
Power Adjusting and Bribery Racing: Novel Mining Attacks in
the Bitcoin System

Shang Gao
cssgao@comp.polyu.edu.hk
Department of Computing

The Hong Kong Polytechnic University
Hong Kong

Zecheng Li
cszcli@comp.polyu.edu.hk
Department of Computing

The Hong Kong Polytechnic University
Hong Kong

Zhe Peng
cszpeng@comp.polyu.edu.hk
Department of Computing

The Hong Kong Polytechnic University
Hong Kong

Bin Xiao
csbxiao@comp.polyu.edu.hk
Department of Computing

The Hong Kong Polytechnic University
Hong Kong

ABSTRACT
Mining attacks allow attackers to gain an unfair share of the
mining reward by deviating from the honest mining strat-
egy in the Bitcoin system. Among the most well-known are
block withholding (BWH), fork after withholding (FAW),
and selfish mining. In this paper, we propose two new strate-
gies: power adjusting and bribery racing, and introduce two
novel mining attacks, Power Adjusting Withholding (PAW)
and Bribery Selfish Mining (BSM) adopting the new strate-
gies. Both attacks can increase the reward of attackers. Fur-
thermore, we show PAW can avoid the “miner’s dilemma”
in BWH attacks. BSM introduces a new “venal miner’s
dilemma”, which results in all targets (bribes) willing to
help the attacker but getting less reward finally. Quantitative
analyses and simulations are conducted to verify the effec-
tiveness of our attacks. We propose some countermeasures
to mitigate the new attacks, but a practical and efficient
solution remains to be an open problem.

CCS CONCEPTS
• Security and privacy → Distributed systems secu-
rity; Economics of security and privacy .

KEYWORDS
Bitcoin, blockchain, mining attacks, selfish mining, block
withholding, fork after withholding, bribery attack.

ACM Reference Format:
Shang Gao, Zecheng Li, Zhe Peng, and Bin Xiao. 2019. Power
Adjusting and Bribery Racing: Novel Mining Attacks in the Bitcoin
System. In 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’19), November 11–15, 2019,
London, United Kingdom. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3319535.3354203

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354203

1 INTRODUCTION
Bitcoin is a decentralized cryptocurrency based on the blockchain
technique [20]. In the Bitcoin system, participants (miners)
can be rewarded by adding transaction records (recorded in a
new block) to the “ledger” of past transactions (blockchain).
When adding transaction records, a proof of work (PoW)
[24] is required, which needs miners to solve cryptographic
puzzles. The first miner who solves the puzzles and generates
a valid block can be rewarded (with 12.5 bitcoins in 2019)
by the system. The process of generating blocks is known
as the “mining process”. After that, a new round of mining
begins and miners try to generate the next block. When two
or more miners simultaneously generate and propagate their
blocks, it will cause a fork on the blockchain. To ensure the
consensus, the system will choose the firstly extended branch
(i.e., the longest branch) as the main chain. Miners on other
branches will move to the main chain when they are aware
of a longer branch.

In the Bitcoin system, the difficulty of solving crypto-
graphic puzzles is adjusted in every two weeks to ensure
the average time of the mining process in each round is a
constant (10 minutes). As the hash rate of today’s mining
power is more than 7× 1019 Hash/s [26], the probability of
a solo miner discovering a block is very small. Therefore,
miners join together as mining pools to reduce the reward
variance. When a pool discovers a block, the reward will be
shared by pool miners based on their contributions (the num-
ber of submitted shares). Most of the pools have a manager
for pool management, including work allocation and reward
distribution.

Though the Bitcoin is designed with security in mind,
previous research points out attackers can increase their re-
ward of mining when deviating from honest mining strategies,
such as adopting selfish mining [9], block withholding (BWH)
[5, 37], and fork after withholding (FAW) [13]. In selfish min-
ing, an attacker withholds the discovered block and continues
mining on this block as a private chain. When other miners
find a block, the attacker selectively propagates the withheld
blocks on the private chain to cause a fork. In BWH attacks,
an attacker splits her computational power into solo mining
(innocent mining) and in-pool mining (infiltration mining).
When attacker’s infiltration mining finds a valid block (full

https://doi.org/10.1145/3319535.3354203
https://doi.org/10.1145/3319535.3354203

proof of work, FPoW), she withholds it and continues sub-
mitting other shares (partial proof of work, PPoW) which
makes her seem to contribute to the pool. Since the pool can
never be rewarded from the attacker’s infiltration mining,
the victim pool will suffer from a loss. While other miners,
including the attacker’s innocent mining, will get more re-
wards because of the loss of the victim pool. Previous study
shows BWH attacks can be more profitable than honest min-
ing when the attacker splits her power properly [5], but will
encounter a “miner’s dilemma” when two pools use BWH
attacks against each other (both pools earn less than the
reward of honest mining) [7]. FAW attacks work similar to
BWH attacks, but the attacker will propagate the withheld
FPoW when another miner (not in the victim pool) finds a
valid block to cause an intentional fork. Since the attacker
may earn an extra reward from the fork, FAW attacks can
be more profitable than BWH attacks. Besides, the “miner’s
dilemma” can be avoided in FAW attacks, since the larger
pool can earn an extra reward. These mining attacks can also
affect other PoW-based cryptocurrencies such as Litecoin
[31] and Dogecoin [30], and may become more powerful when
multiple coin systems are involved [14].

In this paper, we take an in-depth study of the mining
attack strategies and discover several interesting revelations
(Section 4). Based on our analysis, we propose novel attacking
strategies to increase the reward of attackers (Section 5 and
6). We also discuss potential strategy space (Section 7.1).
Finally, to mitigate these attacks, we propose practical coun-
termeasures (Section 7.2 and 7.3). However, fully preventing
such attacks remains to be an open problem.

We conclude our revelations as follows:

∙ BWH and FAW are not optimal for a large parameter
space. We separate the mining process into two phases
and analyze the reward of BWH and FAW. Our analysis
shows that BWH and FAW are not optimal when
considering power adjusting strategies (Section 4.1).

∙ Power adjusting can improve the attacker’s reward in
FAW without falling into the “miner’s dilemma”. We
propose Power Adjusting Withholding (PAW) which
combines power adjusting and FAW, and show PAW
can increase the attacker’s reward (up to 2.5 times
of the extra reward in FAW) and avoid the “miner’s
dilemma” in BWH. (Section 5)

∙ Attackers can adopt bribery racing for a higher reward
in selfish mining. We discuss the “0-lead” racing (two
branches with the same length races each other) and
find the attacker can bribe other miners (targets) to
work on her branch. In most cases, the targets will
choose to extend the attacker’s branch for a higher
reward (Section 4.2). We further propose Bribery Self-
ish Mining (BSM) which combines bribery racing and
selfish mining, and shows BSM can result in 10% extra
gains for an attacker in comparison with selfish mining
(Section 6).

∙ Targets can fall into a “venal miner’s dilemma” in
bribery racing. We discuss multiple targets situations
in bribery racing and find out targets may face a “venal
miner’s dilemma”: all targets will decide to help the
attacker (extending the attacker’s branch), but they
will suffer from a loss compared with their rewards
when no one helps (Section 6.3).

2 PRELIMINARIES

2.1 Bitcoin Background
Mining process. In the Bitcoin system, the participants
(miners) record the transfer information in the blocks of a
blockchain. The header of each block contains the hash of
previous block header, a Merkle root [34] of all recorded
transactions, a timestamp, the target (representing the dif-
ficulty 𝐷 of current Bitcoin system), a nonce, etc. Sim-
ply speaking, the mining process is to solve cryptographic
puzzles: generating nonces (PoWs) which make the hash
value of the header satisfy the difficulty constraint, i.e.,
SHA256(SHA256(Block.Header)) < 𝐷. The value of 𝐷 is
adjusted by the Bitcoin system to ensure the time of finding
a new block is about 10 minutes. Once a miner discovers a
valid nonce, it broadcasts the result to allow others to verify.
When the new block is selected as the main (longest) chain,
the Bitcoin system will reward the miner who finds a valid
nonce with 12.5 bitcoins (BTC).

Pooled mining. Since the probability of a solo miner
generating a valid block is very small, solo miners can join
together as mining pools to find nonces, and share the reward
based on their contributions. Though the expected rewards
of pooled mining and solo mining are same (ignoring the
small pool management fee), pooled mining can reduce the
reward variance. Most of the mining pools are maintained
by a manager to distribute work to different pool miners.
Pool miners find and submit shares (FPoW and PPoW) to
show their work done for the pool. Pool managers can use an
FPoW to generate a valid block and get the reward for the
pool. Though a PPoW is useless for generating a new block,
finding a PPoW is much easier than an FPoW, which can
be used to show the effort of pool miners (sharing rewards
based on the number of submitted FPoWs and PPoWs).

Forks. When multiple miners simultaneously broadcast
their discovered blocks, it can cause a fork in the blockchain
since other miners will use the firstly received block as the
new blockchain header [6]. In this scenario, miners continue
mining based on the firstly received block and regard the
heaviest branch (the longest branch has the most accumulated
blocks) as the main chain. Notice that only the miner who
finds a block in the main chain can be rewarded. Forks can
also be intentionally generated, such as in selfish mining or
FAW attacks.

2.2 Related Work
Selfish mining. An attacker can intentionally generate a
fork to earn an extra reward through selfish mining [1, 9].
Specifically, when an attacker discovers a valid block, she
withholds the block as a private chain and continues to find
the next block on the private chain. When other miners
propagate a valid block, the attacker selectively propagates
the withheld blocks to cause a fork. The attacker can earn
an extra reward when the private branch is selected as the
main chain. However, the attacker can also suffer from a loss
when her branch is not chosen. Several approaches have been
proposed to optimize the reward of selfish mining [4, 22, 38].

BWH attacks. An attacker can sabotage the reward
of a victim pool by BWH attacks [5, 37]. Specifically, an
attacker splits her power into innocent mining (mines solely)
and infiltration mining (mines in a pool). The infiltration

mining only submits PPoWs to the manager and withholds
(discards) all discovered FPoWs to make the pool suffer from
a loss (and make innocent mining more profitable at the same
time). When the mining power is split properly, the attacker
can get a higher reward than honest mining [16]. In 2014,
“Eligius” suffered from a BWH attack and lost 300 BTC [35].
The attacker was finally found (via statistics) since she only
uses two accounts. However, an attacker can avoid being
detected by using many accounts and frequently replaceing
her pooled miners with new accounts. Pools can also use
BWH attacks against each other (a BWH game). In such
scenarios, attackers will encounter a “miner’s dilemma”: both
of them will suffer from a loss under the Nash equilibrium
(similar to the “prisoner’s dilemma”) [7].

FAW attacks. FAW attacks combine selfish mining and
BWH attacks [13]. At first, FAW attacks work similar to
BWH attacks (splitting power into solo mining and pooled
mining). However, when an attacker finds an FPoW in the
victim pool, she withholds the FPoW until other honest solo
miners discover a valid block. Then, the attacker submits
the withheld FPoW to the pool manager to cause a fork as
with selfish mining [13]. By rewarding from intentional forks,
FAW attacks can be more profitable than BWH attacks (the
lower bound of FAW attacks is BWH attacks). Besides, the
miner’s dilemma may not hold in FAW games (pools use
FAW attacks against each other), since the two-pool FAW
game becomes a pool-size game (the larger pool can get an
extra reward).

Bribery attacks. Bribery attacks can increase the prob-
ability of the attacker’s branch selected as the main chain
[2, 15]. Since bribery attacks only help the attacker to win
in forks, they have to cooperate with other fork-related at-
tacks, such as double-spending [12] (i.e., plain bribery attacks
cannot bring any profit to an attacker). In bribery attacks,
an attacker will charge other miners with bribes when ex-
tending her branch. For instance, the attacker pre-mines a
block which contains a transaction 𝑇𝐴

𝐵 (𝐴 is the attacker’s
address and 𝐵 is an address which anyone can claim [2])
and broadcasts a transaction 𝑇𝐴

𝐴′ which transfers the same
money to another address 𝐴′ of the attacker. After 𝑇𝐴

𝐴′ is
recorded on the blockchain, the attacker propagates the pre-
mined block to cause a fork. When other miners adopt the
attacker’s branch, they can claim the bribes in 𝐵. Bribing
can also be made in a less visible way [17]. Bonneau et al. [2]
show the possibility of a successful double-spending increases
with bribery attacks. However, the the amount of bribes is
non-trivial especially when the attacker’s branch is far be-
hind the main chain [2]. Besides, forking for other purposes
(e.g. blocking transactions [18, 21] or getting higher rewards
[9, 13]) has not been discussed with bribery attacks.

3 THREAT MODEL AND
ASSUMPTION

3.1 Threat Model
An attacker can be a miner or a pool manager in a closed/open
pool. Besides, an attacker can forge different identities to join
multiple open pools with different accounts and IDs via Sybil
attacks. The computational power of an attacker is finite. She
can distribute her power into innocent mining (mining as an
honest solo miner) and infiltration mining (mining in open

pools as in BWH attacks), and adjust the power allocation
dynamically. If the attacker is a manager of an open pool,
her infiltration mining power should be “loyal mining power”
[7]. Lastly, an attacker can plant Sybil nodes in the network
to preferentially propagate the attacker’s block to increase
the probability of the attacker’s branch selected as the main
chain when forks occur.

3.2 Assumptions
We made the following assumptions to simplify our analysis,
which are consistent with the assumptions of other Bitcoin
mining attacks, such as selfish mining [1, 9], BWH attacks
[7, 9, 16], FAW attacks [13], and bribery attacks [2, 15].

1. We normalize the total computational power of the
Bitcoin system as 1 [7, 9, 13, 16]. The computational power
of each miner/pool is a fraction of this total, which should
be less than or equal to 0.5 to avoid “51% attacks” [3].

2. No unintentional forks in the Bitcoin system. This as-
sumption is reasonable since the probability of unintentional
forks is negligible, about 0.41% [10] (this assumption is also
made in [13]). Therefore, the expected reward of a miner
equals to the probability of finding a valid block in each
round. Since the time of a miner finds a valid block has an
exponential distribution with mean inversely to his compu-
tational power [8], the probability of a miner finding a valid
block equals to his normalized computational power.

3. Miners are selfish but honest except the attackers. Hon-
est miners can choose their best strategy (i.e. mining on
which branch) to get a higher reward, but will not launch
any attacks [7, 9, 13, 16]. The assumption of profit-driven
miners is also made in [7, 9]. It is acceptable since mining on
different branches brings no different rewards for followers
(discussed in Section 4.2).

4. We normalize the reward of finding a valid block to
1 instead of 12.5 BTC. The reward in our analysis is the
expected reward [13, 16].

5. When a pool manager earns a reward (via propagating a
valid block from an FPoW), he distributes the reward to pool
miners based on the number of submitted shares (FPoWs
and PPoWs) in this round [7, 13, 16].

4 OBSERVATION AND MOTIVATION

4.1 FAW Reward
In FAW attacks, an attacker’s innocent mining power will
help the attacker to win a whole profit. The infiltration
mining power will help to share the reward from the victim
pool’s profit. As a result, after an FPoW is discovered, the
infiltration mining power only contributes to earning a share
(via submitting PPoWs). Therefore, when the mining pool
is relatively large and the pool’s (attacker’s) branch has less
chance to be chosen as the main chain, the infiltration mining
reward (shared profit) is “less attractive” to the attacker after
an FPoW is found. Allocating more power to innocent mining,
which is the “more attractive” part with higher reward, would
be more profitable.

Note that power adjusting does not always mean shifting
infiltration power to innocent power. Shifting reversely is
also acceptable when winning a share is more attractive (in a
smaller pool with better chance to win in forks). We discuss

miners (o s) branch

attacker s (a s) branch

block i

block i

k 0 blocks

public chain

Figure 1: “0-lead” racing. The blockchain is forked by two
branches of the same length (caused by the attacker 𝑎 and
some other miners 𝑜).

the detailed power shifting strategies under different scenarios
in Section 5.

4.2 “0-lead” Racing
“0-lead” racing indicates two branches of the same length race
on the blockchain, as depicted in Fig. 1. This situation can
occur in selfish mining [9], stubborn mining [22], and FAW
attacks [13], when the attacker withholds block 𝑖′ till another
miner finds block 𝑖. In this situation, the attacker (𝑎) will
continue mining on block 𝑖′ and the miners which find blocks
on block 𝑖’s branch (𝑜) will continue mining on block 𝑖. For
other miners (𝑏), they can choose to mine on block 𝑖 or 𝑖′,
since it has no difference which branch is extended (normally
they choose to mine on the firstly received block). When any
branch is extended by 𝑏, 𝑏 can get one profit, and no profit
for other cases.

