive MIMO systems, the probability that �f is bijective is
actually very high in practical wireless communication sce-
narios, and approaches 1 as the number of antennas at the BS
increased [15]. The same with an OFDM-FDD system, the
probability that this mapping is bijective is also very high in
practical wireless communication scenarios, and approaches
1 as the number of subcarriers increases. Therefore, it is
reasonable to adopt Assumption 1 in OFDM-FDD systems.

Under Assumption 1, we define the channel-to-position
mapping �−1

f as the inverse of the mapping �f , which can be
written as

�−1
f : {H(f )} → {PB}. (7)

Proposition 1: If Assumption 1 is satisfied, there exists a
channel-to-channel mapping function for a given communica-
tion environment, which can be written as follows:

� fBA→fAB = �fAB ◦ �−1
fBA

: {H(fBA)} → {H(fAB)} (8)

where �fAB ◦ �−1
fBA

represents the composite mapping related

to �fAB and �−1
fBA

.
Proof: See Appendix A.

Proposition 1 illustrates that channels on different frequency
bands have a certain mapping function. Therefore, we believe
that it is possible to construct reciprocal channel features from
different frequency bands to generate keys.

B. Deep Learning for Band Feature Mapping

Since the channel vectors are all complex numbers and dif-
fer in the order of magnitude of each subcarrier, they cannot be
directly used in the deep learning algorithm and the quantiza-
tion part of subsequent key generation. Therefore, we propose
a feature extraction mapping function ξ to preprocess h, which
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can be written as

ξ f : H(f ) → x(f ). (9)

Supposed ξ f is linear, we can denote the inverse mapping
of ξ as ξ−1 that can be given as

ξ−1
f : x(f ) → H(f ). (10)

Next, we investigate the existence of the band feature
mapping as shown below.

Proposition 2: With Proposition 1, there exists a band
feature mapping function for a given communication environ-
ment, which can be written as follows:

� ′
fBA→fAB

= ξ fAB
◦ � fBA→fAB ◦ ξ−1

fAB
: x(fBA) → x(fAB). (11)

Proof: See Appendix B.
Although Proposition 2 proves that there is a feature map-

ping function between frequency bands, this function cannot
be expressed as mathematical formulas. Therefore, based on
the universe mapping [33], we introduce deep learning and
obtain the following theorem.

Theorem 1: For any given error ε > 0, there exists a
positive constant M large enough such that

sup
x∈H

∥∥∥NETM(x(fBA),�) − � ′
fBA→fAB

(x(fBA))

∥∥∥ ≤ ε

H = {x(fBA)} (12)

where NETM(x(fBA)) is the output of a feedforward neural
network with only one hidden layer. x(fBA), �, and M denote
the input data, network parameters, and the number of hidden
units, respectively.

Proof: See Appendix C.
Theorem 1 reveals that the band feature mapping function

can be approximated arbitrarily well by a feedforward network
with a single hidden layer. Thus, we can use deep learn-
ing to obtain the feature mapping function between frequency
bands, and generate reciprocal channel features to generate the
same key.

V. KGNET-BASED RECIPROCAL CHANNEL FEATURES

CONSTRUCTION

As a feedforward network with a single hidden layer can
approximate the mapping of band features with different car-
rier frequencies, we propose a KGNet for channel feature
mapping to construct reciprocal channel features. We will first
introduce the data set preprocessing. Then, we introduce the
KGNet architecture and describe how to train and test the
KGNet.

A. Data Set Generation

Since the wireless environment is complex and changeable,
there are data sets {De

O}E
e=1 of E different environments, and

E → ∞. It is impossible to get data sets in all different envi-
ronments. This article currently only considers a scenario in a
given environment. In the future, techniques, such as transfer
learning and meta learning, can also be used to extend this
method to new environments.

