
SolSaviour: A Defending Framework for Deployed Defective
Smart Contracts

Zecheng Li

cszcli@comp.polyu.edu.hk

The Hong Kong Polytechnic University

Hong Kong, China

Yu Zhou

csyzhou@comp.polyu.edu.hk

The Hong Kong Polytechnic University

Hong Kong, China

Songtao Guo

guosongtao@cqu.edu.cn

Chongqing University

Chong Qing, China

Bin Xiao
∗

b.xiao@polyu.edu.hk

The Hong Kong Polytechnic University

Hong Kong, China

ABSTRACT
A smart contract cannot be modified once deployed. Bugs in de-

ployed smart contracts may cause devastating consequences. For

example, the infamous reentrancy bug in the DAO contract allows

attackers to arbitrarily withdraw ethers, which caused millions of

dollars loss. Currently, the main countermeasure against contract

bugs is to thoroughly detect and verify contracts before deploy-

ment, which, however, cannot defend against unknown bugs. These

detection methods also suffer from possible false negative results.

In this paper, we propose SolSaviour, a framework for repairing

and recovering deployed defective smart contracts by redeploying

patched contracts and migrating old contracts’ internal states to

the new ones. SolSaviour consists of a voteDestruct mechanism

and a TEE cluster. The voteDestruct mechanism allows contract

stake holders to decide whether to destroy the defective contract

and withdraw inside assets. The TEE cluster is responsible for asset

escrow, redeployment of patched contracts, and state migration.

Our experiment results show that SolSaviour can successfully re-

pair vulnerabilities, reduce asset losses, and recover all defective

contracts. To the best of our knowledge, we are the first to pro-

pose a defending mechanism for repairing and recovering deployed

defective smart contracts.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Net-
work security; Software and application security.

KEYWORDS
smart contract, trusted execution environment (TEE), blockchain,

defence mechanism

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACSAC ’21, December 06–10, 2021, Austin, Texas
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Zecheng Li, Yu Zhou, Songtao Guo, and Bin Xiao. 2018. SolSaviour: A

Defending Framework for Deployed Defective Smart Contracts. In ACSAC
’21: Annual Computer Security Applications Conference, December 06–10, 2021,
Austin, Texas. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

1122445.1122456

1 INTRODUCTION
The smart contract technology that derived from blockchain sys-

tems can be used to implement almost arbitrary business logic. It

can be used to create distributed autonomous organizations (DAO),

revolutionize the work logic of many areas, and create financial

applications such as payments and insurance. Due to the trans-

parent nature and inherent value concentration, smart contracts

are now extremely attractive targets for attacks. Vulnerable code

or business logic design in smart contracts can be exploited by

attackers and have serious security and property consequences. In

addition, due to the immutable nature of deployed smart contracts,

redeploying a new smart contract without vulnerabilities is often

the only solution.

In recent years, the blockchain community has experienced sev-

eral incidents resulting from smart contract errors. The first was

the infamous the DAO hack [8], in which attackers exploited the

reentrancy vulnerability in the DAO contract to withdraw approxi-

mately 3.6 million ethers. During this attack, honest contract de-

velopers and participants were incapable of stopping it. The only

thing they could do was to withdraw ethers to a secure account

as fast as possible. The Ethereum community eventually decided

to reduce the impact of this attack through a hard fork. Another

infamous vulnerable contract was the Parity Multisig Wallet, which

was hacked twice. In the first time, attackers exploited the vulnera-

bility of delegatecall in fallback function to change the ownership

of wallet contract and stole 153,037 ethers [6]. In the second time,

attackers managed to destroy the Parity wallet library contract. 587

contracts that rely on it were blocked and 513,774.16 ethers were

locked [1]. Furthermore, with the development of decentralized

applications (DAPP) and the increased popularity of decentralized

finance (DeFi) applications such as UniSwap and flash loan, new

types of attacks are occurring. For example, Fei has experienced

malicious trading attacks caused by price manipulation [28].

These attacks have spurred community work on detecting smart

contract vulnerabilities before deployment. Many software testing

techniques are utilized, including symbolic execution [26], formal

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ACSAC ’21, December 06–10, 2021, Austin, Texas Zecheng, et al.

verification [3], static analysis[7, 15], dynamic analysis [36], and

fuzzing testing [30]. However, these detection methods still have

certain limitations, such as covering fixed types of vulnerabilities,

not solving the emergence of unknown vulnerabilities, limited

detection efficiency (i.e., sensitive to some vulnerabilities, but insen-

sitive to others), and possible false negative cases. There are also

some work on repairing smart contracts, including EVMPatch [33],

SCRepair [38] and sGUARD [16]. We point out that for high-net-

worth smart contracts, pre-deployment detection methods are not

fully effective, and the possibility of post-deployment vulnerabili-

ties still exists. Though detecting and fixing contract bugs has been

extensively studied, how to repair and recover deployed defective

contracts remains an unsolved problem.

For this reason, a mechanism that can repair and recover de-

ployed defective smart contracts is required. Several methods to

upgrade deployed smart contracts are developed. Proxy pattern is

the most promising one. In proxy pattern, a smart contract is sepa-

rated into data contract and logic contract. The data contract can

use delegatecall opcode to invoke the logic contract. The delegate-

call executes code of logic contract in the context of data contract. In

this way, once a bug is found in a logic contract, it can be upgraded

without affecting the data contract. However, proxy pattern cannot

save assets inside defective contracts. We emphasized that saving

funds inside defective contracts is an unsolved problem. For this

reason, we aim to find a way that not only can repair vulnerabilities

in defective smart contracts, but also can recover assets according

to the stake distribution. Several challenges arise in the way of

designing such a mechanism.

• The current method of destroying contracts by setting a

trusted owner address is a trust risk. Having a decentralized

way to destroy deployed smart contracts is critical to the

trust of multi-user contracts, which is challenging.

• Redeploying a patched smart contract cannot inherit the

defective contract’s internal state. It is challenging to migrate

state from old buggy contracts to new patched ones in a

secure and trusted way.

• Another key challenge is how to build a TEE cluster, which

acts on a unique blockchain address and can alleviate the

availability problem of a single TEE node. How to reach

the consensus on a unique key in the TEE cluster is also

challenging.

In this paper, we propose SolSaviour, a framework that can pro-

tect deployed smart contracts against unknown bugs. To the best of

our knowledge, SolSaviour is the first work that can repair and re-

cover deployed defective smart contracts. The first important point

is that SolSaviour decentralizes the control on smart contracts to

multiple parties. Another key to this achievement is a secure and

principled combination of blockchain and trusted hardware. In this

case, clients can invoke TEE to conduct a series of pre-defined oper-

ations. This model is securer and more efficient than the traditional

model of sending multiple transactions in succession to invoke a

smart contract.

We propose voteDestruct mechanism to enable the decentralized

smart contract control. Contract participants (i.e., stake holders)

can vote on the future of the contract. They can lock the contract,

destroy it, or unlock the locked contract and continue the execu-

tion. The weight of their votes depends on the number of ethers

(i.e., stake) they deposited. The more stake a stake holder has, the

weightier its vote.

We build a TEE cluster to take charge of smart contract exit op-

erations and temporary asset escrow when destroying a defective

smart contract. Once the patched smart contract is transferred to

TEE cluster, the TEE cluster deploys it and conducts the state migra-

tion to transfer all internal assets to the newly-deployed contract.

The cluster architecture can alleviate potential TEE failures, such as

side channel attacks and unavailability. Assuming the integrity of

the blockchain, users do not need to trust the validity, persistence,

confidentiality or correctness of smart contract creators, miners

or TEE nodes. SolSaviour thus can provide self-sustaining service

even when some miners, contract creators, contract participants or

TEE nodes are unavailable. The main contributions of this paper

are summarized as follow:

• We propose voteDestruct mechanism, which allows contract

stake holders to vote to destroy the defective smart contract.

• We build a TEE cluster based on Intel SGX to take charge of

asset escrow and contract state migration. The TEE cluster

can preserve trusted execution of contract patching.

• We collect smart contracts that were attacked in the past

and use them to evaluate the effectiveness and performance

of SolSaviour. Experiment results show that SolSaviour can

effectively mitigate the loss caused by smart contract vulner-

abilities with little overhead.