Now consider the attacker lures 𝑏 to mine on block 𝑖′ with
bribery attacks (containing bribery transactions in block 𝑖′).
The racing will become unfair (bribery racing) since choosing
to mine on block 𝑖′ branch becomes more profitable for 𝑏
than on block 𝑖 branch, The best strategy for miners in 𝑏 is
to extend attacker’s branch. Moreover, since the attacker’s
reward increases with the probability of her branch selected
as the main chain in some mining attacks (e.g. selfish mining),
the attacker can get more rewards than not adopting bribery
racing when choosing a proper bribing fee.

5 POWER ADJUSTING
WITHHOLDING

5.1 Overview
We introduce novel power adjusting withholding (PAW) at-
tacks against mining pools which combines power adjusting
strategy and FAW attacks. In our observation in FAW attacks
(Section 4.1), we point out FAW adopts fixed power split-
ting strategy, which may result in wasting too much mining
power on the less attractive reward. The key insight behind
our new PAW attacks is allowing the attacker dynamically
adjust the mining power between innocent and infiltration
mining. Therefore, the attacker can always increase her re-
ward by allocating more power on the more attractive reward
(whole profit or a share). Besides, PAW can also preserve the
advantage of FAW to avoid the “miner’s dilemma”.

In one victim pool scenario, the attacker first splits her
computational power into innocent mining and infiltration
mining, and mines both solely (via innocent mining) and in-
pool (via infiltration mining). There are four possible cases
when a valid block (FPoW) is found:

Case 1. Found by innocent mining. The attacker propa-
gates it and earns a legitimate profit.

Case 2. Found by other miners not in the victim pool. The
attacker accepts the block and continues mining the next
block. No profit will be earned by the attacker.

Case 3. Found by other victim pool miners. The attacker
earns a shared profit from the pool.

Case 4. Found by infiltration mining.When the infiltration
mining finds an FPoW, the attacker withholds the FPoW
and reallocates her computational power. There are further
three subcases when a new block/FPoW is found.

Case 4-1. Found by innocent mining. The attacker dis-
cards the withheld FPoW and propagates the new one.

Case 4-2. Found by other miners not in the victim pool.
The attacker immediately submits the withheld FPoW to the
victim pool manager. A fork can be generated in the Bitcoin
network when the manager propagates her FPoW.

Case 4-3. Found by other victim pool miners. The attacker
discards the withheld FPoW and earns a share.

In summary, the strategies of PAW attacks are similar to
FAW attacks. The difference is that an attacker will reallo-
cate her computational power after an FPoW is found by
infiltration mining in PAW attacks, while in FAW attacks,
an attacker never adjusts her computational power. Clearly,
PAW attacks can earn as much reward as FAW attacks (when
not adjusting computational power). Besides, we also show
that PAW attacks can be more profitable than FAW attacks
when the computational power is adjusted properly in the
Section 5.2 and 5.3.

In multiple victim pools scenario, PAW attacks adjust
the power allocation every time when an FPoW is found by
innocent mining, and submit all 𝑘 withheld FPoWs when
other miners not in the victim pools find a valid block to
cause a fork with (𝑘+1) branches (1 6 𝑘 6 𝑛 when targeting
at 𝑛 pools). Since 𝑘 branches are generated by infiltration
mining, the probability of the attacker winning a shared
profit via infiltration mining increases.

5.2 PAW Against One Pool
Theoretical analysis. Refereing to the cases in Section 5.1,
we use the following parameters to analyze PAW attacks:

𝛼: Total computational power of the attacker;
𝛽: Computational power of the victim pool;
𝜏1: Attacker’s original infiltration mining power as a

proportion of 𝛼 before Case 4;
𝜏2: Attacker’s reallocated infiltration mining power as a

proportion of 𝛼 after Case 4;
𝜏 : Attacker’s average portion of computational power

allocated to infiltration mining in a mining process;
𝑐: Probability of the attacker’s FPoW will be selected

as the main chain in Case 4-2.
The attacker allocates (1− 𝜏1)𝛼 computational power for

innocent mining and 𝜏1𝛼 for infiltration mining before Case 4;
and will use (1− 𝜏2)𝛼 and 𝜏2𝛼 for innocent mining and infil-
tration mining respectively after Case 4. The computational
power of the victim pool (𝛽) does not include the infiltration
mining power (𝜏1𝛼 or 𝜏2𝛼). 𝑐 is a coefficient related to at-
tacker’s network capability and the Bitcoin network topology
[19]. The calculation of 𝑐 can be referred to [13]. Attacker
can also get an extra reward even when 𝑐 is unknown (e.g.
by setting 𝑐 = 0 or 𝑐 = 𝛼 + 𝛽 for an honest/rational pool
manager, which is same as the strategies in FAW attacks
[13]).

Attacker’s reward. Based on our analysis in Section 4.1, the
attacker has (1−𝜏1)𝛼 probability to fall in Case 1; (1−𝛼−𝛽)
probability for Case 2; 𝛽 probability for Case 3; and 𝜏1𝛼
for Case 4. The total probability of these four cases is 1
as expected. In Case 4, after adjusting the computational
power, the total mining power will become (1−𝜏2)𝛼 since the
infiltration mining will not propagate any FPoWs. Therefore,

the attacker has 𝜏1𝛼 · (1−𝜏2)𝛼
1−𝜏2𝛼

probability to fall in Case 4-1;

𝜏1𝛼· 1−𝛼−𝛽
1−𝜏2𝛼

probability in Case 4-2; and 𝜏1𝛼· 𝛽
1−𝜏2𝛼

probability

in Case 4-3. As expected, the sum of the probability in Case
4-1, 4-2, and 4-3 is 𝜏1𝛼 (same as Case 4). We can further
derive the reward of a PAW attacker 𝑅𝑃

𝑎 (𝜏1, 𝜏2) as follows:

𝑅
𝑃
𝑎 (𝜏1, 𝜏2) = (1 − 𝜏1)𝛼 + 𝛽 ·

𝜏1𝛼

𝛽 + 𝜏1𝛼
+

𝜏1𝛼·
(︂

(1−𝜏2)𝛼

1 − 𝜏2𝛼
+(𝑐·

1−𝛼−𝛽

1 − 𝜏2𝛼
+

𝛽

1−𝜏2𝛼
)·

𝜏𝛼

𝛽+𝜏𝛼

)︂
. (1)

𝜏 can be regarded as a function related to 𝜏1 and 𝜏2. We
discuss the calculation of 𝜏 in Theorem 5.1.

Equation (1) is derived by separating the attacker’s re-
ward into innocent mining reward and infiltration mining
reward. We have two cases for innocent mining reward: Case
1 and Case 4-1. The innocent mining reward is (1− 𝜏1)𝛼+

𝜏1𝛼
(1−𝜏2)𝛼
1−𝜏2𝛼

. For infiltration mining reward, we have three

cases: Case 3, Case 4-2, and Case 4-3. Since the attacker will
share the profit with other miners in pool, the reward will
be 𝛽 · 𝜏1𝛼

𝛽+𝜏1𝛼
, 𝑐𝜏1𝛼 · 1−𝛼−𝛽

1−𝜏2𝛼
· 𝜏𝛼

𝛽+𝜏𝛼
, and 𝜏1𝛼 · 𝛽

1−𝜏2𝛼
· 𝜏𝛼

𝛽+𝜏𝛼

in the three cases respectively. Therefore, we can derive the
attacker’s reward in Equation (1).

Clearly, PAW downgrades to FAW when 𝜏1 = 𝜏2.

Theorem 5.1. The average portion of computational power

for infiltration mining in 𝑖-th pool, Pool𝑖, is (𝜏
(𝑖)
1,··· ,𝑘, 𝑘 > 2):

𝜏
(𝑖)
1,··· ,𝑘 =

(1 −
∑︀

𝑖∈𝒫 𝜏
(𝑖)
𝑘 𝛼)

∑︀𝑘−1
𝑗=1 𝜏

(𝑖)
𝑗 + 𝜏

(𝑖)
𝑘

(1 −
∑︀

𝑖∈𝒫 𝜏
(𝑖)
𝑘 𝛼)(𝑘 − 1) + 1

,

where 𝜏
(𝑖)
𝑗 is the infiltration mining power in Pool𝑖 as a

portion of 𝛼 between (𝑗 − 1)-th and 𝑗-th FPoWs are found.
𝒫 is the victim pool set.

Specifically, in one victim scenario, when 𝑘 = 2, 𝜏 = 𝜏
(1)
1,2 ,

𝜏1 = 𝜏
(1)
1 , and 𝜏2 = 𝜏

(1)
2 , we have:

𝜏 = 𝜏
(1)
1,2 =

𝜏1 + 𝜏2 − 𝜏1𝜏2𝛼

2− 𝜏2𝛼
. (2)

Proof of Theorem 5.1 is presented in Appendix-A.
How to adjust mining power? Based on Equation (1), we

formalize the best power adjusting strategy by finding the
optimal portion of attacker’s computational power (̂︀𝜏1 and̂︀𝜏2) to maximize the expected reward (𝑅𝑃

𝑎 (𝜏1, 𝜏2)):

argmax
𝜏1,𝜏2

𝑅𝑃
𝑎 (𝜏1, 𝜏2),

s.t. 0 6 𝜏1 6 1, 0 6 𝜏2 6 1.
(3)

Equation (3) can be solved by using Lagrange multipliers
(presented in Appendix-B). Besides, the maximized reward
with ̂︀𝜏1 and ̂︀𝜏2 satisfies the following theorem.

Theorem 5.2. A PAW attacker can always earn more
rewards than honest mining. The reward of a PAW attack
has a lower bound defined by the reward of an FAW attack.

Proof. Previous research [13] has shown that the reward
of an FAW attack is always greater than that of honest mining

0 0.1 0.2 0.3 0.4 0.5

Size of Target Pool -

0

0.2

0.4

0.6

0.8

1

C
oe

ff
ic

ie
nt

 c

1

2

3

4

5

6

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

(a) 𝑅𝐸𝑅𝑃,𝐻
𝑎 .

0 0.1 0.2 0.3 0.4 0.5

Size of Target Pool -

0

0.2

0.4

0.6

0.8

1

C
oe

ff
ic

ie
nt

 c

-16

-14

-12

-10

-8

-6

-4

-2

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

(b) 𝑅𝐸𝑅𝑃,𝐻
𝑝 .

Figure 2: A PAW attack against one pool. RERs of an attacker
and the victim pool, according to the size of victim pool 𝛽 and
coefficient 𝑐 when the attacker has 0.2 computational power
𝛼 = 0.2.

(𝛼) when a proper 𝜏1 is chosen. Suppose the optimal 𝜏1 for
an FAW attack is 𝜏1. The reward of the FAW attack under
𝜏1 equals to the reward of a PAW attack when 𝜏1 = 𝜏2 = 𝜏1.
Now considering a 𝜏1-preset PAW attack with fixed 𝜏1 = 𝜏1,
and adjusting 𝜏2 = 𝜏2 to maximize the reward in Case-4. The
total reward of this 𝜏1-preset PAW attack should be greater
than or equal to the FAW attack. Furthermore, considering
a regular PAW attack that adjusts 𝜏1 and 𝜏2 simultaneously
to maximize the reward at ̂︀𝜏1 and ̂︀𝜏2, the reward should at
least equal to the 𝜏1-preset PAW attack. Therefore, we have:

𝛼 < 𝑅𝐹
𝑎 (�̇�1) = 𝑅𝑃

𝑎 (�̇�1, �̇�1) 6 𝑅𝑃
𝑎 (�̇�1, 𝜏2) 6 𝑅𝑃

𝑎 (̂︀𝜏1, ̂︀𝜏2),
where 𝑅𝐹

𝑎 (𝜏1) represents the maximized reward of an FAW
attacker at 𝜏1. �

Quantitative analysis and simulation. We use a spe-
cific case to show the additional reward of an attacker who
launches PAW attacks against one pool. Referring to [13], we
also use the expected relative extra reward (RER) to show
the performance of PAW attacks. The expected RER can be
expressed as

𝑅𝐸𝑅𝑆1,𝑆2
𝑥 =

𝑅𝑆1
𝑥 −𝑅𝑆2

𝑥

𝑅𝑆2
𝑥

, (4)

where 𝑆1 and 𝑆2 indicate different strategies (can be honest
mining 𝐻, PAW 𝑃 , or FAW 𝐹), and 𝑥 represents an entity
(can be the attacker 𝑎 or victim pool 𝑝), and 𝑅𝑆1

𝑥 represents
the reward of 𝑥 when adopting 𝑆1 strategy. Clearly, we have
𝑅𝐻

𝑎 = 𝛼 and 𝑅𝐻
𝑝 = 𝛽 + 𝜏1𝛼.

Considering a specific case: the attacker has 0.2 computa-
tional power (𝛼 = 0.2), and the victim pool has no greater
than 0.5 computational power (0 < 𝛽 6 0.5). 𝑅𝐸𝑅𝑃,𝐻

𝑎 and
𝑅𝐸𝑅𝑃,𝐻

𝑝 are depicted in Fig. 2.
The expected RER of an attacker is depicted in Fig. 2-a.

We can infer that PAW attacks can always be more profitable
than honest mining (𝑅𝐸𝑅𝑃,𝐻

𝑎 > 0), regardless of 𝛽 and 𝑐.
Furthermore, similar to FAW attacks, the reward of PAW
attacks increases with the network coefficient 𝑐. While when
𝑐 = 0, the PAW attacks can still earn more rewards than
FAW/BWH attacks (FAW attacks will downgrade to BWH
attacks).

Fig. 2-b shows the victim pool will always suffer from a
loss because of the PAW attacks. Different from the results
presented in [13], the reward of the victim pool does not
always increase with 𝑐. It is because 𝑅𝐸𝑅𝑃,𝐻

𝑝 increases with
𝑐 if 𝜏1 and 𝜏2 are fixed. For instance, suppose the reward of the
victim pool is 𝑅𝑃

𝑝 (𝜏1, 𝜏2, 𝑐1) at 𝜏1 and 𝜏2. When 𝑐1 increases

to 𝑐2, 𝑅
𝑃
𝑝 (𝜏1, 𝜏2, 𝑐2) can be greater than 𝑅𝑃

𝑝 (𝜏1, 𝜏2, 𝑐1), but

Table 1: Attacker’s optimal infiltration mining power. The
values (̂︀𝜏1, ̂︀𝜏2), ̂︀𝜏 indicate the optimal infiltration mining power
(̂︀𝜏1, ̂︀𝜏2) of PAW and ̂︀𝜏 of FAW respectively.

𝛽 c=0 c=0.25 c=0.5 c=0.75 c=1

0.1 (0.06, 0), 0.06 (0.07, 0.29), 0.08 (0.11, 0.78), 0.10 (0.18, 1), 0.16 (0.33, 1), 0.39
0.2 (0.14, 0), 0.12 (0.15, 0), 0.15 (0.18, 0.51), 0.19 (0.25, 1), 0.26 (0.38, 1), 0.44
0.3 (0.22, 0), 0.18 (0.25, 0), 0.23 (0.28, 0.01), 0.26 (0.35, 0.56), 0.33 (0.41, 1), 0.46

Table 2: 𝑅𝐸𝑅𝑃,𝐻
𝑎 (%) against one pool. The values 𝑥(𝑦) in-

dicate 𝑅𝐸𝑅𝑃,𝐻
𝑎 in simulation and theoretical analysis respec-

tively.

𝛽 c=0 c=0.25 c=0.5 c=0.75 c=1

0.1 0.59(0.59) 0.75(0.75) 1.44(1.44) 3.11(3.12) 6.17(6.16)
0.2 1.28(1.27) 1.41(1.41) 1.84(1.84) 3.13(3.13) 5.50(5.50)
0.3 2.04(2.04) 2.25(2.25) 2.51(2.51) 3.13(3.13) 4.71(4.72)

the attacker will adjust the optimal 𝜏1 and 𝜏2 to 𝜏1 and 𝜏2
to maximize her reward. 𝑅𝑃

𝑝 (𝜏1, 𝜏2, 𝑐2) > 𝑅𝑃
𝑝 (𝜏1, 𝜏2, 𝑐1) does

not always hold, especially when 𝛽 is small. We also think
the victim pool’s reward under FAW attacks does not always
increase with 𝑐. The analysis is presented in Appendix-C.
However, if the victim pool’s manager is rational, the manager
can try to increase 𝑐 (if possible) as the best response of the
attacker. Besides, when 𝛽 is large enough, 𝑅𝑃

𝑝 becomes an
increasing function with 𝑐. The pool manager should always
increase 𝑐 even when he is aware of PAW attacks, which also
increases the attacker’s reward.