In a given environment, we denote the CSI of Band1 and
Band2 as the original data set, which is divided into the train-
ing data set and testing data set as DOTr and DOTe, respectively.
DOTr = {(H(n)

1 , H(n)
2 )}Ntr

n=1, including Ntr training label sam-
ples. DOTe = {(H(n)

1 , H(n)
2 )}Nte

n=1, including Nte testing label
samples. It should be emphasized that the training data set
cannot include all possible channels between Alice and Bob.
As long as the training data set is sufficiently representative
of the environment, the trained neural network can learn the
band feature mapping of the environment. Therefore, Alice
only needs to collect enough data that is sufficient to represent
the environment.

B. Preprocessing of Data Set

In order to enable the deep learning model to perform
efficiently, data samples usually go through a sequence of pre-
processing operations, including realization and normalization.
The first operation is realized. Since deep learning algorithms
work in the real domain, we introduce the mapping ξ (1) to
stack the real and imaginary parts of the complex channel
vector, which can be written as

ξ (1) : H′ → (R(H),T(H)) (13)

where R(·) and T(·) denote the real and imaginary parts of
a matrix, vectors, or scales, respectively. Through realization,
the complex channel vector becomes 1×2L real channel vector
H′

1 and H′
2.

The second operation is normalization. Since each dimen-
sion of the original data set usually has a different order
of magnitude, directly using the original data set to train
the network will affect the efficiency of the network.
Normalization is commonly used to normalize the data set
so that the range of the data set is between 0 and 1. It is per-
formed using the maximum and minimum value in the data
set. The value is given by

⎧
⎨
⎩

H′l
1,max = max

n=1,...,Ntr

{
H′l

1

}n

H′l
1,min = min

n=1,...,Ntr

{
H′l

1

}n l = 0, . . . , 2L − 1 (14)

where H′l
1 is the lth element of H′

1. We introduce the mapping
ξ (2) to normalize the data set, which can be written as

ξ (2) : xl
1 → H′l

1 − H′l
1,min

H′l
1,max − H′l

1,min

, l = 0, . . . , 2L − 1 (15)

where xl
1 is the lth element of x1. The normalization of H′

2
follows the same procedure.

After the above processing, the training data set and testing
data set as DTr = {(x(n)

1 , x(n)
2 )}Ntr

n=1 and DTe = {(x(n)
1 , x(n)

2 )}Nte
n=1

that can be directly put into the network are obtained. We can
define ξ f = ξ (2) ◦ ξ (1), which is a linear transformation that
satisfies the supposition of (10).

Note that H′l
1,max, H′l

1,min, H′l
2,max, and H′l

2,min used to nor-
malize the testing data set are all derived from the training
data set.
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Fig. 1. KGNet-based key generation scheme for FDD systems.

C. KGNet Architecture

Based on the feedforward network, we propose the KGNet,
which consists of one input layer, four hidden layers, and one
output layer. As shown in Fig. 1, the input of the network is
x1 obtained after preprocessing H1. The output of the network
is a cascade of nonlinear transformation of x1, i.e.,

x̂2 = KGNet(x1,�) (16)

where � is all the trainable parameters in this network.
Obviously, KGNet is used to deal with a vector regression
problem. The activation functions for the hidden layers and
the output layer are the rectified linear unit (ReLU) function
and the sigmoid function, respectively.

D. Training and Testing

In the training stage, the data set DTr is collected as the
complete training data set. In each time step, V training sam-
ples are randomly selected from DTr as DTrB. The KGNet
is trained to minimize the difference between the output x̂2

and the label x2 by the adaptive moment estimation (ADAM)
algorithm [34]. The loss function can be written as follow:

LossD(�) = MSE(̂x2, x2) = 1

VNx

V−1∑
v=0

∥∥∥̂x(v)
2 − x(v)

2

∥∥∥
2

2
(17)

where V is the batch size, the superscript (v) denotes the index
of the vth training sample, Nx is the length of the vector x2,
D = {(x1, x2)}V−1

v=0 is a batch-sized training data set, and ‖ · ‖2

denotes the 	2-norm. Various loss functions can be used to
train the neural network, e.g., mean-square error (MSE), mean
absolute error (MAE), and logcosh. Since the performance of
using these loss functions is basically the same when dealing
with this problem, we choose MSE as the loss function, which
is also used in most works to deal with similar problems [23].