The remainder of this paper is organized as follows. Section 2

gives some background knowledge of this paper. In Section 3, we

present the overview, workflow, and building blocks of SolSaviour.

The detailed implementation is presented in Section 4, and the ef-

fectiveness and performance of SolSaviour are evaluated in Section

6. We discuss related work in Section 7 and conclude our work in

Section 8.

2 BACKGROUND
2.1 The Life Cycle of a Smart Contract
The life cycle of a smart contract typically consists of four phases:

contract creation, contract freeze, contract execution, and contract

finalization.

Creation: This phase includes writing and deploying a smart

contract. First, participants must agree on the goals of the con-

tract, which can be done online or offline, similar to traditional

contract negotiations. After agreeing on the goals and content of

the contract, the agreement must be translated into code. Then, the

contract source code is compiled into bytecode and embedded in a

transaction with a target address of 0 (i.e., contract creation trans-

action). Finally, this transaction is broadcasted to the blockchain

network.

Freeze: After the smart contract creation transactions are com-

mitted to the blockchain, the miner includes them in a new block

to make it persistent. From then on, the state variables and mes-

sage calls of the contract will be public. People can access the rele-

vant data directly through RPC calls provided by the underlying

blockchain or blockchain browser websites.

2

SolSaviour: A Defending Framework for Deployed Defective Smart Contracts ACSAC ’21, December 06–10, 2021, Austin, Texas

Execution: Contracts are stored on miners that maintain the

blockchain system. Each miner node stores the corresponding byte-

code and state variables according to the address of the contract.

In exchange, the initiator of a contract creation transaction pays a

transaction fee to the miner. The execution of the contract is carried

out through a message call. Smart contracts are called by initiating

the corresponding arguments to the functions that can be called.

Contracts can also call each other. Different message calls have dif-

ferent effects, some resulting in a transaction (internal transaction)

and some changing the state variables inside the contract.

Finalization: After a smart contract is executed, the transaction

containing the message call and the new state information is stored

in the blockchain and persisted with the confirmation of the new

blocks. Since then, we can consider one message call of the contract

to be over. In addition, the user can also call the selfdestruct
function defined inside a contract to destroy it. This will result in

the end of the entire contract life cycle. Once a contract is destroyed,

miners delete the bytecode and variables corresponding to its ad-

dress, and the remaining property inside the contract is refunded

to the address of the selfdestruct function’s argument.

2.2 Defending Methods
2.2.1 Repairing Technique. Currently, almost all contract repairing

techniques focus on repairing smart contracts before deployment. In

this case, they are no different from contract vulnerability detection

techniques. Namely, they cannot repair vulnerabilities that are not

detected. They are even less capable of fixing bugs in deployed

smart contracts.

2.2.2 Recovering Technique. Currently, the only available recover-

ing technique is proxy pattern, where smart contracts are structured

as proxy contract and data contract. Message calls are gone through

proxy contract that will be redirected to the latest deployed con-

tract logic. Once a bug is exposed, proxy pattern supports upgrade

contracts. A new version of smart contract is deployed and the

proxy is updated to reference the new contract address. However,

this method suffers from the requirement of trusted contract owner.

That is, the contract developer will set its address as contract owner

in the contract creation step, which results in the fact that contract

users need to trust the contract creator, which is not applicable to

multi-user contract scenarios.

2.3 Defective Contract
Defective smart contracts can be divided into two categories: ex-

ploitable smart contracts and smart contacts may have unexpected

internal state. For the first type, either there are some problems

with the contract implementation that create bugs (e.g., reentrancy

vulnerability), or an attacker can exploit the contract internal logic

to launch attacks (e.g., frontrunning attack). By exploiting these

bugs, attackers can gain benefits that do not belong to them. For

the second type, these bugs may cause a smart contract to an unex-

pected state, even locked state. For example, a jackpot may never

succeed because of a strict equal operation [9].

TEE Cluster

Defective
Contract

Patched
Contract

voteDestruct

Redeployment

Manual
Patch

State Migration

Asset
Escrow

Attacker

Exploitable
Not

Exploitable

Figure 1: The overview of SolSaviour framework. Honest
users can safely exit from a defective contract through vot-
eDestruct mechanism, and can invoke TEE cluster to hold
assets, redeploy a patched contract, and conduct statemigra-
tion to continue contract execution.

2.4 Internal State
The concept of contract internal state includes the values of con-

tract variables and the stake distribution of assets inside the con-

tract. When performing contract migrations, upgrades, as well as

SolSaviour-enabled contract repairing and recovering, the consis-

tency of contract internal state should be maintained. Ensuring the

consistency of contract states requires us to restore the states of

defective contracts and migrate them to patched contracts.

Recovering the value of variables inside a smart contract is easy.

For values of public variables, we can get them via the getter func-

tion. For private variables, we can use the blockchain history data

to determine their values. Once the values of defective contract’s

variables have been recovered, we can write them to the patched

contract.

The method of recovering stake distribution is similar to that of

recovering variables’ values. However, it is non-trivial to migrate

the stake distribution from defective contracts to patched contracts,

which requires actual transactions of funds. In this case, assets are

transferred from defective contracts’ addresses to patched contracts’

addresses, in accordance with the stake distribution of the defective

contracts. This is one of the main problems addressed by SolSaviour.

3 SOLSAVIOUR
3.1 What is SolSaviour
The overview of SolSaviour is depicted in Fig. 1. SolSaviour consists

of two core parts: voteDestruct and TEE cluster. The voteDestruct

3

ACSAC ’21, December 06–10, 2021, Austin, Texas Zecheng, et al.

1

2

3

64

5

7 8 9

TEE ClusterTEE Cluster

SafeSafe

Can be attackedCan be attacked

LockedLocked

Safe

Can be attacked

Locked

Figure 2: The workflow of SolSaviour framework. The life cycle of a defective contract ends at the rightmost black block.

mechanism is embedded in smart contracts before deployment. It

ensures that a smart contract can be destroyed in the voting manner.

Once a deployed contract is exposed to some vulnerabilities, the

contract stake holders can invoke the voteDestrcut mechanism to

destroy it.

TEE cluster provides three functionalities: asset escrow, redeploy-

ment (of patched contract), and state migration. For asset escrow, it

can hold assets for a destroyed contract temporarily. For redeploy-

ment, the TEE cluster can receive patched smart contract from stake

holders and deploy it. Finally, the TEE cluster can migrate defective

smart contract’s state (i.e., assets according to stake distribution) to

the newly-deployed patched contract.

The TEE cluster can be bootstrapped by contract stake holders.

For example, a group of people consider running a high-net-worth

smart contract. Concerned about potential security risks arising

from the contract, they could write the smart contract following

the voteDestruct pattern and initialize a TEE cluster to protect it. In

this way, they enable repairing and recovering capabilities for their

deployed smart contract. Even if a bug is exposed in that smart con-

tract, they can fix it without worrying about asset loss. In addition,

SolSaviour can also be used as a public service, where a service

provider deploys a TEE cluster to provide a mechanism for contract

repairing and recovering. The deployment effort of TEE cluster is

affordable, all it needs is to adapt the enclave implementation to the

data structure of the target running blockchain, and to ensure that

the blockchain address is correctly generated in the TEE cluster

and that the generated transactions can be received by the target

blockchain.

3.2 Workflow
During the contract execution (i.e., blockchain growth), an un-

known bug may be disclosed. Then, contract stake holders can

check whether their smart contracts are vulnerable to this new bug.

If so, they can invoke the TEE cluster to to lock their smart con-

tracts and prevent them from further interaction. After that, people

who have assets inside the smart contract can decide a recovering

scheme and vote whether to execute it via a cumulative voting way,

where people’s stake means how much they have in the contract.

Since then, contract stake holders can launch a patched contract

as well as the recover policy into the TEE cluster. The TEE cluster

can destroy the defective smart contract and execute the recover

policy (e.g., return all assets back to their owners). For a naive safe

exit, TEE cluster can generate refund transactions according to

the stake distribution and broadcast them to the blockchain. All

locked assets can be returned to their stake holders. For contract

recovering, TEE cluster can deploy a patched contract onto the

blockchain and migrate all assets as well as the stake distribution

to it. Since then, stake holders can continue to execute the contract

without the vulnerability. The detailed workflow is summarized

below as shown in Fig. 2:

1○ Users can initialize a deployment instruction and send its

voteDestruct-enabled contract to the TEE cluster.