Moreover, we compare the optimal infiltration mining
power of FAW (̂︀𝜏) and PAW (̂︀𝜏1 and ̂︀𝜏2) in Table 1. When
𝑐 is relatively small, the attacker will allocate less power in
infiltration mining after finding an FPoW (e.g. ̂︀𝜏2 = 0 when
𝑐 = 0). It is because the attacker has less chance to earn
a reward from causing a fork. When 𝑐 is a large value, the
attacker will allocate more power for infiltration mining after
finding an FPoW (e.g. ̂︀𝜏2 = 1 when 𝑐 = 1). In such scenarios,
the attacker has a very high chance to get a reward from a
fork.

Furthermore, we present a more intuitive comparison be-
tween PAW attacks and FAW attacks. Considering the at-
tacker has 0.2 computational power, we show the expected
RERs of the attacker using PAW and FAW attacks in three
cases: 𝛽 = 0.1, 𝛽 = 0.2, and 𝛽 = 0.3. The results are depicted
in Fig. 3. Clearly, the PAW attacks are at least as profitable
as FAW attacks. When the optimal ̂︀𝜏1 and ̂︀𝜏2 are same, the
reward of PAW attacks equals to that of FAW attacks. In
other cases, the reward of PAW attacks is always higher.
When 𝑐 = 1 in case 1 (𝛽 = 0.1), the RER of PAW attacks
is more than twice as FAW attacks. Besides, the smaller
victim pool gives the attacker more rewards with large 𝑐. It
is because the attacker can earn a higher share in smaller
pools when 𝑐 is large. Referring to Table 1, the attacker will
reallocate all her mining power to infiltration mining ̂︀𝜏2 = 1
when 𝑐 is large (e.g. 𝑐 = 1). After Case 4 occurs, the reward of
innocent mining (in Case 4-1) is 0 since no power is allocated
to innocent mining. The reward of other miners (in Case 4-2)
is also 0 since 𝑐 = 1. Therefore, the reward goes to Case 4-2,
and the attacker will get a higher share in small pools.

Finally, we implement a Monte Carlo simulator in Matlab
to verify the accuracy of our theoretical analysis of PAW
attacks. We run the simulator over 109 rounds to show an
attacker’s RER in three cases (the attacker with 0.2 compu-
tational power and the victim pool with 0.1, 0.2, and 0.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coefficient c

0

1

2

3

4

5

6

7

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

PAW: Case 1
PAW: Case 2
PAW: Case 3

FAW: Case 1
FAW: Case 2
FAW: Case 3

Figure 3: 𝑅𝐸𝑅𝑃,𝐻
𝑎 and 𝑅𝐸𝑅𝐹,𝐻

𝑎 against one pool, according
to the coefficient 𝑐 when the 𝛼 = 0.2 in three cases. Case 1,
2, and 3 represent the victim pool with computational power
0.1, 0.2, and 0.3 respectively.

The result is presented in Table 2. The attacker’s RER is
almost the same as we expected, and the attacker can always
earn an extra reward with PAW attacks.

5.3 PAW Against Multiple Pools
Theoretical analysis. We introduce additional parameters
to analyze PAW attacks against 𝑛 pools (Pool𝑝1 , Pool𝑝2 , ...,
and Pool𝑝𝑛) as follows:

𝛽(𝑝𝑖): Computational power of Pool𝑝𝑖 ;

𝜏
(𝑝𝑖)
𝑗 : Attacker’s infiltration mining power in Pool𝑝𝑖 as a

proportion of 𝛼 between (𝑗−1)-th and 𝑗-th FPoWs
are found;

𝑐
(𝑝𝑖)
𝑗 : Probability of the attacker’s FPoW in Pool𝑝𝑖 will be

selected as the main chain among (𝑗 +1) branches.
Attacker’s reward can be derived by summing up the

reward of innocent mining, the share from other victim pool
miners, and the reward of generating branches. Prior to
deriving the total reward of innocent mining, we first consider
the infiltration mining in Pool𝑝1 , Pool𝑝2 , ..., and Pool𝑝𝑖 finds
an FPoW before the innocent mining in order (other miners
do not find any FPoWs). The innocent mining reward will
be: ⎧⎪⎨⎪⎩

𝑅inno0 , 𝑖 = 0;

𝑅inno𝑖

∏︀𝑖
𝑗=1

𝜏
(𝑝𝑗)

𝑗 𝛼

1−
∑︀𝑗

𝑘=1
𝜏
(𝑝𝑘)
𝑗+1 𝛼

, 𝑖 > 0.
(5)

where 𝑅inno𝑖 is the reward of innocent mining when infiltra-
tion mining in Pool𝑝1 , ..., and Pool𝑝𝑖 only submits PPoWs,

𝑅inno𝑖 = (1−
∑︀𝑛

𝑘=1 𝜏
(𝑝𝑘)
𝑖+1)𝛼. To simplify the expression, we

let
∏︀𝑖

𝑗=1 part in Equation (5) be 1 when 𝑖 = 0. Furthermore,
we can derive the total reward of innocent mining:

𝑛∑︁
𝑖=0

∑︁
𝑝𝑖∈𝒫𝑖

⎛⎝(1−
𝑛∑︁

𝑘=1

𝜏
(𝑝𝑘)
𝑖+1)𝛼

𝑖∏︁
𝑗=1

𝜏
(𝑝𝑗)

𝑗 𝛼

1−
∑︀𝑗

𝑘=1 𝜏
(𝑝𝑘)
𝑗+1 𝛼

⎞⎠ , (6)

where 𝑝𝑖 means the infiltration mining in Pool𝑝1 , Pool𝑝2 ,
..., and Pool𝑝𝑖 finds an FPoW before the innocent mining in
order. We have 𝑝𝑖 = (𝑝1, 𝑝2, · · · , 𝑝𝑖) (when 𝑚 ≠ 𝑛, 𝑝𝑚 ̸= 𝑝𝑛),
in which 𝑝𝑚 and 𝑝𝑛 are not exchangeable (e.g. (1, 2, 3) ̸=
(2, 1, 3)).

Then we consider the share when a miner in the victim
pools finds an FPoW. Referring to Equation (5), we only
need to replace 𝑅inno𝑖with the shared reward when miners
in the victim pools find an FPoW. The total shared reward

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Coefficient c

1

2

3

4

5

6

7

8

9

10
R

el
at

iv
e

E
xt

ra
 R

ew
ar

d
(%

) PAW: Case 1
PAW: Case 2
PAW: Case 3

FAW: Case 1
FAW: Case 2
FAW: Case 3

Figure 4: 𝑅𝐸𝑅𝑃,𝐻
𝑎 and 𝑅𝐸𝑅𝐹,𝐻

𝑎 against two pools, according

to the coefficient 𝑐 (𝑐
(𝑝1)
1 = 𝑐

(𝑝2)
1 = 𝑐 and 𝑐

(𝑝1)
2 + 𝑐

(𝑝2)
2 = 𝑐) when

the 𝛼 = 0.2 in three cases. Case 1, 2, and 3 represent two pools
with computational power (𝛽1, 𝛽2) equals to (0.1, 0.1), (0.2, 0.1),
and (0.3, 0.1) respectively.

Table 3: 𝑅𝐸𝑅𝑃,𝐻
𝑎 against two pools. The values 𝑥(𝑦) indicate

𝑅𝐸𝑅𝑃,𝐻
𝑎 in simulation and theoretical analysis respectively.

(𝛽1, 𝛽2) c=0 c=0.25 c=0.5 c=0.75 c=1

(0.1, 0.1) 1.27(1.26) 1.52(1.50) 2.54(2.53) 4.98(4.98) 9.53(9.53)
(0.2, 0.1) 2.03(2.04) 2.27(2.26) 2.89(2.89) 4.50(4.50) 7.73(7.74)
(0.3, 0.1) 2.93(2.93) 3.21(3.20) 3.66(3.67) 4.49(4.49) 6.14(6.17)

can be expressed as:

𝑛∑︁
𝑖=0

∑︁
𝑝𝑖∈𝒫𝑖

⎛⎝ 𝑛∑︁
𝑘=1

𝛽(𝑝𝑘) · 𝜏(𝑝𝑘)

1,··· ,𝑘𝛼

𝛽(𝑝𝑘) + 𝜏
(𝑝𝑘)

1,··· ,𝑘𝛼
·

𝑖∏︁
𝑗=1

𝜏
(𝑝𝑗)

𝑗 𝛼

1 −
∑︀𝑗

𝑘=1 𝜏
(𝑝𝑘)

𝑗+1 𝛼

⎞⎠ , (7)

where 𝜏
(𝑝𝑘)
1 = 𝜏

(𝑝𝑘)
1 .

Finally, we can replace 𝑅inno𝑖 in Equation (5) to express
the reward of causing branches (𝑘 > 2 since no reward from
causing a fork when innocent mining first finds a valid block).
The total reward of causing branches is

𝑛∑︁
𝑖=0

∑︁
𝑝𝑖∈𝒫𝑖

⎛⎝ 𝑛∑︁
𝑘=2

(1−𝛼−𝛽)𝜏
(𝑝𝑘)

1,···,𝑘𝛼𝑐
(𝑝𝑘)

𝑖

𝛽(𝑝𝑘) + 𝜏
(𝑝𝑘)

1,··· ,𝑘𝛼

𝑖∏︁
𝑗=1

𝜏
(𝑝𝑗)

𝑗 𝛼

1−
∑︀𝑗

𝑘=1𝜏
(𝑝𝑘)

𝑗+1 𝛼

⎞⎠, (8)

where 𝛽 is the total computational power of 𝑛 victim pools,

𝛽 =
∑︀𝑛

𝑖=1 𝛽
(𝑖). We also set 𝑐

(𝑝𝑘)
0 = 0 to indicate no reward

for the attacker when other benign miners (not in victim
pools) find a valid block first.

Therefore, we derive the reward of an attacker when launch-
ing PAW attacks against 𝑛 pools by summing up Equation
(6), (7), and (8):

𝑛∑︁
𝑖=0

∑︁
𝑝𝑖∈𝒫𝑖

(︃(︁
(1 −

𝑛∑︁
𝑘=1

𝜏
(𝑝𝑘)

𝑖+1)𝛼 +
𝑛∑︁

𝑘=1

𝛽(𝑝𝑘) · 𝜏(𝑝𝑘)

1,··· ,𝑘𝛼

𝛽(𝑝𝑘) + 𝜏
(𝑝𝑘)

1,··· ,𝑘𝛼

+

𝑛∑︁
𝑘=2

(1 − 𝛼 − 𝛽)𝜏
(𝑝𝑘)

1,··· ,𝑘𝛼𝑐
(𝑝𝑘)

𝑖

𝛽(𝑝𝑘) + 𝜏
(𝑝𝑘)

1,··· ,𝑘𝛼

)︁ 𝑖∏︁
𝑗=1

𝜏
(𝑝𝑗)

𝑗 𝛼

1 −
∑︀𝑗

𝑘=1 𝜏
(𝑝𝑘)

𝑗+1 𝛼

)︃
.

Quantitative analysis and simulation. We use a spe-
cific case to show the additional reward of the attacker who
launches PAW attacks against two pools. We make the two
assumptions to reduce the parameter dimensions: (1) the at-

tacker’s computational power is 0.2; and (2) 𝑐
(𝑝𝑖)
𝑘 = 𝑐/𝑘 when

𝑘 infiltration mining finds 𝑘 different FPoWs (0 6 𝑐 6 1).
Furthermore, we compare the attacker’s RER (%) of PAW at-
tacks and FAW attacks according to 𝑐 in three scenarios: the
two victim pools with computational power (𝛽1, 𝛽2) equals
to (0.1, 0.1), (0.2, 0.1), and (0.3, 0.1) respectively.

The attacker’s RERs of the two attacks are depicted in
Fig. 4. Clearly, the PAW can always earn a higher reward

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Coefficient c

1

2

3

4

5

6

7

8

9

E
xp

ec
te

d
R

el
at

iv
e

E
xt

ra
 R

ew
ar

d
(%

) BTC.com: PAW
Antpool: PAW
Slush: PAW

BTC.com: FAW
Antpool: FAW
Slush: FAW

Figure 5: The extra reward of BTC.com (29.6%), Antpool
(12.9%), or Slush (9.9%) when one pool attacks the other two
with PAW or FAW.

than FAW. and the RER of PAW is up to 2.5 times as FAW
(when 𝑐 = 1 in (0.1, 0.1) scenario).

We consider the top three biggest Bitcoin mining pool
in a real-world scenario: BTC.com [27] with 29.6% mining
power, Antpool [23] with 12.9%, and Slush [33] with 9.9%
(mining power is collected by Jan. 2019). Suppose one of them
launch PAW or FAW attacks, which the other two remain in
honest mining. The extra reward in each attacking scenario
is depicted in Fig. 5. Antpool benefits the most with our
PAW. The maximum extra reward is nearly 9%, where its
extra reward with FAW is only 5.3%. For other pools, PAW
also always better than FAW regardless of 𝑐.

We further use a Monte Carlo simulator in Matlab to verify
our analysis. We show the attacker’s average RER in three
cases over 109 rounds (same as the three cases above, which
𝛼 = 0.2 and the (𝛽1, 𝛽2) equals to (0.1, 0.1), (0.2, 0.1), and
(0.3, 0.1) respectively). The result is presented in Table 3.
The attacker’s RER is almost identical in simulation and
theoretical analysis.

5.4 “Miner’s Dilemma” Analysis
Mining pools can also launch PAW attacks against each other
simultaneously. We prove that PAW can avoid the “miner’s
dilemma” (similar to FAW), and the outcome becomes a size
game (i.e. the larger pool can win). In a two-pool PAW game
(Pool1 vs Pool2), each pool will propagate the result when its
innocent mining firstly finds an FPoW. If Pool1’s infiltration
mining discovers an FPoW first (and vice versa for Pool2), it
withholds the FPoW. After that, if Pool1’s innocent mining
discovers a new FPoW, it discards the withheld FPoW and
propagates the new one. If Pool2’s innocent mining finds a
new FPoW, it discards the withheld one. Otherwise, when
other miners broadcast a valid block, it propagates the with-
held FPoW to cause a fork. Notice that since Pool2 also uses
PAW attacks against Pool1 at the same time, the fork can
have three branches when both of the infiltration mining
in Pool1 and Pool2 discover an FPoW before other miners.
In this scenario, the manager of one pool will choose the
FPoW generated from the opponent’s infiltration mining.
For instance, when Pool1’s infiltration mining finds FPoW1

(in Pool2), and Pool2’s infiltration mining finds FPoW2 (in
Pool1), Pool1’s manager will choose FPoW2 when other min-
ers find a valid block, and vice versa for Pool2. The blockchain

0 0.1 0.2 0.3 0.4 0.5

,[2]

0

0.2

0.4

0.6

0.8

1

C
oe

ff
ic

ie
nt

 c

-20

-15

-10

-5

0

5

Pu
re

 R
E

R
 o

f
Po

ol
1

(%
)

(a) Pool1’s pure RER and winning
condition.

0 0.1 0.2 0.3 0.4 0.5

,[2]

0

0.2

0.4

0.6

0.8

1

C
oe

ff
ic

ie
nt

 c

-30

-25

-20

-15

-10

-5

0

5

Pu
re

 R
E

R
 o

f
Po

ol
2

(%
)

(b) Pool2’s pure RER and winning
condition.

Figure 6: Results of a PAW game according to Pool2’s size

𝛼[2] and coefficient 𝑐 (𝑐
[1]
1 = 𝑐

[2]
1 = 𝑐 and 𝑐

[1]
2 = 𝑐

[2]
2 = 𝑐/2) when

𝛼[1] = 0.2.

will have three branches caused by FPoW1, FPoW2, and the
valid block.

We define the winning condition as pool miners (not in-
cluding the opponent’s infiltration power) earning an extra
reward.

Nash equilibrium point. We use the following param-
eters to analyze a PAW game between Pool1 and Pool2
(𝑖 ∈ {1, 2}).

𝛼[𝑖]:Total computational power of Pool𝑖;

𝑓
[𝑖]
1 :Pool𝑖’s original infiltration mining power;

𝑓
[𝑖]
2 :Pool𝑖’s reallocated infiltration mining power after

its infiltration mining finds an FPoW;

𝑐
[𝑖]
1 : Probability of the Pool𝑖’s withheld FPoW is selected

as the main chain in two-branch cases;

𝑐
[𝑖]
2 : Probability of the Pool𝑖’s withheld FPoW is selected

as the main chain in three-branch cases.