In the testing stage, the KGNet parameter � is fixed. The
testing data set DTe is generated and is used to test the
performance of the KGNet. Furthermore, the data set can also
be used to evaluate the performance of the initial key after
quantization.

VI. KGNET-BASED KEY GENERATION SCHEME

The KGNet-based key generation scheme for FDD systems
consists of five steps, including channel estimation, the recip-
rocal channel features construction, quantization, information
reconciliation, and privacy amplification, which are designed
in this section.

A. Channel Estimation

Channel estimation is the first step for the key generation
scheme, during which Alice and Bob send a pilot signal to
each other simultaneously and estimate the CSI. Through this
step, Alice and Bob can obtain the channel coefficient vector
of Band1 and Band2, namely, H1 and H2, respectively.

B. Reciprocal Channel Features Construction

Reciprocal channel features construction is a process in
which Alice and Bob construct reciprocal channel features
according to the CSIs estimated in Section VI-A, which is
the most important step for the key generation scheme.

For Alice, this step consists of two parts: 1) preprocessing
channel coefficient vector H1 and 2) Band2 feature map-
ping. The first part includes realization and normalization,
as explained in Section V-B. In the second part, Alice per-
forms feature mapping using the pretrained KGNet designed in
Section V-D. For Bob, this step only involves the preprocess-
ing channel coefficient vector H2. Through the above steps,
Alice and Bob can obtain the 1 × 2L channel feature vector
x̂2 and x2, respectively.
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Algorithm 1 GDQG
Input: The band feature vector x; The quantization factor ε;
Output: The quantized binary sequence Q;
1: Calculate the mean μ and variance σ 2 of the feature vector

x;
2: Construct Gaussian distribution NQ = N (μ, σ 2);
3: Calculate the inverse of the CDF F−1 of NQ;
4: Initialize the value of ε;
5: Calculate the quantization intervals using (20);
6: for i = 0 : 2L − 1 do
7: if xi ∈ kth quantization interval then
8: Binary encoding
9: else

10: Coded as -1
11: end if
12: end for
13: return Q.

C. Quantization

Upon acquiring the channel features, Alice and Bob should
apply the same quantization algorithm to convert channel fea-
tures into a binary bitstream with low KER. In this article,
based on the equal probability quantization method, we pro-
pose a Gaussian distribution-based quantization method with
guard-band (GDQG) for OFDM systems.

Different from [35] that estimates the mean and variance
of the amplitudes of CFR samples in a time sequence, we
estimate the mean and variance of the real and imaginary parts
of CFR across subcarriers, which can be expressed as

μ = 1

2L

2L−1∑
l=0

xl (18)

σ 2 = 1

2L − 1

2L−1∑
l=0

(
xl − μ

)2
. (19)

The distribution of channel features can be approximated by a
Gaussian distribution. Therefore, we fit the probability of the
channel features into a definite Gaussian distribution NQ =
N (μ, σ 2).

The kth quantization interval is calculated as[
F−1

(
k − 1

K
+ ε

)
, F−1

(
k

K
− ε

)]
, k = 2, . . . , K − 1. (20)

and the 1st quantization interval is [0, F−1((1/K) − ε)], Kth
quantization interval is [F−1([K − 1/K] + ε, 1], where F−1

is defined as the inverse of the cumulative distribution func-
tion (CDF) of NQ and K is the quantization level. The
ε ∈ (0, 1/2K) is defined as the quantization factor, which is
used to set the limit of the guard band. Then, we use the com-
mon binary encoding to convert the features into a bitstream,
where all the features that are not in the quantization intervals
are set to −1.

The steps of the quantization method are given in
Algorithm 1. Finally, Alice and Bob send each other indexes
whose values are −1 and delete all these bits. They can get
the initial secret keys QA and QB.