2○ The TEE cluster generates a contract creation transaction

with the voteDestruct-enabled contract and broadcast it to

the blockchain.

3○ Once a contract bug is discovered, contract stake holders

invoke the TEE cluster to turn the contract state to ‘Locked’,

namely no further operations except vote can be conducted

in the contract. In addition, if the contract stake holders want

to deploy a patched contract, they should submit it in this

step.

4○ The TEE cluster turns the smart contract to be ‘Locked’.

5○ The contract stake holders vote to decide whether to destroy

the smart contract.

4

SolSaviour: A Defending Framework for Deployed Defective Smart Contracts ACSAC ’21, December 06–10, 2021, Austin, Texas

6○ The TEE cluster invokes the destroy function to execute the

selfdestruct opcode and all ethers are transferred to an

address held by the TEE cluster.

7○ The TEE cluster receives the assets from the destroyed de-

fective contract.

8○ A naive approach is to distribute these assets back to their

stake holders. Another way is to redeploy a patched contract

provided by contract stake holders in Step 3○.

9○ The TEE cluster migrates the internal state of the defective

contract to the newly-deployed patched contract by injecting

the stake distribution in the patched contract.

3.3 Building Blocks
3.3.1 voteDestruct Mechanism. As an autonomous community, a

smart contract stake holders can reach a consensus on whether to

destroy the smart contract among themselves. Currently, a typical

way to refund all assets inside a smart contract is to invoke a

pre-defined destroy function. Then, all smart contract assets can

be transferred to a specified address, which usually belongs to

contract’s owner. However, this setting cannot support multi-user

smart contracts such as the DAO contract, whose assets belongs

to different entities. Facing this problem, we propose voteDestruct

mechanism to allow smart contract stake holders to vote whether

to destroy the smart contract and withdraw all inside funds.

The voteDestruct is processed in three steps. The contract first

forms the stake distribution during its execution. Then, once a vul-

nerability is exposed, stake holders can invoke the contract via TEE

cluster to vote whether to destroy the contract. After completing

the voting, the contract stake holders can invoke the TEE cluster

to destroy the defective contract.

Stake Distribution: Each depositing transaction will be recorded.

Specifically, the address of depositor and amount of deposited ethers

will be recorded.

Voting: The voting function can be invoked by any stake holder.

During the voting process, the smart contract is in the locked state

so that no external users can deposit or withdraw ethers. This

ensures that the stake distribution (i.e., voting power) remains the

same during the whole voting process. After completing the voting,

contract calculates the votes on supporting and opposing based on

the stake, and then decides whether to execute the destroy function.

Destroying: Only when the cumulative voting on supporting

destroying exceeds 2/3 stake, the contract is capable of being de-

stroyed. Contract stake holders can instruct the TEE cluster to

invoke the destroy function once the voting process completes.

3.3.2 TEE Cluster. We establish a TEE cluster to mitigate the avail-

ability problem of TEE nodes. We present the details of TEE cluster

in Figure. 3. Each enclave is denoted as 𝜎𝑖 . We use 𝑐 to represent

a potentially defective smart contract and 𝐶𝑝 to denote a patched

contract. To distinguish the difference between intra-TEE cluster

communication and TEE cluster-blockchain communication, we

use “broadcast” to indicate broadcasting messages inside TEE clus-

ter and “upload” to represent broadcasting transactions onto the

blockchain.

Bootstrapping: In the bootstrapping step, all TEE nodes inside

the same cluster need to reach an agreement on a key that used

to generate the blockchain address. Each enclave is assigned a

SolSaviour: A Defending Framework for Deployed Defective
Smart Contracts

Anonymous Author(s)
Algorithm 1 TEE Cluster

1: procedure bootstrapping(𝜎𝑖, 𝑖 ∈ 0, 𝑛− 1)
2: load 𝜎𝑖 ◁ initialize node 𝑖
3: generate {sgx_quote𝑖, 𝐾𝑖}
4: broadcast {sgx_quote𝑖, 𝐾𝑖}
5: verify sgx_quote𝑗

6: generate {𝐾,addr}
7: end procedure
8: procedure transaction generation
9: on receiving contract 𝑐 ◁ deploy contract

10: tx.payload(𝑐), goto line 15
11: on receiving address 𝑎𝑑𝑑𝑟 ◁ lock defective contract
12: tx.payload(addr, func vote_initial), goto line 15
13: on receiving address 𝑎𝑑𝑑𝑟 ◁ destroy contract
14: tx.payload(addr, func destroy), goto line 15
15: Sign𝐾tx
16: upload tx
17: broadcast(++nonce)
18: end procedure
19: procedure state recovery
20: mapping stake_dist(addr→stake_amount)
21: stake_dist ← addr.st_map_getter()
22: end procedure
23: procedure Safe exit
24: for addr ∈ stake_dist do
25: addr.transfer(stake_amount)
26: end for
27: end procedure
28: procedure patched contract deployment
29: on receiving 𝐶𝑝

30: go to line 9 ◁ Redeployment of patched contrct
31: end procedure
32: procedure state migration(stake_dist)
33: tx.payload(addr, stake_dist), go to line 15
34: end procedure

ABSTRACT
CCS CONCEPTS
• Security and privacy → Distributed systems security; Net-
work security.

KEYWORDS
smart contract, trusted execution environment, blockchain
ACM Reference Format:
Anonymous Author(s). 2018. SolSaviour: A Defending Framework
for Deployed Defective Smart Contracts. In ACSAC ’21: Annual
Computer Security Applications Conference, December 06–10,
2021, Austin, Texas. ACM, New York, NY, USA, 1 page. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
each enclave is denoted as 𝜎𝑖

contract is denoted as 𝑐
patched contract is denoted as 𝐶𝑝

Here, we use “broadcast” to indicate broadcasting messages
inside TEE cluster, we use “upload” to represent broadcasting
transactions onto the blockchain.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ACSAC ’21, December 06–10, 2021, Austin, Texas
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1

Figure 3: The working logic of TEE cluster. The TEE cluster
receives instructions from contract stake holders and gener-
ates transactions to call smart contract functions.

number before the deployment. During the bootstrap process, 𝑝

is the module of computation and 𝑔 is the generator of the cyclic

group.

Step 1. Each TEE node 𝑈𝑖 generates a random number 𝑥𝑖 =

𝑔𝑥𝑖 mod 𝑝 and broadcast it to the other TEE nodes.

Step 2. Each node broadcasts 𝐾𝑖 = (𝑘𝑖+1
𝑘𝑖−1

)𝑥𝑖 mod 𝑝

Step 3. Each node calculates:

𝐾𝑖 = 𝐾
𝑛𝑥𝑖
𝑖−1 · 𝐾𝑛−1

𝑖 · 𝐾𝑛−2
𝑖+1 · · ·𝐾𝑖−1 mod 𝑝

If all parties follow the above steps, they can reach an agreement

on the key:

𝐾 = 𝑔𝑥1𝑥2 · 𝑔𝑥2𝑥3 · 𝑔𝑥3𝑥4 · · ·𝑔𝑥𝑛𝑥1

Then, following the standard way, each node can generate the

same blockchain address. Once the TEE cluster has been set up,

people can instruct it to deploy a contract as shown in line 9. Then,

the contract can run safely under the protection of SolSaviour until

the end, or if there is a bug.