We present the detailed calculation of Pool𝑖’s reward 𝑅[𝑖]

in Appendix-D. Now we analyze the Nash equilibrium in a
two-pool PAW game. Under the Nash equilibrium point, one
pool may satisfy the winning condition (i.e. earning more
rewards than honest mining), which breaks the “miner’s
dilemma” in BWH attacks.

Theorem 5.3. The two-pool PAW game has a unique Nash
equilibrium (𝑓 [1],𝑓 [2]) which either satisfies ∇𝑓 [1]𝑅[1] = 0,

and ∇𝑓 [2]𝑅[2] = 0; or a point on a borderline which maximizes

𝑅[1] with 𝑓 [1] and 𝑅[2] with 𝑓 [2] (𝑓 [1] = (𝑓
[1]
1 , 𝑓

[1]
2) and 𝑓 [2] =

(𝑓
[2]
1 , 𝑓

[2]
2)).

Detailed proof is presented in Appendix-E.
Winning conditions. We quantitatively analyze the re-

ward in a two-pool PAW game under the Nash equilibrium

point. For simplicity, we assume 𝑐
[1]
1 and 𝑐

[2]
1 are symmetric,

as well as 𝑐
[1]
2 and 𝑐

[2]
2 (i.e. 𝑐

[1]
1 = 𝑐

[2]
1 = 𝑐 and 𝑐

[1]
2 = 𝑐

[2]
2 = 𝑐/2,

where 0 6 𝑐 6 1 [13]). Before presenting the results, we de-
fine the pure reward of Pool𝑖, which means the total reward
of Pool𝑖 miners not including the infiltration mining of the
opponent pool (Pool¬𝑖). Therefore, the pure reward of Pool𝑖
under honest mining is 𝛼[𝑖], which can be used to calculate
its pure RER.

Fig. 6 shows the results of a two-pool PAW game in terms
of 𝛼[2] and 𝑐 when 𝛼[1] = 0.2. The pure RERs of Pool1 and
Pool2 are presented in Fig. 6-a and Fig. 6-b respectively,
where the black lines represent the same pure RER as honest

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
[1]

0

0.1

0.2

0.3

0.4

0.5

[2
]

c=0.2
c=0.3
c=0.4

c=0.5
c=0.6
c=0.7

c=0.8
c=0.9
c=1

Figure 7: Winning conditions of Pool1. The right side of each
line represents the winning range of Pool1 under the corre-
sponding 𝑐.

mining (i.e. Pool1’s pure RER = 0 in Fig. 6-a and Pool2’s
pure RER = 0 in Fig. 6-b). Each pool can earn an extra
reward above the black lines while taking a loss below the
lines. When 𝛼[2] > 0.2, Pool2 may get more rewards under
the two-pool PAW game. However, when 𝛼[2] < 0.2, Pool2
will always take a loss (same as the result in a two-pool FAW
game). Therefore, the PAW game becomes a pool size game,
and the “miner’s dilemma” [7] (each pool will always take a
loss when its computational power is less than 0.5) may not
hold.

We further analyze the winning conditions. Pool1’s winning
conditions are depicted in Fig. 7 (Pool2’s winning conditions

can be found by swapping 𝛼[1] and 𝛼[2]). The nine lines
represent the same reward as honest mining when 𝑐 varies
from 0.2 to 1. The right side of each line represents the
winning range of Pool1 under the corresponding 𝑐. When
𝑐 = 1, the borderlines are exactly same for Pool1 and Pool2
(𝛼[1] = 𝛼[2]). Therefore, as we expected, the larger pool can
earn an extra reward, while the smaller pool will always take
a loss. Furthermore, even when the computational power of
each pool is less than 0.5 and 𝑐 is less than 1, there can still
be a winner, which can avoid the “miner’s dilemma” [7]. In

summary, the winning condition is related to 𝛼[1], 𝛼[2], and
𝑐. The larger pool can earn an extra reward (related to 𝑐),
while the smaller pool will always take a loss (regardless of
𝑐).

6 BRIBERY SELFISH MINING

6.1 Overview
We introduce novel bribery selfish mining (BSM) attacks
which combines bribery racing strategy and selfish mining.
In our observation in bribery racing (Section 4.1), we point
out when “0-lead” racing occurs, an attacker can bribe other
miners to work on her branch to increase the probability of
winning in forks. Therefore, BSM can increase the attacker’s
reward via including bribery transactions in the attacker’s
branch. Furthermore, when bribery racing occurs, targets
(bribes) can encounter a “venal miner’s dilemma”, which
all targets will choose to accept the attacker’s branch for a
higher reward, but still suffer from a loss (comparing with
no one accepting).

We define three entities in BSM, attacker (𝑎), the target
(venal miner, 𝑏), and other miners (𝑜). In BSM, an attacker
𝑎 will include bribes in each block of her private chain (𝑇𝐴

𝐵).
After the attacker discovering a block, she withholds the

block and broadcasts a transaction to spend the bribes on
the public chain (𝑇𝐴

𝐴′ , where 𝐴′ can be another address of the
attacker). When another miner (𝑜 or 𝑏) finds a block on the
public chain, the attacker selectively publishes the withheld
blocks in the private branch to cause a fork. A target pool
(the venal pool) can choose either to extend the attacker’s
branch or the public branch. When choosing to extend the
attacker’s branch, the target can claim the bribes in 𝐵. When
choosing the other one, the target cannot claim the bribes,
since the bribes have been transferred to 𝐴′ on the public
chain.

We consider “honest” opponents in our analysis. When
opponents are rational, it will become a bribery racing game
(Appendix-F). Besides, bribing can also be done via smart
contracts [17], out-of-band payment, or negative-fee mining
pool [2]. Here we only consider in-band payment since it is
the most practical method.

6.2 Modeling BSM
We first define the additional parameters in BSM:

𝛽𝑏: Computational power of the target pool (venal pool)
to be analyzed;

𝛾: The ratio of other miners that choose to mine on the
attacker’s branch;

𝜀: The fraction of reward in each round as bribes of
the attacker willing to pay per block when the target
pool chooses to accept bribes.

Notice that since the bribes are available to any miners
adopting the attacker’s branch, there can be multiple targets
in our model. An attacker’s reward will increase with more
targets (discussed latter). Here 𝛽𝑏 only represents one target
since we analyze the optimal strategy of one target. Other
targets are determined by 𝛾 (a larger 𝛾 with more targets).
The relationship between 𝛾 and 𝑐 (in Section 5.2) is 𝑐 =
𝛼+ 𝛾(1− 𝛼− 𝛽𝑏).

State machine and probability. For simplicity, we use
the selfish mining strategy in [9] to analyze the BSM. The
same analysis can also be applied to other optimal selfish
mining strategies [22, 38]. We show the state machine of BSM
in Fig. 8. The states represent the “lead of the attacker” (i.e.,
the difference between the length of attacker’s private branch
and the public branch). State 0 means that there is no branch,
and state 0′𝑥 means “0-lead” racing: there are two branches of
length one (attacker’s branch and 𝑥’s branch). Specifically, 0′𝑏
means the two branches are from the target pool and attacker,
and 0′𝑜 means the two branches are from other miners and the
attacker. From state 0′𝑥, there are five possible transitions,
all leading to state 0: (1) other miners mine a block on 𝑥’s
branch (probability (1 − 𝛾)(1 − 𝛼 − 𝛽)); (2) other miners
mine a block on attacker’s branch (probability 𝛾(1−𝛼− 𝛽));
(3) attacker mines a block on attacker’s branch (probability
𝛼); (4) the target mines a block on 𝑥’s branch (probability
𝛽); and (5) the target mines a block on attacker’s branch
(probability 𝛽). At state 0′𝑜, the target can choose either (4)
or (5). Choosing (4) means the target denying the bribes, and
choosing (5) means accepting. While at state 0′𝑏, the target
must choose (4) to avoid the loss from the previously mined
block. Regardless of the target’s strategies, the probability
of transition from state 0′𝑥 to 0 is 1 as expected.

 0-lead racing, forked by a and b

 0-lead racing, forked by a and o

(1 γ)(1 α β
b
)

γ(1 α β
b
)

α
β

b

1:
2:
3:

(1 γ)(1 α β
b
)

γ(1 α β
b
)

α
β

b

1:
2:
3:

4:

1 α
α

α

1 α 1 α

α

α

β
b

1 α βb

4/5:

0'o 0'b

0 1 2 3

0'o

0'b

1 α

Figure 8: State machine of BSM. The value on each arrow
indicates the probability of a state transition. From state 0′

𝑜

and 0′
𝑏 to state 0 should have four arrows. We only draw one

arrow here to simplify the expression.

Based on the state machine in Fig. 8, we have the following
equations: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼𝑝0 = (1 − 𝛼 − 𝛽)𝑝1 + 𝛽𝑝1 + (1 − 𝛼)𝑝2

𝑝0′𝑜
= (1 − 𝛼 − 𝛽)𝑝1

𝑝0′
𝑏
= 𝛽𝑝1

𝛼𝑝𝑘 = (1 − 𝛼)𝑝𝑘+1,when 𝑘 > 2∑︀+∞
𝑘=0 𝑝𝑘 + 𝑝0′𝑜

+ 𝑝0′
𝑏
= 1.

We could further derive the probability of each state:

𝑝0 =
1 − 2𝛼

2𝛼3 − 4𝛼2 + 1
;

𝑝0′𝑜
=

(1 − 𝛼 − 𝛽)(𝛼 − 2𝛼2)

2𝛼3 − 4𝛼2 + 1
;

𝑝0′
𝑏
=

𝛽(𝛼 − 2𝛼2)

2𝛼3 − 4𝛼2 + 1
;

𝑝𝑘 =
𝛼 − 2𝛼2

2𝛼3 − 4𝛼2 + 1
(

𝛼

1 − 𝛼
)
𝑘−1

,when 𝑘 > 1.

Reward. We analyze the rewards in all possible events
(miners finding a block). We focus on the differences com-
paring with [9] (i.e., “0-lead” racing in event b, c, and d in
[9]), and briefly describe other events. Details of other events
could refer to [9]. The rewards here represent the system
rewards. Bribes will be discussed later.

(a) Any state but two branches of length 1, the attacker
finds a block. The attacker withholds the block to increase
the lead. The reward will be determined later.

(b) Was two branches of length 1, the attacker finds a
block. We split it into two events as depicted in Fig. 9-a and
9-b: (b-1) the two branches were from the attacker and other
miners; and (b-2) the two branches were from the attacker
and target. For both cases, when the attacker publishes her
branch, she can get 2 rewards.

(c) Was two branches of length 1, others/target finds a
block on attacker’s branch. We split it into three events as
depicted in Fig. 9-c, 9-d, and 9-e: (c-1) forked by the attacker
and other miners, and other miners find a block on attacker’s
branch; (c-2) forked by the attacker and other miners, and
the target finds a block on attacker’s branch; and (c-3) forked
by the attacker and target, and other miners find a block on
attacker’s branch. Notice that the target will not extend the
attacker’s branch when the fork is caused by himself. The
attacker will always get 1 reward in all cases. Other miners
will get 1 reward in event (c-1) and (c-3), and the target will
get 1 reward in event (c-2).

(d) Was two branches of length 1, others/target finds a
block on other’s/target’s branch. We split it into four events
as depicted in Fig. 9-f, 9-g, 9-h, and 9-i. The attacker can
cause a fork with the target or others. The finder of the
next block could be either the target or others. For all cases,

(a) Event b-1 (b) Event b-2

(c) Event c-1 (d) Event c-2 (e) Event c-3

(f) Event d-1 (g) Event d-2 (h) Event d-3 (i) Event d-4

other miners (o s) branchattacker s (a s) branch

public chain target s (b s) branch

Figure 9: Possible events after “0-lead” racing in BSM. Event b: 𝑎’s branch is extended by 𝑎. Event c: 𝑎’s branch is extended by
𝑜 or 𝑏. Event d: 𝑜’s or 𝑏’s branch is extended by 𝑜 or 𝑏.

the attacker cannot get any reward since her branch is not
extended and will not be selected as the main chain. Other
miners will get 2 rewards in event (d-1) and 1 in (d-2) and
(d-3). The target will get 2 in event (d-4) and 1 in (d-2) and
(d-3).

(e) No private branch, others/target finds a block. The
finder will publish the block and get 1 reward.

(f) Lead was 1, others/target finds a block. The attacker
publishes her private branch to cause a fork. The reward will
be determined later.

(g) Lead was 2, others/target finds a block. The attacker
publishes her private branch to get 2 rewards.

(h) Lead was more than 2, others/target finds a block.
The attacker publishes one block to get 1 reward since the
attacker’s branch will be selected as the main chain eventually.

We first derive the attacker’s reward when the target
chooses to accept the bribes. She can be rewarded in event
(b), (c), (g), and (h). The attacker’s system reward 𝑅𝑎 is

𝑅𝑎 = (𝑝0′𝑜
+𝑝0′

𝑏
)·𝛼·2 + 𝑝0′𝑜

·(𝛾(1−𝛼−𝛽
𝑏
)+𝛽

𝑏
)

+ 𝑝0′
𝑏
·𝛾(1−𝛼−𝛽

𝑏
) + 𝑝2 ·(1−𝛼)·2 +

+∞∑︁
𝑖=3

𝑝𝑖 ·(1−𝛼),
(9)

which is an increasing function with 𝛾 (i.e., bribing more
targets will bring the attacker more reward).

When considering the bribes (a fraction 𝜀 of the total
system reward), The attacker’s reward 𝑅𝐵

𝑎 becomes:

𝑅
𝐵
𝑎 = (1 − 𝜀)𝑅𝑎, (10)

which is a decreasing function with 𝜀.
For the reward of the target pool, since he will help the

attacker to extend the branch, event (d-2) will not happen.
The target can get a system reward in (c-2), (d-3), (d-4), and
(e). Considering the bribes, the total reward 𝑅𝐵

𝑏 is

𝑅
𝐵
𝑏 =𝑝0′𝑜

·𝛽𝑏
+𝑝0′

𝑏
·𝛾(1−𝛼−𝛽

𝑏
)+𝑝0′

𝑏
·𝛽𝑏 ·2+𝑝0 ·𝛽𝑏

+𝜀·𝑅𝑎. (11)

Similarly, we could derive the reward of other miners 𝑅𝐵
𝑜

from event (c-1), (c-3), (d-1), (d-3), and (e):

𝑅
𝐵
𝑜 = (𝑝0′𝑜

+𝑝0′
𝑏
)·𝛾(1−𝛼−𝛽

𝑏
)+𝑝0′𝑜

·(1−𝛾)(1−𝛼−𝛽
𝑏
)·2

+ 𝑝0′
𝑏
·(1−𝛾)(1−𝛼−𝛽

𝑏
)+ 𝑝0 ·(1−𝛼−𝛽

𝑏
).

(12)

Now we analyze the reward of the target when not choosing
to accept bribes. Event (c-2) will not happen since the target
will not help to extend the attacker’s branch. The target pool
can be rewarded in (d-2), (d-3), (d-4), and (e). The reward

𝑅𝐵′
𝑏 is

𝑅
𝐵′
𝑏 = 𝑝0′𝑜

·𝛽𝑏
+𝑝0′

𝑏
·𝛾(1−𝛼−𝛽

𝑏
)+𝑝0′

𝑏
·𝛽𝑏 ·2+𝑝0 ·𝛽𝑏

. (13)

The reward of other miners 𝑅𝐵′
𝑜 from event (c-1), (c-3),

(d-1), (d-2), (d-3), and (e) is:

𝑅
𝐵′
𝑜 = (𝑝0′𝑜

+𝑝0′
𝑏
)·𝛾(1−𝛼−𝛽

𝑏
)+𝑝0′𝑜

·(1−𝛾)(1−𝛼−𝛽
𝑏
)·2

+ 𝑝0′𝑜
·𝛽𝑏

+𝑝0′
𝑏
·(1−𝛾)(1−𝛼−𝛽

𝑏
)+𝑝0 ·(1−𝛼−𝛽

𝑏
).

(14)

The attacker can be rewarded in event (b), (c-1), (c-3),
(g), and (h). The reward is

𝑅
𝐵′
𝑎 = (𝑝0′𝑜

+ 𝑝0′
𝑏
) · 𝛼 · 2 + 𝑝0′𝑜

· 𝛾(1 − 𝛼 − 𝛽
𝑏
)

+ 𝑝0′
𝑏
·𝛾(1−𝛼−𝛽

𝑏
)+𝑝2 ·(1−𝛼)·2+

+∞∑︁
𝑖=3

𝑝𝑖 ·(1−𝛼).
(15)

Theorem 6.1. When launching BSM, the target can al-
ways get a higher reward when accepting the bribes at 0′𝑜
state. The attacker can get a higher reward than that in
selfish mining when she pays proper bribes.