Fig. 2. Approximate depiction of the considered environment. The green little
box on the ceiling represents the distributed antennas of the base station. The
two maroon rectangles are two grids representing possible user locations.

D. Information Reconciliation and Privacy Amplification

To further reduce the KER, we can adopt information rec-
onciliation to correct the mismatch bits. Through information
reconciliation techniques, which can be implemented with pro-
tocols, such as Cascade [36] or BCH code [37], etc., the
performance of KER can be significantly improved. Privacy
amplification can apply hash functions to distill a shorter but
secret key. However, to ensure fairness of comparison, we
only compare the performance of the initial secret key without
information reconciliation and privacy amplification.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
deep-learning-based key generation scheme for FDD systems.
We first describe the simulation setup and metrics, and then
we discuss the simulation results and overhead.

A. Simulation Setup

We consider the indoor distributed massive MIMO sce-
nario “I1” that is offered by the DeepMIMO data set [38]
and is generated based on the accurate 3-D ray-tracing simu-
lator Wireless InSite [39]. As depicted in Fig. 2, the model
involves one BS with a single antenna and 100 000 users.
We assume that the BS is Alice and multiple users are pos-
sible locations for Bob and Eve. This scenario is available at
two operating frequencies 2.4 and 2.5 GHz, which emulate
the Band1 and Band2 carrier frequencies of the single-input–
single-output (SISO) setup in Section III. We set the number
of OFDM subcarriers as 64, the number of paths as 5, and the
bandwidth as 0.5 GHz to generate the data set. This data set
constructs the channels between every candidate user location
and a single antenna at the Band1 and Band2 frequencies. To
form the training and testing data set, we take the first 100 000
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TABLE I
PARAMETERS FOR THE KGNET

of the generated data set and shuffle, and then split into a train-
ing data set DOTr with 80% of the total size and a testing data
set DOTe with the rest 20%. These data sets are used to train
the KGNet and evaluate the performance of the proposed key
generation scheme.

The KGNet is implemented on a workstation with one
Nvidia GeForce GTX 1660Ti GPU and one Inter Core i7-9700
CPU. Tensorflow 2.1 is employed as the deep learning frame-
work. The parameters of the KGNet are given in Table I.

B. Performance Metrics

We use the normalized MSE (NMSE) to evaluate the
predictive accuracy of the network, which is defined as

NMSE = E

[
‖̂x2 − x2‖2

2

‖x2‖2
2

]
(21)

where E[ · ] represents the expectation operation.
We evaluate the performance of the initial key using the

following metrics.
1) Key Error Rate: It is defined as the number of error bits

divided by the number of total key bits.
2) Key Generation Ratio: It is defined as the number of

initial key bits divided by the number of subcarriers.
If all the real and imaginary features of the subcarriers
are used to generate the key bits and the guard band is
not used during quantization, then the KGR reaches a
maximum of 2.

3) Randomness: The randomness reveals the distribution
of bitstreams. The National Institute of Standards and
Technology (NIST) statistical test [40] will be used for
the randomness test for the key.

We evaluate the performance at Eve by using the normalized
vector distance (NVD) between two vectors K1 and K2, which
is defined as

NVD(K1, K2) = ‖K1 − K2‖2
2

‖K2‖2
2

. (22)

C. Results

In this section, we evaluate the performance of KGNet and
the initial key. Then, the security of the secret generation
scheme proposed in this article is analyzed.

Fig. 3. NMSE of the four networks versus the size of the training data set.

1) Performance of KGNet: The performance of the KGNet
is critical to whether Alice and Bob can generate highly
reciprocal channel characteristics. Besides KGNet, we also
considered the following three benchmark models.