Asset Escrow: Once a bug is found in a SolSaviour-protected

smart contract, stake holders can instruct the TEE cluster to lock

the contract as shown in line 11 and then vote whether to destroy

5

ACSAC ’21, December 06–10, 2021, Austin, Texas Zecheng, et al.

contract voteDestruct_sample {
struct st_holder
{ uint key_index; uint st_amount; bool voted;}
mapping(address => st_holder) public st_map;
address public TEE_addr;
uint public contract_stake; uint public support_stake;
enum State {Active, Locked} State public state;

modifier inState(State _state)
{ require(state == _state); _;}

constructor() { TEE_addr = msg.sender;}

function any_payable_function() inState(State.Active)
public payable {

st_map[msg.sender].st_amount += msg.value;
contract_stake += msg.value;}

function vote_initial() inState(State.Active) public {
require (msg.sender == TEE_addr);
state = State.Locked;}

function vote_halt() inState(State.Locked) public {
require (msg.sender == TEE_addr);
state = State.Active;}

function vote(bool choice) inState(State.Locked) public {
require(!st_map[msg.sender].voted);
st_map[msg.sender].voted = true;
if (choice)
{ support_stake += st_map[msg.sender].st_amount;}}

function destroy() public {
require (msg.sender == TEE_addr);
require (support_stake > (contract_stake * 2 / 3));
selfdestruct(payable(TEE_addr));}}

Figure 4: A Sample of voteDestruct Contract.

it. After completing the voting process, contract stake holders can

instruct the TEE cluster to invoke the destroy function as shown

in line 14. As soon as the amount of stake in favour of destruction

exceeds a specified threshold, the contract is successfully destroyed

and all assets are transferred to the address held by the TEE cluster.

During the contract recovering process, TEE cluster hold the asset

of the destroyed contract until deploying its patched version.

State Migration: During the locked state, the TEE cluster obtains

contract’s stake distribution via the getter function and saves it.

Based on this internal state, the contract owner can call the TEE

cluster to perform a safe exit or state migration. The TEE cluster

also takes charge of migrating the internal state from the buggy

contract to the patched new one. In this process, the TEE cluster

ensures that the states are consistent.

4 IMPLEMENTATION
4.1 Repairing Smart Contract
4.1.1 Patch Generation. In SolSaviour, patches for defective smart

contracts are provided by the contract stake holders. This is because

the main purpose of SolSaviour is to provide a framework for repair-

ing and recovering deployed defective smart contracts, rather than

providing a system that can automatically generate patches. Smart

contract patches can be generated manually or using existing tools

such as sGuard [16] and SCRepair [38]. Once a patched contract is

prepared, contract stake holders can pass it to the TEE cluster for

redeployment.

For known bugs such as reentrancy and integer overflow, stake

holders can leverage existing tools to generate patched contracts.

For unknown bugs, patched contracts should be developed by

experts, which are trusted by the stake holders. After patching,

the contract should be tested thoroughly before deploying by re-

executing all previous related transactions. This can test thewhether

the patched contract functions well and has fixed all related bugs.

4.1.2 voteDestruct. Currently, we can use selfdestruct primitive

to destroy deployed smart contracts and refund all inside assets.

When writing a smart contract, there are usually restrictions set

to limit that only privileged owners can invoke the selfdestruct
primitive, otherwise this contract can be destroyed by anyone. How-

ever, this method requires contract stake holders to trust the privi-

leged owner since he/she is able to withdraw all inside assets. In

this case, we introduce voteDestruct mechanism, which allows

contract stake holders to destroy a deployed smart contract in a

decentralized way. Fig. 4 shows the sample of voteDestruct mecha-

nism. We emphasize that its implementation does not require new

EVM instructions. It is constructed based on pure Solidity language.

Moreover, the voteDestruct mechanism can be implemented in

different versions Solidity with minor modifications.

In the life cycle of a smart contract, contract participants may

deposit ethers before a bug is exposed. The voteDestruct mecha-

nism records these participants as stake holders st_holder and

the amount of their deposited ethers as st_amount. Once a stake
holder found that this smart contract is vulnerable to some newly

discovered bugs, it can invoke the vote_initial function via the

TEE cluster. The smart contract then starts the cumulative vote in

which each stake holder chooses whether to destroy this contract

and return all funds.

4.1.3 Safe Exit. Through voteDestruct mechanism, SolSaviour en-

ables contract stake holders to safely exit from a defective smart

contract. SolSaviour utilizes a cumulative voting algorithm, which

calculates votes based on stake. Cumulative voting is the procedure

followed by electing whether to destroy the smart contract. Typ-

ically, each stake holder should choose to support or oppose the

contract destruction. Once the vote completes, different choice will

be counted according to the amount of stake.

If the contract stake holders vote not to destroy the contract to re-

solve the defect, they can instruct TEE cluster to invoke vote_halt
function to unlock contract. Otherwise, the contract executes its

selfdestruct operations and send all inside funds to an account

controlled by the TEE cluster. In this way, contract stake holders

can safely exit from a contract that is exposed to some critical bugs

or under attacks. Compared with traditional selfdestruct opera-

tions, safe exit not only saves all preserved funds, but also avoids

the requirement to trust a privileged owner.

4.1.4 Redeploy a Patched Contract. Though safe exit can save al-

most all buggy contract stake holders from losing assets. There exist

cases that stake holders need to fix vulnerabilities and continue the

contract execution. SolSaviour therefore provides an alternative

6

SolSaviour: A Defending Framework for Deployed Defective Smart Contracts ACSAC ’21, December 06–10, 2021, Austin, Texas

way, namely redeploying a patched contract and migrating the

internal state from the defective contract to the patched one.

First, contract stake holders invoke the TEE cluster to lock the

defective contract and prepare a patch. Once the patched smart

contract is generated and tested, it can be sent to TEE cluster for

deployment. Then, stake holders can instruct the TEE cluster to in-

voke the voteDestruct mechanism to destroy the defective contract

and withdraw all assets to TEE cluster safely. After safe exit, stake

holders can invoke TEE cluster to deploy the patched contract.

During redeployment, the TEE cluster takes charge of injecting

the initial state of the patched contract and generating a contract

creation transaction. To be consistent with the destroyed defective

contract, SolSaviour makes sure that the newly-deployed patched

contract shares the same internal state with the destroyed one. The

TEE cluster injects a list of stake holder addresses and the amount

of their stakes to the patched contract, which indicates the amount

of ethers they deposited before contract destruction. Then, the TEE

cluster generates a contract creation transaction for the patched

contract and broadcast it onto the blockchain. For contract stake

holders, the internal state of the redeployed contract remains the

same as the previous defective contract, but SolSaviour has already

fixed the vulnerabilities.

4.2 Recovering Smart Contracts
In SolSaviour, the recovering process proceeds in three phases.

During the setup phase, the contract is destroyed according to the

voting results. Then, assets of destroyed defective smart contracts

are temporarily held by the TEE cluster in the escrow phase. After
that, the protocol proceeds to the recovering phase to deploy the

patched contract and migrate the previous contract’s internal state

to the new one.

Setup Phase. In the setup phase, once a contract stake holder

notices a potential vulnerability in the contract, it can broadcast

the vulnerability to attract other stake holders’ attention. Then, all

contract stake holders can vote whether to lock the contract. If the

support rate exceeds 1/3 (i.e., lock threshold), the contract enters a

locked state and no external calls can be executed, except for calls

that unlock or destroy the contract. During the locking phase, the

contract stake holders can discuss the exposed vulnerability and

develop corresponding patches.

If most stake holders think that this vulnerability is a false posi-

tive case, they can vote to unlock the smart contract and continue

to work with it. The voting threshold for unlocking a locked smart

contract is the same as the threshold for locking one. Afterwards,

the contract can continue to operate normally. If the discussion

thinks the vulnerability may lead to serious consequences, stake

holders need to develop a valid patch and test it. Then, they could

vote whether to destroy the defective contract. When the support

rate exceeds 2/3 (i.e., destroy threshold), the vote is passed and the

contract can be destroyed by TEE cluster. All internal assets are

transferred to the TEE cluster for temporary escrow.

Escrow Phase. When entering the escrow phase, the old vul-

nerable smart contract has been destroyed. All assets inside the

defective contract are transferred to an account controlled by the

TEE cluster. Before redeploying a patched smart contract, TEE clus-

ter extracts the internal state of the old defective smart contract,

namely values of state variables and stake distribution. By analyz-

ing the internal state of defective contract, the TEE cluster is able

to migrate the state of defective contract to the patched one.

Recovering Phase. In the recovering phase, the TEE cluster

first modifies the patched smart contracts provided by the contract

stake holders. The purpose of this modification is to migrate the

internal state from the old, vulnerable contract to the new, patched

smart contract. TEE cluster ensures that variables in the patched

contract are the same with before by initializing these variables.