Proof. Comparing Equation (11) with Equation (13), we

can obtain 𝑅𝐵
𝑏 > 𝑅𝐵′

𝑏 since 0 6 𝜀 6 1 and 𝑅𝑎 > 0. When

the attacker adopts 𝜀 > 0, the target ensures 𝑅𝐵
𝑏 > 𝑅𝐵′

𝑏 .
Therefore, extending the attacker’s private branch is always
the optimal strategy for targets at 0′𝑜 state.

The rewards in selfish mining are the same as the rewards
in BSM when the target chooses to deny the bribes. Therefore,

to get a higher reward, the attacker must ensure 𝑅𝐵
𝑎 > 𝑅𝐵′

𝑎 .
Referring to Equation (10) and Equation (15), we can derive

𝑅
𝐵
𝑎 > 𝑅

𝐵′
𝑎 ⇒ 0 < 𝜀 <

𝑝0′𝑜
· 𝛽𝑏

𝑝0′𝑜
· 𝛽𝑏 + 𝑅𝐵′

𝑎

. (16)

The upper bound of the attacker’s reward is 𝑅𝑎 in Equation
(9) when 𝜀 = 0. �

0 0.40.1 0.2 0.30

0.2

0.4

0.6

0.8

1

.

2

4
6

8

10

12

14

R
el

at
iv

e
Ex

tra
 R

ew
ar

d
(%

)

 Attacker's Mining Power ,

B

(a) RER for a target
when accepting bribes

(𝑅𝐸𝑅𝐵,𝐵′
𝑏).

0 0.1 0.2 0.3 0.4 0.5
Attacker's Mining Power ,

0

0.2

0.4

0.6

0.8

1

.

-60
-40

0
20
40
60
80
100

-20

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

H
B

(b) BSM vs honest

mining (𝑅𝐸𝑅𝐵,𝐻
𝑎).

Solid line indicates
𝑅𝐸𝑅𝐵,𝐻

𝑎 = 0.

0 0.1 0.2 0.3 0.4 0.5
Attacker's Mining Power ,

0

0.2

0.4

0.6

0.8

1

.

0

20

40

60

80

100

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

B S

(c) BSM vs selfish

mining (𝑅𝐸𝑅𝐵,𝑆
𝑎).

Solid line indicates
𝑅𝐸𝑅𝐵,𝑆

𝑎 = 0.

Figure 10: Dominant strategies for a target (a) and an at-
tacker (b) and (c).

Quantitative analysis and simulation. Previous ap-
proaches have pointed out the total block generation rate
decreases due to selfish mining (i.e., 𝑅𝐵

𝑎 + 𝑅𝐵
𝑏 + 𝑅𝐵

𝑜 < 1)
[9, 22, 38]. Therefore, we first normalize the reward of entity

𝑥 (
𝑅𝐵

𝑥

𝑅𝐵
𝑎 +𝑅𝐵

𝑏
+𝑅𝐵

𝑜
and

𝑅𝐵′
𝑥

𝑅𝐵′
𝑎 +𝑅𝐵′

𝑏
+𝑅𝐵′

𝑜

) and then use the RER

in Equation (4) to evaluate BSM (strategies can be selfish
mining 𝑆, accepting bribes in BSM 𝐵, denying bribes in BSM
𝐵′, and honest mining 𝐻).

Dominant strategies. First, we consider the target’s reward
under different strategies (accepting or denying bribes) in
BSM. We consider 𝛽𝑏 = 0.1 and set 𝜀 = 0.02, which is
0.02× 12.5 = 0.25 BTC per block (about 2500 USD/block

in Aug. 2019 [29]). The rewarding difference 𝑅𝐸𝑅𝐵,𝐵′

𝑏 (i.e.
extra reward when accepting bribes comparing with denying)
in terms of 𝛼 and 𝛾 is depicted in Fig. 10-a. As expected, the
dominant strategy for a target is always to accept the bribes,

regardless of 𝛼 and 𝛾. Besides, 𝑅𝐸𝑅𝐵,𝐵′

𝑏 increases with 𝛼,
since the attacker will have more reward (and more bribes
according) with a larger 𝛼.

Furthermore, we consider the attacker’s reward of different
strategies (𝐻, 𝑆, or 𝐵). We set 𝜀 = 0.02 and 𝛽𝑏 = 0.2.
The attacker’s dominant strategies (𝑅𝐸𝑅𝐵,𝐻

𝑎 and 𝑅𝐸𝑅𝐵,𝑆
𝑎)

are depicted in Fig. 10-b and 10-c. In Fig. 10-b, the right
side of the line indicates honest mining is the dominant
strategy, while the left side means BSM is the dominant
one. Comparing with the results in [9], the winning area of
BSM is larger than selfish mining. By properly setting 𝜀,
BSM gives a less threshold of launching attacks (e.g. when
𝛾 = 0, BSM only requires 𝛼 > 0.31, while selfish mining
requires 𝛼 > 0.33). Furthermore, comparing with selfish
mining, BSM is dominant in most cases, as depicted in Fig.
10-c. Selfish mining only outperforms BSM when 𝛼 is large
enough (𝛼 > 0.46 in this case). Based on Theorem 6.1, the
winning area of BSM can be extended with a smaller 𝜀.

More specifically, we consider two cases: target’s mining
power is 0.1 and 0.3 respectively. We set bribes to 𝜀 = 0.02.
Comparing with honest mining, the extra relative rewards of
the target are depicted in Fig. 11-a and 11-b. When 𝑅𝐸𝑅𝐵,𝐻

𝑏

and 𝑅𝐸𝑅𝐵′,𝐻
𝑏 are positive, BSM can bring the target more

reward than honest mining. As expected, the rewards of the
target when accepting the bribes (solid lines) are always
greater than those when denying (dash lines). The optimal
strategy for the target is to extend the attacker’s branch and
accept the bribes. The target can get a higher reward with a
smaller 𝛼, since the attacker will suffer from a loss under such
scenarios, as with [9, 22, 38]. The reward decreases when 𝛾
increases. It is because 𝛾 represents the ratio of other miners

0 0.1 0.4 0.50.2 0.3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

.=0, accept

.=0, deny

.=0.5, accept

.=0.5, deny

.=1, accept

.=1, deny

Attacker's Mining Power ,

 R
el

at
iv

e
Ex

tra
 R

ew
ar

d
(%

)

(a) Target’s RER when 𝛽𝑏 = 0.1.

0 0.1 0.4 0.50.2 0.3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

 R
el

at
iv

e
Ex

tra
 R

ew
ar

d
(%

)

.=0, accept

.=0, deny

.=0.5, accept

.=0.5, deny

.=1, accept

.=1, deny

Attacker's Mining Power ,

(b) Target’s RER when 𝛽𝑏 = 0.3.

0 0.1 0.4 0.50.2 0.3
-1

-0.5

0

0.5

1

.=0, accept

.=0, deny

.=0.5, accept

.=0.5, deny

.=1, accept

.=1, deny

Attacker's Mining Power ,

 R
el

at
iv

e
Ex

tra
 R

ew
ar

d
(%

)

(c) Attacker’s RER when 𝛽𝑏=0.1.

0 0.1 0.4 0.50.2 0.3
-1

-0.5

0

0.5

1

.=0, accept

.=0, deny

.=0.5, accept

.=0.5, deny

.=1, accept

.=1, deny

Attacker's Mining Power ,

 R
el

at
iv

e
Ex

tra
 R

ew
ar

d
(%

)

(d) Attacker’s RER when 𝛽𝑏=0.3.

Figure 11: RER of a target and an attacker in BSM. 𝑅𝐸𝑅𝐵,𝐻
𝑏

and 𝑅𝐸𝑅𝐵′,𝐻
𝑏 in (a) and (b). 𝑅𝐸𝑅𝐵,𝐻

𝑎 and 𝑅𝐸𝑅𝐵′,𝐻
𝑎 in (c) and

(d).

Table 4: The target’s extra relative reward (%) in BSM

(𝑅𝐸𝑅𝐵,𝐻
𝑏 and 𝑅𝐸𝑅𝐵′,𝐻

𝑏). The values 𝑥(𝑦) indicate the target’s
RERs in simulation and theoretical analysis respectively.

𝛾 = 0 𝛾=0.25 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

Accept 5.85(5.84) 3.76(3.74) 1.64(1.65) -0.44(-0.44) -2.55(-2.53)
Deny 3.82(3.84) 1.64(1.65) -0.54(-0.55) -2.75(-2.74) -4.94(-4.94)

who extend the attacker’s branch (i.e., other targets). These
miners can damage the target’s rewards when they decide to
mine on attacker’s branch (event c-3). The loss will increase
with more other targets (larger 𝛾).

For an attacker, her RERs are depicted in Fig. 11-c and 11-
d. When satisfying Equation (16) (a relatively small 𝛼), the
attacker can get a higher reward than selfish mining. When
considering positive RER cases, the BSM can bring 10%
additional extra reward than selfish mining, which is about
0.22 × 10% × 12.5 = 0.275 BTC per round (i.e. additional
2750 USD in every 10 minutes). The extra reward (comparing
with selfish mining) is more significant with 𝛽𝑏 = 0.3.

Simulation. We implement a Monte Carlo simulator in
Matlab to verify our analysis. Suppose the target’s mining
power is 0.3, the attacker’s mining power is 0.3, and the
bribes are 0.02. We run the simulator over 108 rounds to show
the relative rewards of the target and attacker (𝑅𝐸𝑅𝐵,𝐻

𝑏 ,

𝑅𝐸𝑅𝐵′,𝐻
𝑏 , 𝑅𝐸𝑅𝐵,𝐻

𝑎 , and 𝑅𝐸𝑅𝐵′,𝐻
𝑎) in Table 4 and Table 5

respectively under different strategies (accepting or denying
the bribes).

As we expected, the rewards of the attacker and target
are almost the same as those in theoretical analysis. The
target’s optimal strategy is to accept the bribes to get a
higher reward. The attacker can increase her reward with an
acceptable cost.

Table 5: The attacker’s extra relative reward (%) with BSM

(𝑅𝐸𝑅𝐵,𝐻
𝑎 and 𝑅𝐸𝑅𝐵′,𝐻

𝑎). The values 𝑥(𝑦) indicate the at-
tacker’s RERs in simulation and theoretical analysis respec-
tively.

𝛾 = 0 𝛾 = 0.25 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

Accept -2.18(-2.18) 2.85(2.84) 7.85(7.85) 12.86(12.87) 17.88(17.89)
Deny -8.94(-8.96) -3.85(-3.84) 1.27(1.28) 6.42(6.40) 11.49(11.52)

Table 6: The target’s extra relative reward (𝑅𝐸𝑅𝐵,𝐻
𝑏𝑖

and

𝑅𝐸𝑅𝐵′,𝐻
𝑏𝑖

). (𝑥, 𝑦) indicate the extra relative reward of Target1
and Target2 respectively.

Target2

Target1 Accept at 0′𝑜 Deny at 0′𝑜

Accept at 0′𝑜 (-2.58%, -0.62%) (-6.44%, 1.63%)
Deny at 0′𝑜 (3.85%, -1.85%) (0.45%, 0.45%)

6.3 The Venal Miner’s Dilemma
In selfish mining and BSM, an attacker can get extra rewards
by causing forks. Previous work has pointed out these extra
rewards are from the loss of other miners (𝑏 and 𝑜) [9, 13].
For a target, the loss occurs when other miners extend the
attacker’s branch instead of the target’s (event c-3). However,
the target cannot avoid the loss regardless of different strate-
gies he takes. In other words, these events are controlled
by other miners instead of the target. When other miners
extend the attacker’s branch, the target has to accept the
loss (event c-3). Meanwhile, when the target takes the bribes,
he actually makes other miners suffer from a loss (event c-2).

We have proved that the optimal strategy for a target is to
accept the attacker’s branch even with a very small positive
value of 𝜀. Therefore, the attacker can have a very high
chance to win in forks via bribing multiple targets with little
cost and can get extra rewards with BSM. In such scenarios,
accepting the bribes becomes “avoiding a higher loss” for the
targets. The targets can fall into a “venal miner’s dilemma”:
all targets will suffer from a loss due to the attacks (similar
to the “prisoner’s dilemma”). Even though all targets can
get higher rewards when no one helps the attacker, no target
will deny the bribes since accepting the bribes is always the
local-optimal strategy at 0′𝑜 state. Therefore, we have a single
Nash equilibrium for targets under BSM: all targets will
choose to accept the bribes and extend the attacker’s branch
at 0′𝑜.

Notice that the “venal miner’s dilemma” is different from
the “looming tragedy” [2] and “miner’s dilemma” [7]. The
“looming tragedy” suggests that bribery attacks will damage
Bitcoin’s reputation. Miners should reject bribes and seek for
long-term incentive to avoid harming Bitcoin exchange rate.
While in BSM, even with a fixed Bitcoin exchange rate, a tar-
get can suffer from a loss due to the “venal miner’s dilemma”.
The “miner’s dilemma” involves multiple attackers. Attackers
will choose to attack each other and fall into the dilemma to
lose their rewards. While for the “venal miner’s dilemma”, it
involves one attacker and multiple targets. Targets will choose
to accept the attacker’s branch and fall into the dilemma to
lose their rewards.

Considering two targets Target1 and Target2 with mining
power 𝛽𝑏

1 and 𝛽𝑏
2 in a bribery game under BSM. We define

the winning condition for 𝑇𝑎𝑟𝑔𝑒𝑡𝑖 is “getting a higher reward
than honest mining” (i.e., 𝑅𝐸𝑅𝐵,𝐻

𝑏𝑖
> 0). Suppose 𝛼 = 0.35,

𝛽𝑏
1 = 0.2, and 𝜀 = 0.02. We show the extra rewards and

0 0.1 0.2 0.3 0.4 0.5

-b2

0

0.2

0.4

0.6

0.8

1

.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

E
xt

ra
 R

ew
ar

d

(a) 𝑅𝐸𝑅𝐵,𝐻
𝑏1

and winning condition.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-b2

.

E
xt

ra
 R

ew
ar

d

(b) 𝑅𝐸𝑅𝐵,𝐻
𝑏2

and winning condi-

tion.

Figure 12: Extra rewards and winning conditions in a bribery

game. Solid lines represent no extra reward (𝑅𝐵
𝑏𝑖

= 𝛽𝑏
𝑖). The

left side of each line represents the winning condition of each
target pool. The intersected part of the right sides of the two
lines represents the “venal miner’s dilemma”.

0-LSMBWHPS FAW

B-0-LBSMB-FAW

adopt bribery racing

PA-BWHPA-PS PAW

adopt power adjusting

B-PAW
adopt power adjusting and bribery racing

0-L: other 0-lead racing related attacks

PS: other power splitting related attacks

Figure 13: Attacking strategy space when adopting power ad-
justing and bribery racing. Other power splitting related at-
tacks can be combination of different attacks. Other “0-lead”
racing related attacks can be stubborn mining [22].

winning condition of each target in terms of 𝛽𝑏
2 and 𝛾 (𝛾

represents the ratio other miners mining on attacker’s branch,
excluding the two targets) in Fig. 12.

The left side of each line is the winning condition of each
target. When 𝛽𝑏

2 and 𝛾 are relatively small, both targets
can win since the attacker will suffer from a loss. The extra
rewards of Target2 will not be greatly affected by 𝛾 when
𝛽𝑏
2 is small. It is because the bribes contribute to a great

part of Target2’s reward in such scenarios. Even with a large
𝛾, Target2 can still be more profitable than honest mining
(rewarding from the bribes) when 𝛽𝑏

2 is relatively small. The
union part of the winning conditions (i.e., the winning con-
dition of Target2) means there can be at least one winner,
where the winner can avoid the “venal miner’s dilemma”.
While for other parts (the left side of Target2’s line), both of
targets fall into the dilemma (no winner). For an attacker,
when proper values of 𝛽𝑏

1, 𝛽
𝑏
2, and 𝜀 are chosen, the attacker

can ensure a higher reward and make targets fall into the
dilemma regardless of 𝛾.

We present a more intuitive example to show the venal
miner’s dilemma in BSM (we set 𝛾 = 0 to avoid other targets).
Suppose the mining power of the attacker, Target1, and
Target2 is 0.33, 0.1, and 0.3 respectively. The theoretical
extra relative rewards of the targets are shown in Table 6.
The optimal strategy for both targets is to accept the bribes
at 0′𝑜 (bold numbers). However, both of them will suffer from
a loss due to the BSM, compared with the rewards when
denying.