1) FNN: An FNN is originally designed in [41] for
uplink/downlink channel calibration for massive MIMO
systems, which can be used for the band feature map-
ping for the SISO-OFDM system. It consists of three
hidden layers and we choose the numbers of neurons in
the hidden layer are (512, 1024, 512) by adjustments.
FNN in [41] differs from KGNet proposed in this arti-
cle not only in the number of layers of the network but
also in all layers of the FNN, the tanh function is used
as the activation function.

2) Advanced-FNN: It has the same architecture as FNN but
its activation functions are the same as KGNet.

3) 1D-CNN: Its structure is to add a 1-D convolutional
layer with eight convolution kernels of size 8 and a max-
pooling layer with step size 2 and pooling kernel size 2
between the input layer and the first hidden layer of
Advanced-FNN.

We will compare the KGNet with the three benchmark
networks from three aspects, namely, the size of training
data required, the fitting performance of the network, and the
generalization performance under various SNR.

The size of the training data set is crucial in the KGNet
training. Fig. 3 shows how the performance of the KGNet
improves as the size of the training data set grows. The
network is trained from scratch for every training data set
size and is tested on the fixed 10 000 test set. We compare the
size of training data required for each of the four networks to
achieve optimal results. As expected, the performance of the
four networks has improved as the size increased. However,
all four networks achieve a stable NMSE after 80 000 training
sets. Hence, we use 80 000 sets of data for training and 20 000
sets of data for testing in the rest of this article.

In Fig. 4, we compare their fitting performance. From the
perspective of fitting performance, KGNet and 1D-CNN struc-
tures can be selected for band feature mapping. In addition,
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Fig. 4. NMSE of the four networks versus the number of epochs.

Fig. 5. NMSE of the four networks versus SNR of test sets.

the NMSE of the four networks is at a basic level when the
number of epochs is 500, which is used in the rest of this
article.

Moreover, the generalization of the network is critical to
the performance of key generation. The four networks were
trained with the original data set (without noise). We then
added complex white Gaussian noise to the test data set to
generate new test data sets with different SNR levels in the
range of 0–40 dB with a 5-dB step. As shown in Fig. 5,
as the SNR increases, the NMSE of the network decreased.
Compared with the other three networks, KGNet has better
performance in the range of 0–40 dB.

Based on the analysis in the above three aspects, KGNet is
the best choice for band feature mapping. Besides the above
model, we tried other architectures by adding more convolu-
tional layers and full connection layers based on the 1D-CNN
and Advanced-FNN. Although the performance of network is
slightly improved under high SNR, it also declines under low
SNR. Hence, they are not compared in this article.

2) Adding Artificial Noise to Improve Robustness: In order
to improve the generalization performance of the network

Fig. 6. NMSE of the KGNet trained with different SNR data sets versus
SNR of testing data set.

under low SNR, we added artificial noise to the original train-
ing data set. First, we used the data set under a single SNR as
the training data set, and observed the NMSE of KGNet when
tested under different SNRs. As shown in Fig. 6, when the
SNR of the training data set is lower, the NMSE of KGNet is
better when the SNR is lower than 15 dB, and the NMSE is
worse when the SNR exceeds 15 dB. When the training data
set is the original noise-free data, the network has the best
performance under high SNR while the network performs well
under low SNR when the training data set is SNR of 0 dB.
Therefore, we choose to cross the original noise-free data set
with the data set with SNR of 0 dB, so that the KGNet can
achieve excellent performance under 0–40 dB.

Then, we combined the noise-free data set and the 0-dB
data set in different sizes to form the new training data set.
We constructed five cross data sets.

1) Cross Data Set 1: A data set combining 80 000 sets of
0 dB data set and 0 sets of noise-free data set.

2) Cross Data Set 2: A data set combining 60 000 sets of
0 dB data set and 20 000 sets of noise-free data set.

3) Cross Data Set 3: A data set combining 40 000 sets of
0 dB data set and 400 000 sets of noise-free data set.

4) Cross Data Set 4: A data set combining 20 000 sets of
0 dB data set and 60 000 sets of noise-free data set.