Then, TEE cluster deploys the patched contract and directly trans-

fers all the escrow assets to the newly deployed contract. Since

the stake distribution has been injected by TEE cluster, the own-

ership of these assets is certain and consistent, as well as their

corresponding voting rights. Moreover, only the corresponding

accounts can extract these assets from the newly deployed patched

smart contract.

5 SECURITY ANALYSIS
5.1 Threat Model
Weassume that parties who do not trust each other use the blockchain

to execute smart contracts and mine new blocks. We assume most

machines are equipped with TEE, which is based on the observation

that most computers have SGX-capable Intel CPU. We assume that

the TEE (i.e., programs inside enclaves) on a machine is trusted,

but some TEE nodes may suffer from integrity and confidentiality

problem. They may be destroyed by other parties or external at-

tackers. All parties are rational and potentially malicious. When

there are benefits, they may try to steal funds that belong to others

and force the TEE to modify the stake distribution. All parties are

connected via the network, and they can discard and replay the

information. Malicious hosts can delay or prevent others from ac-

cessing the blockchain for an unlimited time, but we assume that

this will not happen indefinitely. We also assume that an adversary

A can corrupt up to 𝑡 of 𝑛 hosts in the TEE cluster. We consider the

adversary can cause corrupted hosts to deviate from the specified

protocol, namely drop or delay messages between enclaves. Our

adversary A is static, namely chooses the corrupted hosts at the

beginning of the protocol.

5.2 Trusted Execution as a Root-of-Trust
In SolSaviour, participants can monitor the blockchain to detect

deviations from the protocol and react appropriately. Here, we pro-

pose a new trust mechanism with a TEE cluster as the root of trust.

The TEE cluster is independent of the blockchain and can ensure the

faithful execution of SolSaviour. TEEs are encrypted and integrity-

protected memory regions that are isolated from the rest of the

software stack by the CPU hardware, including higher-privilege

system software. By using the TEE cluster as an independent root

of trust, SolSaviour can ensure secure exit, redeployment, and ef-

fective state migration of defective smart contracts. In addition,

the cluster architecture improves the overall fault tolerance of the

system. Single point failures will not affect the overall availability

of SolSaviour.

7

ACSAC ’21, December 06–10, 2021, Austin, Texas Zecheng, et al.

5.3 Threat Analysis
voteDestruct. We first analyze the case where there are some ma-

licious stake holders. As malicious stake holders are profit oriented,

what they want is to acquire the assets of honest stake holders.

We prove the security of voteDestruct mechanism by showing that

honest stake holders can always safely exit a smart contract as long

as their cumulative stake amount exceeds the specified destroy

threshold. In SolSaviour, a smart contract has three statuses, active

but potentially defective, locked, and destroyed. In locked status, a

contract is protected by blockchain miners that reject all function

calls except those initiated from the TEE cluster. In this case, mali-

cious stake holders cannot steal assets. In destroyed status, assets in

a contract are held in custody by the TEE cluster, so that malicious

stake holders cannot profit either. The only chance for malicious

stake holders to profit is during the active but potentially defec-

tive status. In SolSaviour, the threshold of required stake amount

to lock a contract is 1/3. Only when the amount of stake held by

malicious stake holders exceeds 2/3, they can prevent the contract

from entering the locked status.

During the active but potentially defective status, when a hidden

vulnerability is exposed, malicious stake holders can prevent the

contract from entering the locked status and exploit the vulnera-

bility. However, due to the unknown nature of the vulnerability,

it may simply causes the contract to an inexecutable state, which

would also be unprofitable for malicious stake holders. Therefore,

the only feasible way for attackers to exploit a contract is to inject

an exploitable vulnerability during the initial contract deployment

or redeployment of patched contract. However, as the deployed

contract needs to pass the checks of all stake holders, honest stake

holders can reject a potentially vulnerable contract. Even if an

attacker possesses an unknown vulnerability and successfully de-

ploys amalicious contract with it, SolSaviour can increase the attack

cost and reduce the losses of honest stake holders by lowering the

threshold for entering the locked state. For example, if the thresh-

old is lowered to 1/10, the attacker must have 9/10 of the stake to

guarantee that this contract will not enter the locked stake, which

will also reduce the losses of honest stake holders.

TEE cluster. We prove that the bootstrapping process of TEE

cluster is secure with threshold 𝑡 , which indicates that TEE nodes

can reach an agreement on a key when there are at most 𝑡 corrupted

parties among𝑛 TEE nodes. During the bootstrapping process, once

a node𝑈𝑖 receives other node’s 𝐾𝑗 , it can verify it. If the check fails

for an index 𝑖 ,𝑈𝑖 can broadcast a complaint against node𝑈 𝑗 . If more

than 𝑡 nodes complain about a node 𝑈 𝑗 , that node is recognized

as disqualified. Each node stores a node set 𝑄𝑈𝐴𝐿 for all qualified

nodes. In this case, they generate the key based on nodes inside

𝑄𝑈𝐴𝐿. As all honest nodes construct identical 𝑄𝑈𝐴𝐿, they can

generate the same key and derive the same blockchain address.

Then, we prove that TEE cluster can reach an agreement on an

identical key as long as more than 𝑡 out of 𝑛 nodes are honest.

We prove that TEE cluster can safely perform a state migration

after destroying the defective contract. First, assets are held by TEE

cluster after safe exit. As assumed before, attackers can only control

nomore than 𝑡 of𝑛 TEE nodes and cannot derive the account private

key. Thus, attackers cannot perform asset transfer directly. Since

the execution logic of enclaves is fixed once encapsulated, there is

no way for attackers to tamper with the internal logic of the TEE

cluster. In addition, the history of defective smart contracts is stored

on the blockchain and publicly available. TEE cluster can crawl

the contract history to determine the values of defective contract’s

internal variables. The stake distribution can also be calculated by

querying the transaction history of the contract and thus acquiring

the internal state of the defective contract. In this way, TEE cluster

can ensure safe and successful migration of contract internal state

from the old vulnerable smart contract to the new patched one.

5.4 Limitations and Security Risks
In this section, we discuss the limitations and security risks of

SolSaviour.

One of the main limitations of SolSaviour is that it can only

protect contracts that have integrated the voteDestruct mechanism.

Due to the tamper-proof feature of the blockchain, SolSaviour can-

not provide the defence mechanism for active smart contracts that

have already been deployed. In addition, SolSaviour focuses pri-

marily on the protection and migration of contract assets, namely

the blockchain native currency. However, as DeFi technology has

evolved, a large number of projects have been launched. Many

assets in smart contracts are in the form of tokens. SolSaviour does

not yet have the ability to protect these DeFi smart contracts. En-

abling repairing and recovering ability in DeFi contracts is the focus

of our future work.

As TEE is an evolving technology that may have unknown vul-

nerabilities, the potential risk of using a TEE cluster is that a newly

discovered TEE vulnerability could compromise the security of the

entire system and the assets within the contract protected using

that TEE cluster.

6 EXPERIMENT
In our prototype of SolSaviour, the voteDestruct mechanism is

implemented in Solidity and the TEE cluster is implemented based

on Intel SGX with around 2000 LOC. Four nodes are set up in

the TEE cluster. The experiments are conducted in two aspects:

effectiveness and performance.

6.1 Dataset Collection
To accurately evaluate the effectiveness and performance of Sol-

Saviour, we collect contracts that that went through attacks.We also

crawl the transaction history of these victim contracts to extract

attack patterns.

Our collected contracts are the DAO [8], PoWH Coin [2], 1st

[6] and 2nd [1] Parity Multisig Wallet, King of Ether [34], Bancor

Exchange [4], GovernMental [37], and Rubixi [22]. We list these

contracts in Table 1, accompanying with contract address, vulnera-

bility type, architecture (single or multiple), and damage caused as

well as accurate loss (if so).

We also prepare the corresponding voteDestruct-enabled con-

tracts and patched contracts. The voteDestruct mechanism is in-

jected on the source code level. As collected contracts are written

in different versions of Solidity, we make minor modifications to

make our voteDestruct compatible. We manually patch the col-

lected defective contracts on the source code level by replacing

the vulnerable operations. The voteDestruct-enabled contracts and

8

SolSaviour: A Defending Framework for Deployed Defective Smart Contracts ACSAC ’21, December 06–10, 2021, Austin, Texas

Table 1: The List of Contracts that Have Been Attacked.