7 DISCUSSION

7.1 Strategy Space and Bribery PAW
We have discussed power adjusting with FAW and bribery
racing with selfish mining. We also believe that power adjust-
ing strategy can be applied to other power splitting related

attacks such as BWH or launching different kinds of attacks
simultaneously, and bribery racing to other “0-lead” racing
related attacks such as stubborn mining [22]. A potential
attacking strategy space is presented in Fig. 13. Furthermore,
since the “0-lead” racing also occurs in FAW and PAW, is
it also possible to combine bribery racing with FAW/PAW.
The combination can be easily achieved via bribing through
out-of-band payment or negative-fee mining pools. However,
for in-band bribing, the requirement is non-trivial since trans-
actions to be recorded are chosen by pool managers in pooled
mining. We discuss possible strategies to lure or force a pool
manager to choose the bribing transactions in Appendix-G.

In Bribery PAW (B-PAW), an attacker will only include
bribes when calculating shares in her infiltration mining
power. When an FPoW is found, she withholds it and broad-
cast a transaction to spend the bribes. When others miners
find a block, she immediately submits the withheld block to
cause “0-lead” racing. It is worth mentioning that the next
round of infiltration mining does not include bribes and will
immediately submit the newly discovered FPoW (different
from FAW/PAW) since the primary task here is to win in
“0-lead” racing. Some analyses on B-PAW are conducted in
Appendix-G.

7.2 PAW Countermeasure
Detecting power adjusting. The difference between FAW
and PAW attacks is the “power adjusting” mechanism in
PAW attacks. Therefore, a pool manager can detect PAW
attacks by statistically counting the number of submitted
shares for each pool miner. However, we think this approach
can be inefficient and error-prone because of two main reasons:
(1) power adjusting does not always happen in PAW attacks
(i.e. for a single victim scenario, power adjusting occurs only
after Case 4); and (2) non-frequent power adjusting is legal
and acceptable for honest miners. To more precisely detect
power adjusting, we suggest the manager set a less difficulty
constraint to find a PPoW, and count the number of shares
over time. However, to precisely identify power adjusting, it
will increase the workload of pool managers with a smaller
constraint. Besides detecting power adjusting, pool managers
can resort to methods for FAW/BWH detection. We think
detecting PAW via stale FPoWs [13] is much easier than via
power adjusting.

Detecting stale FPoWs. After receiving a new block,
pool manager can regard FPoWs forked with the new block
as stale FPoWs and expel the submitter to avoid FAW/PAW
attacks. A beacon value approach has been proposed based
on this idea [13]. However, adding a beacon field in a block’s
header breaks down the compatibility with existing mining
hardware and increases the workload of pool managers.

We introduce a new detecting approach based on the
timestamp field. Timestamp field is encapsulated in a block
header when calculating hash values, which can avoid an
attacker modifying this filed after an FPoW is found. Besides,
it will be updated in every few seconds, which ensures the
freshness of the share. Therefore, a network manager can
first synchronize the time of each pool miner and identify
stale FPoWs when the timestamp field deviates too much
from the current time. Notice that when an attacker uses a
forged timestamp field to calculate hash values, she can still

be detected since it is hard to anticipate the time of other
miners propagating blocks.

Suppose the manager sets a threshold 𝑘 (𝑘 > 0), which
regards shares submitted with timestamp field in [𝑋−𝑘,𝑋 +
𝑘] legal at current time 𝑋 when 𝑋 > 𝑘 (otherwise, the legal
period is [0, 𝑋 + 𝑘]). Let the attacker sets the timestamp
field to 𝑋 + 𝑡 when calculating shares. She can avoid being
detected when other miners find a block at [𝑋+𝑡−𝑘,𝑋+𝑡+𝑘].
The probability of infiltration mining discovers a legal FPoW
(only considering the infiltration mining and other miners)
is:

𝑃 =

∫︁ +∞

0
𝜆1𝑒

−𝜆1𝑥
∫︁ 𝑥+𝑡+𝑘

𝑥+𝑡−𝑘
𝜆2𝑒

−𝜆2𝑦
𝑑𝑥𝑑𝑦=

𝜆1

𝜆1+𝜆2

(𝑒
−𝜆2(𝑡−𝑘)−𝑒

−𝜆2(𝑡+𝑘)
),

where 𝜆1 = 𝜏1𝛼 and 𝜆2 = 1 − 𝛼 − 𝛽, when 𝑡 > 𝑘, and
𝜆1 = 𝜆2 = 0 when 𝑡 < 𝑘. Since 𝑃 is a decreasing function with
𝑡, the maximized probability 𝑃𝑚𝑎𝑥 is 𝜆1

𝜆1+𝜆2
(1−𝑒−2𝑘(1−𝛼−𝛽))

at 𝑡 = 𝑘. Suppose 𝛼 = 0.1, 𝛽 = 0.3, 𝑐 = 0.5, and the manager
sets 𝑘 to 0.01 (6 seconds, 6 sec

10 min
= 0.01). The attacker’s

probability of submitting a valid FPoW is 𝑃𝑚𝑎𝑥 = 0.047%.
The priori probability (probability after infiltration mining

finding an FPoW) is 𝑃𝑚𝑎𝑥
𝜆1/(𝜆1+𝜆2)

= 1− 𝑒−2𝑘(1−𝛼−𝛽) = 1.19%,

and is upper-bounded at 1.98% under our mechanism (1−
𝛼− 𝛽 < 1).

Approaches based on “detecting stale FPoW” can identify
the infiltration miner who submits the stale FPoW. However,
when attackers use Sybil nodes to launch PAW attacks dis-
tributively (distributing infiltration mining power to many
infiltration mining accounts), the attacker can still win an
additional reward even the submitter is expelled [13]. Besides,
even when attackers do not propagate withheld FPoWs to
avoid being detected, PAW can still get more rewards than
BWH or FAW attacks.

7.3 Bribery Racing Countermeasure
We propose three countermeasures against bribery racing.
First, the Bitcoin system may consider restricting the use of
“anyone can claim” transactions. However, this approach will
also sacrifice the flexibility and programmability of the Bit-
coin. Moreover, the oriented bribery (Appendix-H) attacks
or “whale transactions” [15] cannot be prevented by this
approach. A further step is to include the receiver’s confirma-
tion (e.g. receiver’s signature) when creating a transaction.
Though this approach can avoid oriented bribery attacks
targeting at random pools, it also incurs much communica-
tion overhead. For attackers, they can still make out-of-band
negotiations with targets to get the confirmation. Besides,
both approaches need modifications of the current Bitcoin
system, which may be impractical. We hope these approaches
can provide some insights into mitigating bribery attacks
when designing new cryptocurrencies.

Second, when a fork occurs, miners should preferentially
choose the branch containing the transactions which they
previously received, and ignore other branches conflicted
with these transactions. For instance, when a miner receives
𝑇𝐴
𝐴′ , and a fork with two branches (containing 𝑇𝐴

𝐴′ and 𝑇𝐴
𝐵

respectively) occurs, the miner should extend the branch with
𝑇𝐴
𝐴′ . The bribery attacks can be prevented when all miners

adopt this mechanism. However, it is unrealistic to assume
that all miners adopt this approach since miners can be selfish
(they may choose 𝑇𝐴

𝐵 for a higher reward). Nevertheless, this

approach can still reduce 𝛾, especially in oriented bribery
attacks (a smaller 𝛾 indicates a less reward for attackers).

Finally, for pool managers, they should expel pool min-
ers who submit FPoWs containing bribes (avoiding bribery
racing in FAW/PAW). Though plain bribery attacks will
not damage the pool’s reward, and increasing 𝑐 may be the
better strategy for a higher pool’s reward even when FAW
attacks are detected [13] since bribery attack can increase
the chance of winning in forks, pool managers should reject
bribery transactions to avoid bribery FAW/PAW attacks for
further loss.

8 CONCLUSION
We show that in PoW-based blockchain cryptocurrencies
such as Bitcoin, mining attacks can be further extended by
combining power adjusting and bribery racing. In PAW, an
attacker can increase her reward (up to 2.5 times of FAW)
and avoid the “miner’s dilemma”. In BSM, an attacker can
gain 10% extra reward than selfish mining and make other
miners (targets) suffer from a “venal miner’s dilemma” (all
targets will earn less under the Nash equilibrium). Quan-
titative analysis and simulations have been done to verify
our analysis. To mitigate these attacks, we discuss possible
countermeasures. But a practical solution to fully prevent
these attacks remains to be open.

ACKNOWLEDGMENT
We gratefully acknowledge Tao Lu from Erasmus University
for helpful technical discussions about conditional expecta-
tion. This research is partially supported by HK RGC GRF
PolyU 152124/19E and HK ITF ITS/081/18.

REFERENCES
[1] Lear Bahack. 2013. Theoretical Bitcoin Attacks with Less than

Half of the Computational Power (draft). In arXiv preprint
arXiv:1312.7013.

[2] Joseph Bonneau. 2016. Why Buy When You Can Rent?. In Proc.
of the International Conference on Financial Cryptography and
Data Security (FC). Springer.

[3] Danny Bradbury. 2013. The Problem with Bitcoin. In Computer
Fraud & Security. Elsevier.

[4] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind
Narayanan. 2016. On the Instability of Bitcoin without the Block
Reward. In Proc. of the ACM Conference on Computer & Com-
munications Security (CCS). ACM.

[5] Nicolas T Courtois and Lear Bahack. 2014. On Subversive Miner
Strategies and Block Withholding Attack in Bitcoin Digital Cur-
rency. In arXiv preprint arXiv:1402.1718.

[6] Christian Decker and Roger Wattenhofer. 2013. Information
Propagation in the Bitcoin Network. In Proc. of the IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P). IEEE.

[7] Ittay Eyal. 2015. The Miner’s Dilemma. In Proc. of the IEEE
Symposium onSecurity and Privacy (Oakland). IEEE.

[8] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert
Van Renesse. 2016. Bitcoin-NG: A Scalable Blockchain Protocol.
In Proc. of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI). USENIX.

[9] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not Enough:
Bitcoin Mining is Vulnerable. In Proc. of the International Con-
ference on Financial Cryptography and Data Security (FC).
Springer.

[10] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios
Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. 2016. On the Se-
curity and Performance of Proof of Work Blockchains. In Proc. of
the ACM Conference on Computer & Communications Security
(CCS). ACM.

[11] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
2015. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In Proc.
of the USENIX Security Symposium (Security). USENIX.

[12] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. 2012.
Double-Spending Fast Payments in Bitcoin. In Proc. of the ACM
Conference on Computer & Communications Security (CCS).
ACM.

[13] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and
Yongdae Kim. 2017. Be Selfish and Avoid Dilemmas: Fork After
Withholding (FAW) Attacks on Bitcoin. In Proc. of the ACM
Conference on Computer & Communications Security (CCS).
ACM.

[14] Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim.
2019. Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin
Cash?. In Proc. of the IEEE Symposium onSecurity and Privacy
(Oakland). IEEE.

[15] Kevin Liao and Jonathan Katz. 2017. Incentivizing Blockchain
Forks via Whale Transactions. In Proc. of the International
Conference on Financial Cryptography and Data Security (FC).
Springer.

[16] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and
Aquinas Hobor. 2015. On Power Splitting Games in Distributed
Computation: The Case of Bitcoin Pooled Mining. In Proc. of
the IEEE Computer Security Foundations Symposium (CSF).
IEEE.

[17] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. [n.d.].
Smart Contracts for Bribing Miners. Cryptology ePrint Archive
2018.

[18] A Miller. 2013. Feather-Forks: Enforcing a Blacklist with Sub-50%
Hash Power.

[19] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta,
Dave Levin, Neil Spring, and Bobby Bhattacharjee. [n.d.]. Dis-
covering Bitcoin’s Public Topology and Influential Nodes.

[20] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash
System.

[21] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew
Miller, and Steven Goldfeder. 2016. Bitcoin and Cryptocurrency
Technologies: A Comprehensive Introduction. Princeton Univer-
sity Press.

[22] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016.
Stubborn Mining: Generalizing Selfish Mining and Combining with
an Eclipse Attack. In Proc. of the IEEE European Symposium
on Security and Privacy (Euro S&P). IEEE.

[23] Antpool. 2019. Antpool. https://www.antpool.com/.
[24] Bitcoin Wiki. 2019. Proof of Work. https://en.bitcoin.it/wiki/P

roof of work.
[25] Bitfinex. 2019. Cloud Mining. https://www.bitfinex.com/.
[26] Bitinfocharts. 2019. Bitcoin Hash Rate. https://bitinfocharts.co

m/comparison/bitcoin-hashrate.html.
[27] BTC-pools.com. 2019. BTC.com Pool. https://btc-pools.com/.
[28] CEX.IO. 2019. Cloud Mining. https://cex.io/.
[29] Coinbase. 2019. Bitcoin Exchange Rate. https://www.coinbase.c

om/charts.
[30] Dogecoin Project. 2019. Dogecoin. http://dogecoin.com/.
[31] Litecoin Project. 2019. Litecoin. https://litecoin.org/.
[32] Pow88. 2019. Cloud Mining. http://pow88.com.
[33] Slush. 2019. Slush. https://slushpool.com/home/.
[34] Wikipedia. 2019. Merkle Root. https://en.wikipedia.org/wiki/

Merkle tree.
[35] wizkid057. 2014. BWH Attacks against Eligius. https://bitcoint

alk.org/?topic=441465.msg7282674.
[36] J Ben Rosen. 1965. Existence and Uniqueness of Equilibrium

Points for Concave n-Person Games. Econometrica: Journal of
the Econometric Society.

[37] Meni Rosenfeld. 2011. Analysis of Bitcoin Pooled Mining Reward
Systems. In arXiv preprint arXiv:1112.4980.

[38] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016.
Optimal Selfish Mining Strategies in Bitcoin. In Proc. of the
International Conference on Financial Cryptography and Data
Security (FC). Springer.

A CALCULATION OF 𝜏
(𝑖)
1,··· ,𝑘 (PROOF

OF THEOREM 5.1)

We split the total time of finding a new valid block (FPoW)
into 𝑘 slots, as depicted in Fig. 14. In (0, 𝑡1), the attacker

https://www.antpool.com/
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Proof_of_work
https://www.bitfinex.com/
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://bitinfocharts.com/comparison/bitcoin-hashrate.html
https://btc-pools.com/
https://cex.io/
https://www.coinbase.com/charts
https://www.coinbase.com/charts
http://dogecoin.com/
https://litecoin.org/
http://pow88.com
https://slushpool.com/home/
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Merkle_tree
https://bitcointalk.org/?topic=441465.msg7282674
https://bitcointalk.org/?topic=441465.msg7282674

will use
∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼 for infiltration mining, where 𝒫 is the

set of victim pools. Similarly, in (𝑡1, 𝑡1 + 𝑡2), ..., and in

(
∑︀𝑘−1

𝑖=1 𝑡𝑖,
∑︀𝑘

𝑖=1 𝑡𝑖), the infiltration mining power will be∑︀
𝑖∈𝒫 𝜏

(𝑖)
2 𝛼, ..., and

∑︀
𝑖∈𝒫 𝜏

(𝑖)
𝑘 𝛼 respectively.

We regard all infiltration mining as one miner. Before
𝑡1, the time of the infiltration miner finds an FPoW (𝑇1)

should have 𝑇1 ∼ exp(
∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼), and the time for the

other miners should have 𝑇𝑘 ∼ exp(1−
∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼).

In the calculation of 𝐸(𝑇1|𝑇1 < 𝑇𝑘), we have:

𝐸(𝑇1|𝑇1<𝑇𝑘) =
𝐸(𝑇11𝑇1<𝑇𝑘

)

𝑃 (𝑇1 < 𝑇𝑘)

=
1

𝑃 (𝑇1<𝑇𝑘)

∫︁
R
𝑓𝑇𝑘

(𝑦)

∫︁ 𝑦

−∞
𝑥𝑓𝑇1 (𝑥)𝑑𝑥𝑑𝑦

=
1

𝑃 (𝑇1<𝑇𝑘)

∑︁
𝑖∈𝒫

𝜏
(𝑖)
1 𝛼,

(17)

where 𝑓𝑇1(𝑥) =
∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼𝑒−

∑︀
𝑖∈𝒫 𝜏

(𝑖)
1 𝛼𝑥 when 𝑥 > 0 and

𝑓𝑇𝑘 (𝑦) = (1−
∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼)𝑒−(1−

∑︀
𝑖∈𝒫 𝜏

(𝑖)
1 𝛼)𝑦 when 𝑦 > 0.