5) Cross Data Set 5: A data set combining 0 sets of 0 dB
data set and 80 000 sets of noise-free data set.

As shown in Fig. 7, when the network is trained with the cross
data set 5, the performance of the network is the best when the
SNR is above 25 dB, but its test performance under low SNR
is too bad compared to the other four cross data sets. The test
performance of the network trained with the cross data sets
1–4 is almost the same in the low SNR. Therefore, in order to
ensure the excellent performance under high SNR and improve
the performance under low SNR to a certain extent, we choose
the cross data set 4.

Finally, we used the cross data set 4 to train the four
networks, and the NMSE of the four networks tested under
different SNRs is shown in Fig. 8. Compared with the network
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Fig. 7. NMSE of the KGNet trained with cross data sets 1–5 versus SNR
of testing data set.

Fig. 8. NMSE of the four networks versus SNR when all networks are
trained with the cross data set 4.

TABLE II
SNR THRESHOLDS TO ACHIEVE KER = 10−1 WHEN ε = [0.2/2(K − 1)]

performance shown in Fig. 5, the use of cross data set to train
the network reduces the performance of the four networks
under high SNR, and the performance of the four networks
under low SNR is improved. It is obvious that the generaliza-
tion performance of the four networks has been improved, and
the generalization performance of KGNet is still better than
the other three networks.

3) Performance of Initial Key: The performance of the ini-
tial key plays the most important role in secret key generation
problems as it provides the capability Alice and Bob can
achieve the same secret keys.

In practice, the commonly used information reconciliation
methods can correct the initial key with KER less than 10−1.
Table II compares the lowest SNRs under different quantiza-
tion levels to achieve this goal when ε = [(0.2)/2(K − 1)].
ε = [(0.2)/2(K − 1)] means that regardless of the level of

Fig. 9. KER and KGR of the initial key based on the four networks versus
SNR. All networks are trained with the cross data set 4. The quantization
factor is 0.1. The solid line represents KER and the dashed line represents
KGR.

quantization, about 20% of the channel characteristics are dis-
carded. When K = 23, the KER under 40 dB is 0.15, which
still cannot meet the target. In order to better analyze the
impact of other parameters on the performance of the initial
key, the quantization level in the subsequent analysis is 21.

Fig. 9 compares the average KER performance of the four
networks under 20 000 testing data set. We chose the quanti-
zation factor ε of 0.1. As the SNR increases, the KER of the
four networks decreases, and the KER of KGNet is always
lower than the other networks. When the SNR is higher than
30 dB, the KER performance of KGNet is lower than 10−3.
Furthermore, Fig. 9 compares the average KGR performance
of the three networks under 20 000 testing data set. When the
SNR is low and the network performance is not good enough,
there will be more features in the isolation band, and its KGR
performance is reduced. At the theoretical level, we choose the
quantization factor to be 0.1, which means that about 20% of
the channel features in the total 2L channel features are deleted
during the quantization process, so the number of quantized
key bits generated is 1.6L and the KGR is 1.6. As shown in
Fig. 9, with the growth of SNR, the KGR performance of the
four networks also continues to increase and is close to 1.6
when it is above 25 dB, which means the Gaussian distribution
fits the distribution of channel features well.

Additionally, the choice of the quantization factor has a
great influence on the performance of KER and KGR. Fig. 10
compares the performance of KER and KGR under the quan-
tization factor is 0.005, 0.1, 0.2, and 0.3. The outcomes show
that when ε is higher, the KER becomes smaller and the KGR
becomes larger. In practice, to satisfy the high agreement, the
KER needs to be less than 10−3. To reduce the KER as well
as the information exposed during the information reconcilia-
tion, different quantization factors can be set under different
SNRs. For example, we can set ε is 0.1 when SNR exceeds
25 dB, ε is 0.2 when SNR is between 15 and 25 dB, ε is 0.3
when SNR is under 15 dB.
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Fig. 10. KER and KGR of the initial key based on the KGNet versus SNR.
The KGNet is trained with the cross data set 4. The solid line represents KER
and the dashed line represents KGR.