Contract Address Vulnerability Type Architecture Damage

The DAO 0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413 Reentrancy Multiple 3.6M ETH Loss ($150M)

PoWH Coin 0xA7CA36F7273D4d38fc2aEC5A454C497F86728a7A Integer Underflow Single 866 ETH Loss ($800k)

1
𝑠𝑡

Parity Multisig 0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 Delegatecall Multiple 153,037 ETH Loss ($31M)

2
𝑛𝑑

Parity Multisig 0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 Denial of Service Multiple 513,774.16 ETH Locked ($300M)

King of Ether 0x2464d1d97f8D0180CFaD67BdB19bc30ccA69DdA0 Unchecked Return Values Single Ownership Loss

Bancor Exchange 0x1F573D6Fb3F13d689FF844B4cE37794d79a7FF1C Front Running Multiple Economic Earns ($150)

GovernMental 0xF45717552f12Ef7cb65e95476F217Ea008167Ae3 Timestamp Dependence Single DoS

Rubixi 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be Bad Constructor Single Ownership Loss

patched contracts are then compiled with the exact same Solidity

compiler version as used in the original contract.

We apply SolSaviour to these generated comparative smart con-

tracts and validate outcomes. This allows us to verify whether

voteDestruct mechanism works and patching approaches abort the

attack transactions. Apart from the valid attack transactions, the

execution traces of the re-executed transactions match those of the

original transactions, confirming that our voteDestruct mechanism

and patches do not break functionalities of the original contract.

6.2 Effectiveness
The effectiveness of SolSaviour is evaluated in two aspects: qualita-

tive and quantitative.

For qualitative part, we check whether we can leverage Sol-

Saviour to safe exit from all collected defective contracts, refund

locked assets back to stake holders, and redeploy a patched contract.

To test whether SolSaviour can recover a buggy smart contract, we

generate a large and representative evaluation dataset by collecting

transactions sent to the collected contracts from the Ethereum. Re-

playing those transactions and observing outcomes can check the

functionality and defence of patched contracts. This is conducted

through observing and analyzing rejected transactions, which arise

from one of the following reasons: (1) a malicious transaction is

successfully prevented, (2) the reported vulnerability was a false

positive and should not have been patched, or (3) the contract’s

functionality is unintentionally changed.

Specifically, we test whether SolSaviour can successfully destroy

a defective smart contract with voteDestruct mechanism and rede-

ploy a patched one with TEE cluster. In addition, we test whether

the TEE cluster can successfully migrate the previous state to the

new contract to ensure the state consistency.

For the quantitative part, we set up two contract instances for

each collected defective contract: an original contract instance and

a SolSaviour-protected instance. We compare the loss between the

original one and SolSaviour-protected one. For the original one, we

also record the loss when taking traditional defence measures and

doing nothing. We checked to what extent can SolSaviour save loss

when facing different vulnerabilities.

6.2.1 Qualitative. We evaluate the effectiveness of SolSaviour in

three aspects: successful state migration, identical functionalities,

Table 2: The Capability of SolSaviour (Qualitative).

Contract State Migration Functionality Defence

The DAO Yes Yes Yes

PoWH Coin Yes Yes Yes

1
𝑠𝑡

Parity Multisig Yes Yes Yes

2
𝑛𝑑

Parity Multisig Yes Yes Yes

King of Ether Yes Yes Yes

Bancor Exchange Yes Yes Yes

GovernMental Yes Yes Yes

Rubixi Yes Yes Yes

Table 3: The Comparison of Loss Affected by Actual Attack,
Traditional Defence Methods and SolSaviour (Quantitative).

Contract Actual Traditional SolSaviour

The DAO 100 (48.6, 48.6%) (6.5, 6.5%)

PoWH Coin 866 (866, 100%) (0, 0%)

1
𝑠𝑡

Parity Multisig 100 (100, 100%) (0, 0%)

2
𝑛𝑑

Parity Multisig 100 (100, 100%) (0, 0%)

King of Ether Lose Onwership No Mitigation Fix

Bancor Exchange 100 (69.6, 69.6%) (0, 0%)

GovernMental Lose Ownership No Mitigation Fix

Rubixi Lose Ownership No Mitigation Fix

and successful defence. For each contract, we use Ganache to simu-

late 10 accounts, who play the role of contract stake holders and

each has deposited 100 ethers. Then, a random stake holder initial-

izes the vote_initial and provides a patched contract to the TEE

cluster. In our experiments, we omit the security assumption of

potential malicious stake holders and assume all of them will vote

to destroy the defective contract. Once the voting completes, the

TEE cluster destroys the defective contract, redeploys a patched

one, and conducts state migration.

9

ACSAC ’21, December 06–10, 2021, Austin, Texas Zecheng, et al.

By checking the patched contracts deployed by the TEE cluster,

we can evaluate whether state migration successes. A successful

state migration means the internal states of buggy contract and

patched contract are identical. Not only the stake distribution, but

also the ownership. We check this by letting each stake holder

withdraw their previously-deposited ethers. We found that stake

holders can withdraw their assets successfully from all contracts.

Then, we check the functionality and defence of patched contracts

by replaying collected transactions. We compare the execution

results of patched contract with buggy contract’s history state

transition. We list the results in Table. 2.

6.2.2 Quantitative. We quantitatively evaluate the effectiveness

of SolSaviour by attacking and recovering defective contracts with

SolSaviour simultaneously. Then, we evaluate to what extent can

SolSaviour reduce loss. Since different contracts are tested in dif-

ferent scenarios, where the amount of loss are different, we use a

two-tuple (loss, percentage) to show results.

For the DAO contract, we simulate a scenario, where the de-

ployed defective contract contains 100 ethers. Then, we start to

attack and recover it at the same time. Attackers can arbitrarily

withdraw ethers until honest stake holders lock the contract. Then,

we follow the safe exit way to refund all locked ethers to stake hold-

ers and calculate the loss. Similar steps are conducted to evaluate

the loss when using SolSaviour. For the PoWH coin contract, since

the real attack transactions are limited, we simply replay these

attack transactions and check the execution results. We also test

the loss when doing nothing and taking traditional defence. Each

contract are tested 5 times and the average loss is recorded. The

results are listed in Table. 3.

6.3 Performance
6.3.1 Contract Size Increase. On Ethereum, deploying smart con-

tracts requires costs proportionally to the size of the deployed con-

tract. More specifically, Ethereum charges 200 gas per byte to store

the contract code on the blockchain. In SolSaviour, as we implement

the voteDestruct mechanism in contracts, the extra overhead is in-

troduced in the storage variables. The manually-generated patch

may also increases the code of contracts, which depends on the

specific location of the vulnerability.

However, since patches are generated manually, it is not possible

to determine the performance of the system in terms of the number

of lines of code added by the patch. The only additional code in-

troduced by the system is the voteDestruct framework that makes

defective contracts have the ability to iterative upgrades under

SolSaviour. In this case, we compare the size of compiled contract

in terms of defective, voteDestruct but not patched, and patched

version. Results are listed in Table. 4. We found that voteDestruct

mechanism introduces limited size to the original contract. These

code size increases are worth compared to the security enhance-

ment that SolSaviour brings. For Parity Milti-Sig contract, we note

that injecting voteDestruct mechanism naturally resolves the vul-

nerability so that the patched contract and voteDestruct-enabled

contract have the same size.

6.3.2 Gas Consumption. In this section, we evaluate the additional

gas cost incurred by SolSaviour, which arises from two aspects:

Table 4: Code Size Increase in SolSaviour.

Contract Original (B) voteDestruct (B) Patched (B)

The DAO 47,276 49,456 49,586

PoWH Coin 11,540 13,816 14,536

1
𝑠𝑡

Parity Multisig 2,888 5,740 5,740

2
𝑛𝑑

Parity Multisig 2,888 5,740 5,740

King of Ether 16,812 18,934 19,648

Bancor Exchange 16,464 18,988 19,124

GovernMental 7,476 9,654 10,436

Rubixi 8,150 10,132 10,864

Table 5: Gas Consumption of SolSaviour.