Now we calculate 𝑃 (𝑇1 < 𝑇𝑘). First, we considering two in-
dependent random variables 𝑋 and 𝑌 that are exponentially
distributed, 𝑋 ∼ exp(𝜆1) and 𝑌 ∼ exp(𝜆2). The probability
of 𝑋 < 𝑌 (𝑃 (𝑋 < 𝑌)) can be calculated as follows:

𝑃 (𝑋 < 𝑌) =

∫︁
R

∫︁ 𝑦

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦

=

∫︁ +∞

0
𝜆2𝑒

−𝜆2𝑦

∫︁ 𝑦

0
𝜆1𝑒

−𝜆1𝑥𝑑𝑥𝑑𝑦 =
𝜆1

𝜆1 + 𝜆2
.

Now let us consider 𝑃 (𝑇1 < 𝑇𝑘), where 𝑇
′
1 ∼ exp(

∑︀
𝑖∈𝒫 𝜏

(𝑖)
1 𝛼)

and 𝑇 ′
2 ∼ exp(1−

∑︀
𝑖∈𝒫 𝜏

(𝑖)
1 𝛼):

𝑃 (𝑇1 < 𝑇𝑘) =

∑︀
𝑖∈𝒫 𝜏

(𝑖)
1 𝛼∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼+ (1−

∑︀
𝑖∈𝒫 𝜏

(𝑖)
1 𝛼)

=
∑︁
𝑖∈𝒫

𝜏
(𝑖)
1 𝛼.

Therefore, Equation (17) can be calculated as follows:

𝐸(𝑇1|𝑇1<𝑇𝑘) =
1∑︀

𝑖∈𝒫 𝜏
(𝑖)
1 𝛼

·
∑︁
𝑖∈𝒫

𝜏
(𝑖)
1 𝛼 = 1. (18)

Furthermore, consider the time of the infiltration miner
finds the second FPoW (𝑇2). Between 𝑡1 to (𝑡1 + 𝑡2), 𝑇2 ∼
exp(

∑︀
𝑖∈𝒫 𝜏

(𝑖)
2 𝛼), and 𝑇𝑘 ∼ exp(1 −

∑︀
𝑖∈𝒫 𝜏

(𝑖)
2 𝛼). Based on

the memorylessness property of exponential distributions, we
have 𝑡2 = 𝐸(𝑇2|𝑇1 < 𝑇2 < 𝑇𝑘) − 𝑡1 = 𝐸(𝑇2|𝑇2 < 𝑇𝑘) = 1.

t1 t1+t2 ti0

 ti

Start finding a new block

Infiltration mining finds an FPoW

Infiltration mining finds (k-1)th FPoW

Others find an FPoW

Infiltration mining finds 2nd FPoW

1 to k-1

k

1 to k

Figure 14: Splitting the time of finding a new valid block.

0 0.1 0.2 0.3 0.4 0.5

Size of Target Pool -

0

0.2

0.4

0.6

0.8

1

C
oe

ff
ic

ie
nt

 c

-14

-12

-10

-8

-6

-4

-2

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

RER decreases with c{

(a) 0 < 𝛽 6 0.5.

0 0.02 0.04 0.06 0.08 0.1

Size of Target Pool -

0

0.2

0.4

0.6

0.8

1

C
oe

ff
ic

ie
nt

 c

-16

-14

-12

-10

-8

-6

R
el

at
iv

e
E

xt
ra

 R
ew

ar
d

(%
)

RER decreases with c{

(b) 0 < 𝛽 6 0.1.

Figure 15: RER of the victim pool under FAW attacks when
𝛼 = 0.2. Victim pool’s reward does not always increase with
𝑐.

Similarly, we have 𝑡3 = 1, 𝑡4 = 1, ..., 𝑡𝑘−1 = 1, and 𝑡𝑘 =
1

1−
∑︀

𝑖∈𝒫 𝜏
(𝑖)
𝑘

𝛼
.

Therefore, we could obtained 𝜏
(𝑖)
1,··· ,𝑘:

𝜏
(𝑖)
1,··· ,𝑘 =

(1−
∑︀

𝑖∈𝒫 𝜏
(𝑖)
𝑘 𝛼)

∑︀𝑘−1
𝑗=1 𝜏

(𝑖)
𝑗 + 𝜏

(𝑖)
𝑘

(1−
∑︀

𝑖∈𝒫 𝜏
(𝑖)
𝑘 𝛼)(𝑘 − 1) + 1

.

Specifically, when 𝑘 = 2, 𝜏 = 𝜏
(1)
1,2 = 𝜏1+𝜏2−𝜏1𝜏2𝛼

2−𝜏2𝛼
, where

𝜏1 = 𝜏
(1)
1 and 𝜏2 = 𝜏

(1)
2 .

B MAXIMIZING 𝑅𝑎(𝜏1, 𝜏2)
We first rewrite Equation (19) as follows:

argmin
𝜏1,𝜏2

−𝑅𝑎(𝜏1, 𝜏2),

s.t. 𝑔1(𝜏1, 𝜏2) = −𝜏1 6 0;

𝑔2(𝜏1, 𝜏2) = 𝜏1 − 1 6 0;

𝑔3(𝜏1, 𝜏2) = −𝜏2 6 0;

𝑔4(𝜏1, 𝜏2) = 𝜏2 − 1 6 0.

(19)

We further introduce four Lagrange multipliers 𝜆1, 𝜆2, 𝜆3,
and 𝜆4 (𝜆 = (𝜆1, 𝜆2, 𝜆3, 𝜆4)). The objective function of
Equation (19) can be constructed as a Lagrange function
ℒ(𝜏1, 𝜏2,𝜆):

ℒ(𝜏1, 𝜏2,𝜆) =−𝑅𝑎(𝜏1, 𝜏2)− 𝜆1𝜏1 + 𝜆2(𝜏1 − 1)

− 𝜆3𝜏2 + 𝜆4(𝜏2 − 1).

The KKT conditions are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕ℒ(𝜏1,𝜏2,𝜆)
𝜕𝜏1

= 0;
𝜕ℒ(𝜏1,𝜏2,𝜆)

𝜕𝜏2
= 0;

𝜆𝑖 > 0;

𝜆𝑖𝑔𝑖(𝜏1, 𝜏2) = 0;

𝑔𝑖(𝜏1, 𝜏2) 6 0,

where 𝑖 ∈ {1, 2, 3, 4}.
Since the objective function −𝑅𝑎(𝜏1, 𝜏2) is a convex func-

tion when 𝜏1, 𝜏2 ∈ [0, 1] (the Hessian matrix is positive def-
inite), the optimal ̂︀𝜏1 and ̂︀𝜏2 can be found by solving the
KKT conditions.

C VICTIM POOL’S REWARD UNDER
FAW

Referring to [13], we could obtain the expected reward of the
victim pool under FAW attacks:

𝑅𝐹
𝑝 =

𝛽

1− 𝜏1𝛼
+ 𝑐𝜏1𝛼

1− 𝛼− 𝛽

1− 𝜏1𝛼
, (20)

[13] regards 𝑅𝐹
𝑝 as an increasing function with 𝑐. However,

we think 𝑅𝐹
𝑝 increases with 𝑐 if 𝜏1 is fixed. When considering

the optimal 𝜏1 = ̂︀𝜏1 to maximize 𝑅𝐹
𝑝 , ̂︀𝜏1 (𝜏 in [13]) becomes

a function related to 𝑐 (Equation (2) in [13]). Therefore, we

need to involve 𝜕̂︀𝜏1
𝜕𝑐

when calculating
𝜕𝑅𝐹

𝑝

𝜕𝑐
, rather than simply

regarding 𝜕̂︀𝜏1
𝜕𝑐

= 0.

We present a specific case to show 𝑅𝐹
𝑝 (𝜏1) decreases when

𝑐 increases in Fig. 15. In this case, we consider 𝛼 = 0.2 and
0 < 𝛽 6 0.5. We use the RER of the victim pool under FAW
attacks to show the pool’s reward.

Fig. 15-a shows the same RER as in [13]. However, when
𝛽 is small (e.g. 𝛽 6 0.02), victim pool’s reward decreases
with 𝑐. Furthermore, we “zoom in” the area when 𝛽 6 0.1 in
Fig. 15-b. The decreasing is more clear. Actually, whether
the pool’s reward increases or decreases with 𝑐 is related to
𝛼 and 𝛽 (we do not show the expression here since it is too
complex).

D CALCULATION OF 𝑅[𝑖] IN A
TWO-POOL PAW GAME

We calculate the reward of Pool𝑖. Suppose an FPoW from
Pool1 is selected as the main chain. Pool1 can earn a profit via
innocent mining in five cases: (Case 1) Pool1’s innocent min-
ing finds an FPoW; (Case 2) Pool1’s infiltration mining (in
Pool2) first finds an FPoW and Pool1’s innocent mining then
finds another FPoW; (Case 3) Pool2’s infiltration mining (in
Pool1) first finds an FPoW and Pool1’s innocent mining then
finds another FPoW; (Case 4) three FPoWs found by Pool1’s
infiltration mining, Pool2’s infiltration mining, and Pool1’s
innocent mining in order; and (Case 5) three FPoWs found by
Pool2’s infiltration mining, Pool1’s infiltration mining, and
Pool1’s innocent mining in order.

The reward of Pool1 in the five cases are:

𝑅
[1]
1 (Case 1) = 𝛼

[1] − 𝑓
[1]
1 ; 𝑅

[1]
1 (Case 2) = 𝑓

[1]
1 ·

𝛼[1] − 𝑓
[1]
2

1 − 𝑓
[1]
2

;

𝑅
[1]
1 (Case 3)=𝑓

[2]
1 ·

𝛼[1]−𝑓
[1]
1

1 − 𝑓
[2]
2

;𝑅
[1]
1 (Case 4)=𝑓

[1]
1 ·

𝑓
[2]
1

1−𝑓
[1]
2

·
𝛼[1] − 𝑓

[1]
2

1−𝑓
[1]
2 −𝑓

[2]
2

;

𝑅
[1]
1 (Case 5) = 𝑓

[2]
1 ·

𝑓
[1]
1

1 − 𝑓
[2]
2

·
𝛼[1] − 𝑓

[1]
2

1 − 𝑓
[1]
2 − 𝑓

[2]
2

.

We further consider Pool1’s reward of causing a fork when
an FPoW from Pool1 is selected as the main chain. Specifi-
cally, we have three cases: (Case 6) Pool2’s infiltration mining
(in Pool1) first finds an FPoW, and other miners then find a
valid block; (Case 7) three FPoWs found by Pool1’s infiltra-
tion mining, Pool2’s infiltration mining, and other miners in
order; and (Case 8) three FPoWs found by Pool2’s infiltra-
tion mining, Pool1’s infiltration mining, and other miners in

order. The expected reward of three cases are:

𝑅
[1]
1 (Case 6) =𝑐

[2]
1 · 𝑓 [2]

1 ·
1− 𝛼[1] − 𝛼[2]

1− 𝑓
[2]
2

;

𝑅
[1]
1 (Case 7) =𝑐

[2]
2 · 𝑓 [1]

1 ·
𝑓
[2]
1

1− 𝑓
[1]
2

·
1− 𝛼[1] − 𝛼[2]

1− 𝑓
[1]
2 − 𝑓

[2]
2

;

𝑅
[1]
1 (Case 8) =𝑐

[2]
2 · 𝑓 [2]

1 ·
𝑓
[1]
1

1− 𝑓
[2]
2

·
1− 𝛼[1] − 𝛼[2]

1− 𝑓
[1]
2 − 𝑓

[2]
2

.

The reward of Pool1 (not including the shared reward from

Pool2) is the sum of the eight cases 𝑅
[1]
1 =

∑︀8
𝑖=1 𝑅

[1]
1 (Case 𝑖).

Now we consider the shared reward of Pool2 from 𝑅
[1]
1 . For

each case, Pool1 will share his reward with Pool2. In Case 1

and Case 2, Pool2 will share
𝑓
[2]
1

𝛼[1]+𝑓
[2]
1

reward; in Case 3 and

Case 6 will share
𝑓
[2]
1,2

𝛼[1]+𝑓
[2]
1,2

reward; in Case 4 and Case 7 will

share
𝑓
[2]
1,1,2

𝛼[1]+𝑓
[2]
1,1,2

reward; and in Case 5 and Case 8 will share

𝑓
[2]
1,2,2

𝛼[1]+𝑓
[2]
1,2,2

reward (𝑓
[2]
1,2, 𝑓

[2]
1,1,2, and 𝑓

[2]
1,2,2 are Pool2’s average

infiltration mining power in the respective cases). The share

of Pool2 from 𝑅
[1]
1 is:

𝑅
[2]
2 =

8∑︁
𝑖=1

𝑅
[2]
2 (Case 𝑖)=

𝑓
[2]
1

𝛼[1]+𝑓
[2]
1

(︁
𝑅

[1]
1 (Case 1)+𝑅

[1]
1 (Case 2)

)︁

+
𝑓
[2]
1,2

𝛼[1]+𝑓
[2]
1,2

(︁
𝑅

[1]
1 (Case 3)+𝑅

[1]
1 (Case 6)

)︁

+
𝑓
[2]
1,1,2

𝛼[1]+𝑓
[2]
1,1,2

(︁
𝑅

[1]
1 (Case 4)+𝑅

[1]
1 (Case 7)

)︁

+
𝑓
[2]
1,2,2

𝛼[1]+𝑓
[2]
1,2,2

(︁
𝑅

[1]
1 (Case 7)+𝑅

[1]
1 (Case 8)

)︁
.

When Pool2 earns a shared reward, it will also share the

reward with Pool1’s infiltration mining, which is
𝑓
[1]
1

𝛼[2]+𝑓
[1]
1

shared reward in Case 1, Case 3, and Case 6;
𝑓
[1]
1,2

𝛼[2]+𝑓
[1]
1,2

in

Case 2;
𝑓
[1]
1,1,2

𝛼[2]+𝑓
[1]
1,1,2

in Case 5 and Case 8; and
𝑓
[1]
1,2,2

𝛼[2]+𝑓
[1]
1,2,2

in

Case 4 and Case 7. Therefore, the reward of Pool1 from this
share is:

𝑅
[1]
3 =

𝑓
[2]
1

𝛼[1] + 𝑓
[2]
1

𝑓
[1]
1

𝛼[2] + 𝑓
[1]
1

𝑅
[1]
1 (Case 1)

+
𝑓
[2]
1

𝛼[1] + 𝑓
[2]
1

𝑓
[1]
1,2

𝛼[2] + 𝑓
[1]
1,2

𝑅
[1]
1 (Case 2)

+
𝑓
[2]
1,2

𝛼[1] + 𝑓
[2]
1,2

𝑓
[1]
1

𝛼[2] + 𝑓
[1]
1

(︁
𝑅

[1]
1 (Case 3) + 𝑅

[1]
1 (Case 6)

)︁

+
𝑓
[2]
1,1,2

𝛼[1] + 𝑓
[2]
1,1,2

𝑓
[1]
1,2,2

𝛼[2] + 𝑓
[1]
1,2,2

(︁
𝑅

[1]
1 (Case 4)+𝑅

[1]
1 (Case 7)

)︁

+
𝑓
[2]
1,2,2

𝛼[1] + 𝑓
[2]
1,2,2

𝑓
[1]
1,1,2

𝛼[2] + 𝑓
[1]
1,1,2

(︁
𝑅

[1]
1 (Case 5)+𝑅

[1]
1 (Case 8)

)︁
.

Similarly, we can derive the reward of Pool1 from 𝑅
[1]
𝑛 ,

and the reward of Pool2 from 𝑅
[2]
𝑛 as follows. To simplify the

expression, we introduce 𝑄(𝑎, 𝑏) = 𝑎

𝛼[1]+𝑎

𝑏

𝛼[2]+𝑏
.

𝑅
[1]
𝑛+2 = 𝑄(𝑓

[2]
1 , 𝑓

[1]
1)𝑅

[1]
𝑛 (Case 1) + 𝑄(𝑓

[2]
1 , 𝑓

[1]
1,2)𝑅

[1]
𝑛 (Case 2)

+ 𝑄(𝑓
[2]
1,2, 𝑓

[1]
1)

(︁
𝑅

[1]
𝑛 (Case 3) + 𝑅

[1]
𝑛 (Case 6)

)︁
+ 𝑄(𝑓

[2]
1,1,2, 𝑓

[1]
1,2,2)

(︁
𝑅

[1]
𝑛 (Case 4) + 𝑅

[1]
𝑛 (Case 7)

)︁
+ 𝑄(𝑓

[2]
1,2,2, 𝑓

[1]
1,1,2)

(︁
𝑅

[1]
𝑛 (Case 5) + 𝑅

[1]
𝑛 (Case 8)

)︁
,

when 𝑛 is a positive odd number.