TABLE III
NIST STATISTICAL TEST PASS RATIO

The NIST is a common tool to evaluate the randomness
feature of binary sequences [29], which is also adopted in our
work. The output of each test is the p-value. When the p-value
is greater than a threshold, which is usually 0.01, the detected
sequence passes the test. Since the quantization method we
adopted was discarded in the quantization process, the length
of each group of keys cannot reach the minimum requirement
of 128 bits for NIST detection. We splice 20 000 sets of keys
together to form t sets of 128-bit keys, generally, t is less than
20 000. We perform eight NIST statistical tests on t = 15 981
sets of keys generated under 25 dB. The serial test includes two
types of tests; the serial test is deemed passed when both tests
pass. Table III shows the pass rate of the test with different
quantization intervals, which is the ratio of the number of sets
passed to the number of all sets.

4) Performance at Eve: The performance of Eve is related
to whether the key can be eavesdropped. Since Eve is close to
Bob and Bob receives the channel on fAB, it is assumed that
Eve eavesdrops on the channel over frequency fAB without
loss of generality. Alice, Bob, and Eve can have chan-
nel feature vectors xA, xB, and xE, respectively. Fig. 11(a)
shows the channel features obtained by Alice, Bob, and Eve
with Bob at position 1 and Eve at position 2. The distance
between position 1 and position 2 is 0.15 m, which just sat-
isfies (5). The channel features obtained by Alice and Bob
come from two channels with the same relative position and
different frequencies, while those obtained by Bob and Eve

(a)

(b)

Fig. 11. Performance of Alice, Bob, and Eve. (a) Before Alice uses KGNet
for channel feature mapping. SNR is 25 dB. (b) After Alice uses KGNet for
channel feature mapping. SNR is 25 dB.

come from two channels with different positions and the
same frequencies. As Fig. 11(a) shown, changes in location
and frequency both cause changes in channel characteristics.
Fig. 11(b) shows the channel features obtained by Alice, Bob,
and Eve after Alice used KGNet for band feature mapping.
The channel features obtained by Alice and Bob have a high
degree of reciprocity, which are greatly different from those
obtained by Eve.

Fig. 12 compares the NVD performance of channel features
obtained by Alice and Bob before and after using KGNet for
band feature mapping and between Eve and Bob under differ-
ent SNRs, when Bob and Eve are fixed at positions 1 and 2,
respectively. We can find that when Alice does not use KGNet
for feature mapping, the NVD of channel features obtained by
Alice and Bob and the NVD of channel features obtained by
Eve and Bob are similar. However, after Alice uses KGNet,
the NVD between the channel feature obtained by Alice and
Bob are much smaller than those obtained by Eve and Bob.
Therefore, we believe that even when Eve and Bob are close in
the same room, Eve has limited access to the channel features
that Alice and Bob can use to generate keys.
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TABLE IV
COMPLEXITY ANALYSIS AND TIME COST FOR THE FOUR NETWORKS

Fig. 12. NVD of the channel features between Alice and Bob originally,
between Alice and Bob after Alice uses KGNet, and between Eve and Bob
versus SNR when Bob and Eve are fixed in position 1 and position 2,
respectively.

D. Overhead Analysis

To measure the complexity of the KGNet, multiple indica-
tors are used in this article. Table IV compares the complexity
of the four networks in terms of five indicators, i.e., training
time, CPU average load, GPU memory utilization, the number
of float-point operations (FLOPs), and the number of trained
parameters. We calculate the number of FLOPs with refer-
ence [42]. In terms of training time, it takes about 14 min 42 s
to train the KGNet, which takes longer than other networks.
In terms of the numbers of FLOPs and trained parameters,
the numbers of FLOPs and training parameters required by
the KGNet are nearly twice that of other networks. In terms
of CPU and GPU cost, the training of the KGNet requires
approximately 15.2% of the CPU load and 4.8 G of GPU
memory (the total GPU memory is 9.9 G), which is similar to
the cost of other types of networks. In general, the resource
consumption required for the KGNet training is higher than
that of other networks. However, this overhead is considered
acceptable, and the performance improvement brought about
by these excess consumption is more important. The reasons
are summarized as follows.