Contract Original voteDestruct Redeployment

The DAO 5,251,220 5,485,988 5,486,012

PoWH Coin 1,289,254 1,583,188 1,588,982

1
𝑠𝑡

Parity Multisig 317,780 625,375 625,375

2
𝑛𝑑

Parity Multisig 317,780 625,375 625,375

King of Ether 1,858,337 2,093,078 2,174,754

Bancor Exchange 1,816,565 2,105,104 2,112,419

GovernMental 888,108 1,122,930 1,128,544

Rubixi 970,045 1,183,896 1,191,574

the voteDestruct mechanism and the redeployment of the patched

contract.

For voteDestruct mechanism, the gas cost are mainly introduced

by additional storage of state variables and corresponding logic.

Storing data on Ethereum is expensive, which leads to a lot of gases

to be consumed. We evaluated the gas consumption by deploying

the prepared voteDestruct-enabled contract.

In the deployment of a patched contract, the gas consumption

depends on the contract size, namely the size of original contract

plus the size of the patch as well as the voteDestruct mechanism

for future protection. As already shown in Table. 4, the overhead

introduced by the patch is usually small.

We also test the gas consumption to deploy the original ver-

sion of collected defective contracts for comparison. Results are

summarized in Table. 5.

6.3.3 TEE Cluster Overhead. In SolSaviour, state migration and as-

set escrow are conducted by TEE cluster. We therefore evaluate the

overhead introduced by TEE cluster. We build a Ethereum private

network with four nodes (i.e., node A, B, C, and D), each is installed

with an Ethereum endpoint. We record the number of blocks mined

by them in one day. Then, we initialize the enclave in one node and

monitor the blocks mined by each node. After that, we sequentially

initialize enclaves in the other three nodes and add them to the TEE

cluster. During this time, we continuously monitor the number of

blocks mined by each node. The mining difficulty remains the same

10

SolSaviour: A Defending Framework for Deployed Defective Smart Contracts ACSAC ’21, December 06–10, 2021, Austin, Texas

Table 6: The Overhead of TEE Cluster. Counted in the Num-
ber of Blocks Mined by Different Combinations of TEE
Nodes.

Node A AB ABC ABCD

All 5780 5685(-1.6%) 5507(-4.7%) 5469(-5.3%) 5391(-6.7%)

A 1451 1368(-5.7%) 1312(-9.5%) 1340(-7.6%) 1341(-7.6%)

B 1446 1439 1325(-8.3%) 1339(-7.4%) 1335(-7.7%)

C 1438 1441 1439 1351(-6.1%) 1349(-6.2%)

D 1445 1437 1431 1439 1366(-5.5%)

during this experiment. We summarize the results in Table. 6. As we

can see, for nodes without TEE cluster, they can mine around 1440

blocks per day, which satisfies the Ethereum blockchain generation

speed, namely a block per 15 seconds. For nodes with TEE cluster,

the mining rate is slightly affected. The impact is greatest when

only half nodes participate the TEE cluster, and tends to become

smaller when all nodes initialize TEE. In this case, if all SGX-capable

miners launch an enclave instance, we can reduce the overhead of

TEE cluster to the minimum.

7 RELATEDWORK
In this section, we first discuss the work on developing vulnerability

detection tools for smart contracts. Then, we introduce some ef-

forts on defending smart contracts and generating contract patches.

Finally, we present the work that combines smart contracts with

TEE.

7.1 Smart Contract Vulnerability Detection
The infamous reentrancy bug in “TheDAO” contract [8] has spurred

community to work on detecting smart contract vulnerabilities. Luu

et al. first proposed Oyente [26] based on symbolic execution, which

automates the reentrancy bug detection. Then, a lot of symbolic

execution tools are proposed such as Osiris [35], teEther [23],

Maian [31], and Manticore [29]. Furthermore, Frank et al. pro-

posed EthBMC [18], a bounded model checker based on symbolic

execution. Kalra et al. presented Zeus [21], which leverages both

abstract interpretation and symbolic model checking. Chen et al.

found and defined 20 types of contract defects [9] and proposed the

corresponding defect detection tools to find them on the bytecode

level [10].

There are also some work on developing smart contract static

analysis tools. Feist et al. proposed Slither [15] to analyze the con-

tract on source code level, and Tsankov et al. presented Security [36]

to analyze the contract on bytecode level. Furthermore, Brent et al.

proposed Ethainter [7], which conducts the information flow anal-

ysis and data sanitization to reveal composite vulnerabilities. There

are also work on buildingmodular dynamic analysis frameworks for

protecting smart contracts. Chen et al. proposed SODA [11], which

accepts user-defined vulnerability pattern. Furthermore, method

like formal verification has been introduced to smart contracts [21]

and the semantics of Solidity have been formalized [20].

However, these proposed detection tools are limited so that there

exist the requirement to develop contract repairing and recovering

techniques. For example, teEther [23] and Maian [31] cannot

identify the location of integer overflow since they focus on gen-

erating exploits for smart contracts. In addition, aforementioned

detection tools cannot identify unknown vulnerabilities, which can

be resolved by SolSaviour.

7.2 Smart Contract Defence and Patch
Apart from work on proving the correctness or identifying cer-

tain types of vulnerabilities in smart contracts, some research was

proposed to protect deployed smart contracts.

Rodler et al. proposed Sereum [32] to address this problem in

the context of reentrancy exploits. Experiment results demonstrate

that Sereum covers the actual transaction sequence and execution

flow of a smart contract. In this case, it can accurately detect and

prevent reentrancy attacks. Furthermore, Ferreira et al. proposed

ÆGIS [17], which extends the contract defence to more type of

attacks. Users can identify different types of attack patterns and

use them to secure deployed smart contracts.

Ellul et al. proposed a runtime verification mechanism [14] to

ensure that violating party provides insurance for correct behavior.

Li et al. proposed Solythesis [24] to address the high overhead in

runtime validation. Their experiment results show that Solythesis

can work with little overhead and enforce the security of smart

contracts. In addition, Grossman et al. proposed ECFChecker [19],

which defines the notion of Effectively Callback Free (ECF) objects

and can detect live reentrancy attacks on vulnerable contracts.

For contract patch, Yu et al. proposed SCRepair [38], which can

automatically detect and repair bugs in smart contracts before

deployment. Furthermore, bytecode rewriting for patching smart

contracts has been explored by zhang et al. in SMARTSHIELD

[41]. SMARTSHIELD implements custom bytecode analysis tools

to detect vulnerabilities, whichmay not be as accurate as specialized

analysts. But experiment results show that SMARTSHIELD can fix

more than 91.5% vulnerable samrt contracts. Rodler et al. proposed

EVMPatch [33] for instantly and automatically patching defective

smart contracts. EVMPatch leverages a bytecode rewriting engine

for smart contracts on Ethereum. However, EVMPatch can only fix

limited types of vulnerabilities.

7.3 Smart Contract and TEE
Zhang et al. proposed Town Crier [39], which meets the require-

ment of a trusted oracle for smart contracts. Through Town Crier,

information on existing websites can be transferred to smart con-

tract in a trusted way. Matetic et al. proposed Bite [27], which is a

lightweight client based on TEE. In Bite, full nodes are equipped

with SGX enclaves that can serve privacy preserving requests from

light clients. In this case, Bite can protect the privacy of lightweight

nodes, which usually query its related transactions.

A series of work focus on offloading contract execution to TEE,

which brings in benefits such as privacy-preserving and perfor-

mance improvement. Bowman et al. proposed Private Data Objects

(PDOs) [5], which allows mutually untrusted parties to run smart

contracts over private data. In PDOs, contracts run off-chain in

secure enclaves. Cheng et al. proposed Ekiden [12], which lever-

ages the TEE to execute private smart contracts. The architecture

of Ekiden separates the consensus from execution by letting TEE

nodes execute smart contracts and miners maintain the consensus.

11

ACSAC ’21, December 06–10, 2021, Austin, Texas Zecheng, et al.

The contract content and state transitions are encrypted on chain

so that contract confidentiality is preserved. Das et al. proposed

FastKitten [13] to enable the execution of arbitrarily complex

smart contracts on Bitcoin. In FastKitten, smart contracts are

executed in enclaves and the Bitcoin only records state transitions.

FastKitten can extend its work to execute smart contracts on

more cryptocurrencies which are designed to only support simple

transactions.