𝑅
[2]
𝑛+2 = 𝑄(𝑓

[2]
1 , 𝑓

[1]
1)𝑅

[2]
𝑛 (Case 1) + 𝑄(𝑓

[2]
1 , 𝑓

[1]
1,2)𝑅

[2]
𝑛 (Case 2)

+ 𝑄(𝑓
[2]
1,2, 𝑓

[1]
1)

(︁
𝑅

[2]
𝑛 (Case 3) + 𝑅

[2]
𝑛 (Case 6)

)︁
+ 𝑄(𝑓

[2]
1,1,2, 𝑓

[1]
1,2,2)

(︁
𝑅

[2]
𝑛 (Case 4) + 𝑅

[2]
𝑛 (Case 7)

)︁
+ 𝑄(𝑓

[2]
1,2,2, 𝑓

[1]
1,1,2)

(︁
𝑅

[2]
𝑛 (Case 5) + 𝑅

[2]
𝑛 (Case 8)

)︁
,

when 𝑛 is a positive even number.

When 𝑛 approaches infinity,
∑︀

𝑅
[1]
𝑛 (with an odd 𝑛) and∑︀

𝑅
[2]
𝑛 (with an even 𝑛) can be calculated as:

∑︁
𝑛=2𝑘+1
𝑘 ∈ N

𝑅
[1]
𝑛 =

𝑅
[1]
1 (Case 1)

1−𝑄(𝑓
[2]
1 ,𝑓

[1]
1)

+
𝑅

[1]
1 (Case 2)

1−𝑄(𝑓
[2]
1 ,𝑓

[1]
1,2)

+
𝑅

[1]
1 (Case 3)+𝑅

[1]
1 (Case 6)

1 − 𝑄(𝑓
[2]
1,2, 𝑓

[1]
1)

+
𝑅

[1]
1 (Case 4) + 𝑅

[1]
1 (Case 7)

1 − 𝑄(𝑓
[2]
1,1,2, 𝑓

[1]
1,2,2)

+
𝑅

[1]
1 (Case 5) + 𝑅

[1]
1 (Case 8)

1 − 𝑄(𝑓
[2]
1,2,2, 𝑓

[1]
1,1,2)

;

∑︁
𝑛=2𝑘
𝑘∈N*

𝑅
[2]
𝑛 =

𝑅
[2]
2 (Case 1)

1−𝑄(𝑓
[2]
1 ,𝑓

[1]
1)

+
𝑅

[2]
2 (Case 2)

1−𝑄(𝑓
[2]
1 ,𝑓

[1]
1,2)

+
𝑅

[2]
2 (Case 3)+𝑅

[2]
2 (Case 6)

1 − 𝑄(𝑓
[2]
1,2, 𝑓

[1]
1)

+
𝑅

[2]
2 (Case 4) + 𝑅

[2]
2 (Case 7)

1 − 𝑄(𝑓
[2]
1,1,2, 𝑓

[1]
1,2,2)

+
𝑅

[2]
2 (Case 5) + 𝑅

[2]
2 (Case 8)

1 − 𝑄(𝑓
[2]
1,2,2, 𝑓

[1]
1,1,2)

.

Notice that the calculation of shared reward of Pool1 when
Pool2 first finds an FPoW is exactly same as the calculation
of shared reward of Pool2 when Pool1 first finds an FPoW
(
∑︀

𝑅
[2]
𝑛). We can derive the reward of Pool𝑖 in a two-pool

PAW game:

𝑅[𝑖] =
∑︁
𝑛∈N*

𝑅
[𝑖]
𝑛 =

∑︁
𝑛=2𝑘+1
𝑘 ∈ N

𝑅
[𝑖]
𝑛 +

∑︁
𝑛=2𝑘
𝑘∈N*

𝑅
[𝑖]
𝑛 .

𝑓
[𝑖]
1,2, 𝑓

[𝑖]
1,1,2, and 𝑓

[𝑖]
1,2,2 can be calculated as:

𝑓
[𝑖]
1,2 =

𝑓
[𝑖]
1 + 𝑓

[𝑖]
2 − 𝑓

[𝑖]
1 𝑓

[𝑖]
2

2 − 𝑓
[𝑖]
2

;

𝑓
[𝑖]
1,1,2 =

2𝑓
[𝑖]
1 (1 − 𝑓

[1]
2 − 𝑓

[2]
2) + 𝑓

[𝑖]
2

3 − 2(𝑓
[1]
2 + 𝑓

[2]
2)

;

𝑓
[𝑖]
1,2,2 =

(𝑓
[𝑖]
1 + 𝑓

[𝑖]
2)(1 − 𝑓

[1]
2 − 𝑓

[2]
2) + 𝑓

[𝑖]
2

3 − 2(𝑓
[1]
2 + 𝑓

[2]
2)

.

Detailed proof can refer to Theorem 5.1 and Appendix-A.

E PROOF OF THE NASH
EQUILIBRIUM (THEOREM 5.3)

Proof. To prove that there exists a Nash equilibrium, it
suffices to show ∇𝑓 [1](∇𝑓 [1]𝑅[1]) < 0 and ∇𝑓 [2](∇𝑓 [2]𝑅[2]) <
0 under the following conditions:

0 6 𝑓
[1]
1 , 𝑓

[1]
2 6 𝛼

[1] 6 1;

0 6 𝑓
[2]
1 , 𝑓

[2]
2 6 𝛼

[2] 6 1;

𝛼
[1]

+ 𝛼
[2] 6 1;

0 6 𝑐
[1]
1 , 𝑐

[2]
1 6 1;

0 6 𝑐
[1]
2 + 𝑐

[2]
2 6 1.

(21)

Therefore, there exists a unique Nash equilibrium point
since 𝑅[1] and 𝑅[2] are convex functions with 𝑓 [1] and 𝑓 [2]

respectively [36].
Furthermore, we use Best-response dynamics to find the

Nash equilibrium point. Specifically, we let Pool1 and Pool2
start at (𝑓

[1]
0 ,𝑓

[2]
0) = ((0, 0), (0, 0)), and adjust 𝑓 [1] and 𝑓 [2]

to maximize 𝑅[1] and 𝑅[2] respectively, till 𝑓 [1] and 𝑓 [2]

converge. For instance, we first update 𝑓
[1]
1 to maximize 𝑅[1],

and then update 𝑓
[2]
1 to maximize 𝑅[2]. After that, we repeat

the procedures to maximize 𝑅[1] with 𝑓
[1]
2 and 𝑅[2] with 𝑓

[2]
2 ,

and so on. At 𝑘-th step, 𝑓
[1]
𝑘 and 𝑓

[2]
𝑘 can be represented by:

𝑓
[1]
𝑘 =argmax

𝑓 [1]

𝑅
[1]

(𝑓
[1]

, 𝑓
[2]
𝑘−1), 𝑓

[2]
𝑘 =argmax

𝑓 [2]

𝑅
[2]

(𝑓
[1]
𝑘 , 𝑓

[2]
),

which is under the constraints in Equation (21).

The Nash equilibrium point will be found when 𝑓 [1] and
𝑓 [2] converge as 𝑘 approaches infinity, which either satisfies
∇𝑓 [1]𝑅[1] = 0 and ∇𝑓 [2]𝑅[2] = 0, or a point on a borderline

in Equation (21) which maximizes 𝑅[1] with 𝑓 [1] and 𝑅[2]

with 𝑓 [2]. �

F BRIBERY RACING GAME
In our previous analysis, we regard the attacker races with an
“honest” opponent. Now we consider the opponent also carry
out bribery racing to avoid a loss. Suppose two miners 𝑎1 and
𝑎2 fall into the “0-lead” racing situation. When 𝑎2 is aware of
bribes 𝜀1, he will broadcast a transaction 𝑇𝐴2

𝐵 which transfer
𝜀2 from his mining reward address 𝐴2 to an “anyone-can-
claim” address 𝐵 as bribes. In such scenarios, bribery racing
will become a bribery racing game, and targets (venal miners)
will choose to work on a more profitable branch. Thus, the
probability of all other miners (including targets) follows 𝑎𝑖’s
branch 𝛾𝑖 will be an increasing function with 𝜀𝑖 (more bribes
will bring more targets).

Now we analyze the Nash equilibrium of a bribery racing
game. Since we consider common “0-lead” racing scenarios,
we use the reward of the “forked” block as our objective
function (different from BSM or Bribery PAW which should
use the attacker’s reward as the objective function). The
probability of extending 𝑎𝑖’s branch is 𝛼𝑖 + 𝛾𝑖(1− 𝛼1 − 𝛼2).
Therefore, 𝑎𝑖’s reward is:

𝑅𝑎𝑖 = (1− 𝜀𝑖)(𝛼𝑖 + 𝛾𝑖(1− 𝛼1 − 𝛼2)), 𝑖 ∈ {1, 2}.

We then use Best-response dynamics to find the Nash
equilibrium point. Let 𝑎1 and 𝑎2 start at (𝜀1,0, 𝜀1,0) = (0, 0).
𝑎𝑖 will adjust 𝜀𝑖 to maximize 𝑅𝑎𝑖 as the best response to
the opponent, till 𝑅𝑎1 and 𝑅𝑎2 converge. For example, we
first update 𝜀1,1 to maximize 𝑅𝑎1 , and then update 𝜀2,1
to maximize 𝑅𝑎2 . After that, we repeat the procedures to
maximize 𝑅𝑎1 with 𝜀1,2 and 𝑅𝑎2 with 𝜀2,2, and so on. At
𝑘-th step, 𝜀1,𝑘 and 𝜀2,𝑘 can be represented by:

𝜀1,𝑘=argmax
𝜀1

𝑅𝑎1 (𝜀1, 𝜀2,𝑘−1), 𝜀2,𝑘=argmax
𝜀2

𝑅𝑎2 (𝜀1,𝑘, 𝜀2).

Moreover, a bribery racing game can become more inter-
esting when also considering 𝑎𝑖 as venal miners: 𝑎𝑖 can even
be rewarded when working on the opponent’s branch. For
instance, when 𝑎1 and 𝑎2 pay too much for bribes, they will
consider working on the opponent’s branch when claiming the

bribes becomes more profitable. We can use similar methods
above to analysis this situation and get the same conclusion
in most scenarios.

G BRIBERY FAW/PAW
We discuss strategies to combine bribery racing with FAW/-
PAW attacks.

Out-of-band payment. An attacker first launches FAW/-
PAW against victim pools. When “0-lead” racing occurs (case
4-2 in Section 5.1), the attacker directly pays the owners of
mining capacity (other miners or “cloud mining” services
[25, 28, 32]) to work on the attacker’s branch. The payment
can be made in Bitcoin or any outside (state) currency. Fur-
thermore, bribing through smart contracts [17] can also be
applied to make bribery less visible and difficult to be de-
tected (out-of-band payment can also be used to bribe pool
managers in in-band payment, which will be discussed latter).

Negative-fee mining pool. Negative-fee mining pools
provide pool miners higher rewards than honest mining to
lure miners (bribes) join in the pool [2]. When combined with
FAW attacks, an attacker works as a negative-fee mining
pool manager and announces a higher reward to encourage
miners to join in (i.e., bribing other miners). Meanwhile, the
attacker uses her loyal mining power [7] as infiltration mining
in a victim pool (different from the negative-fee mining pool).
When “0-lead” racing occurs (case 4-2 in Section 5.1), the
attacker can force negative-fee pool miners working on her
branch since she is the pool manager.

In-band payment. We discuss two strategies: bribing
pool manager and Eclipse attacks [11] to launch B-FAW/B-
PAW attacks via in-band payment.

First, an attacker can bribe the pool manager to choose
𝑇𝐴
𝐵 . When the manager is profit-driven (only cares about the

profit of himself), he may accept the bribes and make all pool
miners encapsulate 𝑇𝐴

𝐵 . Since the bribery can be done via out-
of-band payment, bribing manager can be hardly detected.
However, victim pool miners can listen to the transactions
and count the number of 𝑇𝐴

𝐵 when both 𝑇𝐴
𝐵 and 𝑇𝐴

𝐴′ are
received to identify the corrupted manager. Moreover, for
an honest manager, they can reject the bribes and expel the
attacker.

Second, an attacker can launch Eclipse attacks to block
the global view of the victim pool manager [11]. With Eclipse
attacks, the attacker can filter out 𝑇𝐴

𝐴′ to ensure the pool man-
ager only sees 𝑇𝐴

𝐵 . However, successfully launching Eclipse
attacks against the victim pool requires a non-trivial cost.

Suppose the victim pool manager chooses to record 𝑇𝐴
𝐵

instead of 𝑇𝐴
𝐴′ in B-FAW/B-PAW. An attacker will firstly en-

capsulate the bribery transaction 𝑇𝐴
𝐵 when calculating shares

in her infiltration mining power since “0-lead” racing can only
be caused by the withheld FPoWs. Second, after discovering
an FPoW, the attacker withholds the FPoW, broadcasts 𝑇𝐴

𝐴′

in the network, and sends 𝑇𝐴
𝐵 to the (corrupted/eclipsed)

victim pool manager. Third, when other miners find a block,
the attacker immediately submits the withheld FPoW to the
pool manager to cause a fork. Notice that when the next
FPoW is also found by the infiltration mining, the attacker
should submit immediately to the manager immediately to
win in forks as with selfish mining. Therefore, the second
round of infiltration mining does not need to contain bribes.

Let’s first consider “0-lead” racing in B-PAW. We first con-
sider the attacker races with other miners. When the target
accepts the bribes, the attacker’s branch can be extended by
herself, victim pool miners, the target, or 𝛾 portion of other
miners. Second, when the attacker races with the target, her
branch can be extended by herself, victim pool miners, or
𝛾 portion of other miners. In either scenario, the attacker
needs to pay one block of bribes. For other cases (not “0-lead”
racing), the attacker’s reward is the same as the PAW reward.
Therefore, we can derive the attacker’s reward in “0-lead”
racing.

We compare the attacker’s reward with FAW, PAW, and
B-PAW (target accepting bribes) in a specific case, where the
attacker, victim pool, and target with computational power
0.1, 0.2, 0.2 respectively. The attacker will set 𝜀 = 0.02 as
bribes. We show attacker’s RERs in terms of 𝛾 in Fig. 16.
When the attacker chooses a proper 𝜀, the B-PAW reward
will be higher than both PAW and FAW reward.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

E
xt

ra
 R

el
at

iv
e

R
ev

en
ue

 (
%

) B-PAW
PAW
FAW

Figure 16: Attacker’s RERs against one pool with FAW, PAW,
and B-PAW, according to 𝛾 when the attacker, victim pool,
and target with computational power 0.1, 0.2, 0.2 respec-
tively.

H ORIENTED BRIBERY ATTACKS
The original bribery attacks adopt transactions with scripts
allowing anyone to claim the bribes. It may result in many
targets race to claim the funds. A large pool may not willing
to compete with other solo miners for the bribes. Besides,
original bribery attacks cannot control the size of target
pools. To overcome these limitations, we suggest that the
attacker create transactions (𝑇𝐴

𝐵𝑖
) to specific targets (𝐵𝑖) in

her private chain and spend the bribes on the public chain.
Since creating a transaction only needs the public key of the
receiver (i.e., hash of 𝐵𝑖’s public key), 𝑇𝐴

𝐵𝑖
can be created

without the confirmation of 𝐵𝑖. The targets will get the
bribes automatically when the attacker’s branch is selected
as the main chain (without competing with other miners). To
obtain the public key, the attacker can join in the target pool
or just check out the previously mined blocks by the target
(the hash of the public key is included in the transaction
to claim the system reward, and is accessible for anyone).
Attackers can also use the oriented bribery attacks to lure
better targets with higher bribes.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bitcoin Background
	2.2 Related Work

	3 Threat Model and Assumption
	3.1 Threat Model
	3.2 Assumptions

	4 Observation and Motivation
	4.1 FAW Reward
	4.2 ``0-lead'' Racing

	5 Power Adjusting Withholding
	5.1 Overview
	5.2 PAW Against One Pool
	5.3 PAW Against Multiple Pools
	5.4 ``Miner's Dilemma'' Analysis

	6 Bribery Selfish Mining
	6.1 Overview
	6.2 Modeling BSM
	6.3 The Venal Miner's Dilemma

	7 Discussion
	7.1 Strategy Space and Bribery PAW
	7.2 PAW Countermeasure
	7.3 Bribery Racing Countermeasure

	8 Conclusion
	References
	A Calculation of 1,@汥瑀瑯步渠,k(i) (Proof of Theorem 5.1)
	B Maximizing Ra(1, 2)
	C Victim Pool's Reward Under FAW
	D Calculation of R[i] in a Two-Pool PAW Game
	E Proof of the Nash Equilibrium (Theorem 5.3)
	F Bribery Racing Game
	G Bribery FAW/PAW
	H Oriented Bribery Attacks