1) We choose to train and deploy the network at the base
station, and the base station usually has a large amount
of computing resources, which is sufficient to meet the
resources required for network training and storage. The
training time required to train the network on the base
station will be greatly reduced than in the simulation.
Besides, the training of the neural network can be done
on the cloud without spending any resources of the base
station.

2) We are modeling based on location, and only need to
train a network for a large area. All terminal devices in
this area can establish a secure connection with the base
station by using this network. As long as the environ-
ment in the area does not undergo large-scale changes,
the trained network can be used forever. Even if the envi-
ronment changes, we can fine-tune the network through
a small number of data sets.

3) The networks with better performance can generate ini-
tial keys with lower BER and higher BGR, which will
reduce the overhead of subsequent information reconcil-
iation. Therefore, from a long-term perspective, it is very
cost effective to exchange the additional cost required
for training for a network with better performance.

Besides, it needs to be emphasized that compared with the
key generation for TDD systems, the base station does not
have any additional overhead except for the additional use
of the KGNet for frequency band feature mapping in FDD
systems. In particular, the terminal does not need to train and
save the neural network, and there is no additional overhead
other than a regular key generation, which means it is suitable
for resource-constrained IoT devices.

VIII. CONCLUSION

This article is the first work to apply deep learning to the
design of FDD key generation scheme. We first demonstrated
the mapping of channel features in different frequency bands
under a condition that the mapping function from the can-
didate user positions to the channels is bijective. Then, we
proposed the KGNet for frequency band feature mapping to
construct reciprocal channel feature between communication
parties. Based on the KGNet, a novel secret key generation
scheme for FDD systems was established. Simulation results
have demonstrated that the KGNet performs better than other
benchmark neural networks in terms of both fitting and gen-
eralization under low SNR. In addition, training the neural
network with a cross data set that combines noisy data set and
noise-free data set can improve the robustness of the neural
network. Moreover, the proposed KGNet-based FDD system
key generation scheme is evaluated from the KER, KGR, and
randomness, and it is verified that it can be used for key gen-
eration for FDD systems. Our future work will extend this
approach to design key generation for FDD-MIMO systems.

APPENDIX A
PROOF OF PROPOSITION 1

Under Definition 1, we have the mapping �fAB : {PB} →
{H(fAB)}. Under Assumption 1, we have the mapping
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�−1
fBA

: {H(fBA)} → {PB}. Since the domain of �fAB is the

same as co-domain of �−1
fBA

, the composite mapping � fBA→fAB

exists.

APPENDIX B
PROOF OF PROPOSITION 2

Under Proposition 1, we have the mapping � fBA→fAB .
Under mapping function ξ f and ξ−1

fAB
, we have the mapping

ξ fAB
: H(fAB) → x(fAB) and ξ−1

fBA
: x(fBA) → H(fBA). Since

the domain of ξ fAB
is the same as co-domain of � fBA→fAB ,

the domain of � fBA→fAB is the same as co-domain of ξ−1
fBA

, the
mapping � ′

fBA→fAB
exists.

APPENDIX C
PROOF OF THEOREM 1

1) Since hfBA is bounded and closed, xfBA obtained after
linear change is still bounded and closed, H is a compact
set.

2) Since �fAB and �−1
fBA

are continuous mapping and the
composition of continuous mappings is still a continuous
mapping, we know � fBA→fAB is a continuous function.

3) Since � fBA→fABand ξ are a continuous function, we
know � ′

fBA→fAB
(x(fBA)) is also a continuous function for

∀x(fBA) ∈ H.
Based on 1)–3) and universal approximation
theorem [33, Th. 1], Theorem 1 is proved.
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