In addition, the combination of blockchain and TEE shows promise

in many other areas. Zhang et al. proposed REM (Resource-Efficient

Mining) [40], a blockchain mining algorithm that work on useful

computation. REM notices that current Proof-of-Work algorithm

is energy-consuming so that leverages the partially decentralized

trust model inherent in SGX to achieve a fraction of the waste of

PoW. Lind et al. leveraged TEE as trusted nodes in payment net-

work and proposed Teechain [25], which is a layer-two network

that can processes off-chain transactions asynchronously. Teechain

can prevent parties from misbehaving by establishing off-chain

payment channels with TEE.

8 CONCLUSION
In this paper, we propose the SolSaviour framework for the problem

of repairing and recovering defective deployed smart contracts. Sol-

Saviour enables the patching of deployed defective smart contracts

through the voteDestruct mechanism and the asset escrow and state

migration provided by TEE cluster. Compared with existing work

that requires a trusted third party to redeploy patched contract and

can only migrate contract data, SolSaviour can achieve effective mi-

gration of contract assets and does not require the participation of

a trusted third party. For all collected contracts that were attacked,

our experiments demonstrate that SolSaviour can effectively repair

and recover all of them with affordable overhead.

ACKNOWLEDGMENTS
This paper is partially supported by HK RGCGRF PolyU 152124/19E

and 15216220.

REFERENCES
[1] Anthony Akentiev. 2017. Parity Multisig Hacked. Again. https://medium.com/

chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838

[2] Eric Banisadr. 2018. How $800k Evaporated from the PoWH Coin Ponzi Scheme

Overnight. https://medium.com/@ebanisadr/how-800k-evaporated-from-the-

powh-coin-ponzi-scheme-overnight-1b025c33b530

[3] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-

lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,

Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart

contracts: Short paper. In Proceedings of the 2016 ACM workshop on programming
languages and analysis for security. 91–96.

[4] Ivan Bogatyy. 2017. Implementing Ethereum trading front-runs on the Bancor

exchange in Python. https://hackernoon.com/front-running-bancor-in-150-

lines-of-python-with-ethereum-api-d5e2bfd0d798

[5] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala. 2018. Private

Data Objects: An Overview. arXiv preprint arXiv:1807.05686 (2018).
[6] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. 2017. An In-Depth

Look at the ParityMultisig Bug. https://hackingdistributed.com/2017/07/22/deep-

dive-parity-bug/

[7] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-

dakis. 2020. Ethainter: A smart contract security analyzer for composite vulner-

abilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 454–469.

[8] Vitalik Buterin. 2016. CRITICAL UPDATE Re: DAO Vulnerability. https:

//blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/

[9] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2020.

Defining smart contract defects on Ethereum. IEEE Transactions on Software
Engineering (2020), 1–17.

[10] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2021.

Defectchecker: Automated smart contract defect detection by analyzing EVM

bytecode. IEEE Transactions on Software Engineering (2021), 1–20.

[11] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,

Hang Zhu, Gang Chen, Zheyuan He, et al. 2020. SODA: A generic online detection

framework for smart contracts. In NDSS. 1–17.
[12] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform for

Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts. In

2019 IEEE European Symposium on Security and Privacy. 185–200.
[13] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,

Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. Fastkitten:

Practical Smart Contracts on Bitcoin. In 28th USENIX Security Symposium. 801–

818.

[14] Joshua Ellul and Gordon J Pace. 2018. Runtime verification of Ethereum smart

contracts. In 2018 14th European Dependable Computing Conference (EDCC). IEEE,
158–163.

[15] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[16] Josselin Feist, Gustavo Grieco, and Alex Groce. 2021. sGUARD: Towards fixing

vulnerable smart contracts automatically. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1–15.

[17] Christof Ferreira Torres, Mathis Baden, Robert Norvill, Beltran Borja Fiz Pon-

tiveros, Hugo Jonker, and Sjouke Mauw. 2020. Ægis: Shielding vulnerable smart

contracts against attacks. In Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security (AsiaCCS). 584–597.

[18] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC: A

bounded model checker for smart contracts. In 29th USENIX Security Symposium.

2757–2774.

[19] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017. Online detection of effectively

callback free objects with applications to smart contracts. Proceedings of the ACM
on Programming Languages 2, POPL (2017), 1–28.

[20] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun

Sun. 2020. Semantic understanding of smart contracts: executable operational

semantics of Solidity. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
1695–1712.

[21] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing safety of smart contracts.. In NDSS. 1–12.
[22] Katatsuki. 2016. Re: Hi! My name is Rubixi. I’m a new Ethereum Doubler. Now

my new home - Rubixi.tk. https://bitcointalk.org/index.php?topic=1400536.60

[23] Johannes Krupp and Christian Rossow. 2018. teether: Gnawing at Ethereum

to automatically exploit smart contracts. In 27th USENIX Security Symposium.

1317–1333.

[24] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing smart contract with

runtime validation. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). 438–453.

[25] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter Piet-

zuch. 2019. Teechain: A secure payment network with asynchronous blockchain

access. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP). 63–79.

[26] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security (CCS). 254–269.

[27] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame,

and Srdjan Capkun. 2019. BITE: Bitcoin lightweight client privacy using trusted

execution. In 28th USENIX Security Symposium. 783–800.

[28] Brianna Montgomery. 2021. Fei Bonding Curve Bug Post Mortem. https://

medium.com/fei-protocol/fei-bonding-curve-bug-post-mortem-98d2c6f271e9

[29] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,

Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-

friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186–1189.

[30] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.

sFuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE).
778–788.

[31] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th Annual Computer Security Applications Conference (ACSAC). 653–663.

[32] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2019. Sereum:

Protecting existing smart contracts against re-entrancy attacks. In NDSS. 1–15.

12

https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://bitcointalk.org/index.php?topic=1400536.60
https://medium.com/fei-protocol/fei-bonding-curve-bug-post-mortem-98d2c6f271e9
https://medium.com/fei-protocol/fei-bonding-curve-bug-post-mortem-98d2c6f271e9

SolSaviour: A Defending Framework for Deployed Defective Smart Contracts ACSAC ’21, December 06–10, 2021, Austin, Texas

[33] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2021. EVMPatch:

timely and automated patching of Ethereum smart contracts. In 30th USENIX
Security Symposium. 1–18.

[34] KoET Team. 2016. King of Ether Throne Post-Mortem Investigation. https:

//www.kingoftheether.com/postmortem

[35] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting

for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC). 664–676.

[36] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart

contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS). 67–82.

[37] u/ethererik. 2016. GovernMental’s 1100 ETH jackpot payout is stuck because

it uses too much gas. https://www.reddit.com/r/ethereum/comments/4ghzhv/

governmentals_1100_eth_jackpot_payout_is_stuck/

[38] Xiao Liang Yu, Omar Al-Bataineh, David Lo, and Abhik Roychoudhury. 2020.

Smart contract repair. ACMTransactions on Software Engineering andMethodology
29, 4 (2020), 1–32.

[39] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An Authenticated Data Feed for Smart Contracts. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (CCS).
270–282.

[40] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse. 2017.

REM: Resource-Efficient Mining for Blockchains. In 26th USENIX Security Sym-
posium. 1427–1444.

[41] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. 2020.

Smartshield: Automatic smart contract protection made easy. In 2020 IEEE 27th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 23–34.

13

https://www.kingoftheether.com/postmortem
https://www.kingoftheether.com/postmortem
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/

	Abstract
	1 Introduction
	2 Background
	2.1 The Life Cycle of a Smart Contract
	2.2 Defending Methods
	2.3 Defective Contract
	2.4 Internal State

	3 SolSaviour
	3.1 What is SolSaviour
	3.2 Workflow
	3.3 Building Blocks

	4 Implementation
	4.1 Repairing Smart Contract
	4.2 Recovering Smart Contracts

	5 Security Analysis
	5.1 Threat Model
	5.2 Trusted Execution as a Root-of-Trust
	5.3 Threat Analysis
	5.4 Limitations and Security Risks

	6 Experiment
	6.1 Dataset Collection
	6.2 Effectiveness
	6.3 Performance

	7 Related Work
	7.1 Smart Contract Vulnerability Detection
	7.2 Smart Contract Defence and Patch
	7.3 Smart Contract and TEE

	8 Conclusion
	Acknowledgments
	References

