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Abstract—Software-defined networking (SDN) has enabled
high network programmability and speeded up network inno-
vations by decoupling the control plane from the data plane.
However, the separation of the two planes could also be a
potential threat to the whole network. Previous approaches
pointed out that attackers can launch various attacks from the
data plane against SDN, such as DoS attacks, topology poisoning
attacks, and side-channel attacks. To address the security issues,
we present a comprehensive study of the data plane attacks in
SDN, and propose FlowKeeper, a common framework to build a
robust data plane against different attacks. FlowKeeper enforces
port control of data plane and reduces workload of control plane
by filtering out illegal packets. Experimental results show that
FlowKeeper could be used to mitigate different kinds of attacks
(i.e. DoS and topology poisoning attacks) efficiently.

I. INTRODUCTION

Software-defined networking (SDN) is regarded as one of
the most promising architectures for the next generation com-
puter networks. By separating the ossified network infrastruc-
ture into control plane and data plane, SDN allows operators to
dynamically control network traffic via controller applications
with high programmability. In SDN, the centralized control
plane operates like a brain to manage and control network
flows, while the data plane works as a body to process
each flow based on the decisions of the control plane. The
communications between the two planes are supervised by
a “southbound” protocol (i.e. OpenFlow [1]). In recent years,
OpenFlow networks have been adopted in today’s data centers
[2] and 5G networks [3].

While the communications between the control plane and
data plane enable high programmability, they also open the
door for attackers to launch new attacks against OpenFlow
networks. Attacks from the data plane have posed great threats
to SDN [4]. By simply utilizing several hosts under OpenFlow
switches, attackers can dysfunction, disturb control plane, or
learn its behaviors without much information about controller
applications. These attacks include:

1. DoS attacks. The resources of control and data planes could
be targets of denial of service (DoS) attacks (e.g. data-
to-control plane saturation attacks [5], [6]). Attackers can
jam a switch-controller bandwidth, overload a switch’s flow
table and memory, and consume the CPU and memory of
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the controller by flooding table-miss packets (table-miss
packets will trigger data-control plane communications).

2. Topology poisoning attacks. The global network view of the
control plane could be poisoned by attackers (e.g. network
topology poisoning attacks [7]). By forging or relaying
Link Layer Discovery Protocol (LLDP) packets, attackers
can forge nonexistent links between switches.

3. Side-channel attacks. Attackers can learn the detail of net-
work configurations [8], [9], [10], [11] (i.e. some logic of
controller applications). These attacks analyze the amount
of delay added to timing pings that are specially crafted
to infer the network configurations and control application
logic.

The countermeasures against these attacks have also been
studied. First, to mitigate DoS attacks, AvantGuard builds a
TCP proxy on the data plane as an extension to verify the
legitimacy of TCP handshakes [5]. Furthermore, a protocol-
independent defense system, FloodGuard, pre-installs proac-
tive flow rules to reduce table-miss packets and forwards table-
miss packets to an additional data plane cache [12]. To reduce
the cost of hardware modifications, FloodDefender offloads
table-miss packets to neighbor switches and filter out attack
traffic with two-phase filtering [13]. Second, for topology
poisoning attacks, TopoGuard identifies the type of connected
device, and dynamically checks the updates [7]. LLDP packets
will be dropped when received from a host-connected port. Fi-
nally, the side-channel attacks can be prevented by normalizing
the control plane delay to a configurable default responding
time [11].

The architectures of these defense systems vary from hard-
ware extensions to additional specific devices. In this paper, we
discuss a common defense system architecture against various
kinds of attacks in OpenFlow networks. Furthermore, based
on the architecture, we introduce FlowKeeper to build a robust
data plane against different attacks. FlowKeeper enforces port
control of each OpenFlow switch and reduces workload of
the control plane by filtering out illegal packets when DoS or
topology poisoning attacks occur.

We conclude our contributions as follows:

o We present a comprehensive review of the data plane at-
tacks in OpenFlow networks and discuss the architecture
of each countermeasure.

e We propose a common defense system architecture.
Based on this architecture, we propose FlowKeeper to
mitigate different attacks.

o We evaluate the effectiveness of FlowKeeper in both
hardware and software environments.
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TABLE I: Architectures of the Countermeasures Against Data Plane Attacks

II. DATA PLANE ATTACKS AND COUNTERMEASURES

We first introduce the packet processing mechanism in SDN.
Then we present three data plane attack vectors. Finally, we
discuss the countermeasures. We summarize the architecture
of these countermeasures in Table I for convenience.

A. SDN Workflow

In OpenFlow networks, the control plane directs data plane
to process incoming traffic via two approaches: proactive flow
rule installation and reactive flow rule installation. In the
proactive approach, the controller pre-installs all flow rules
into the flow tables of OpenFlow switches. The switches then
process each incoming packet based on these flow rules. In the
reactive approach, when a switch receives a packet that cannot
match with any existing flow rules (table-miss packet), it will
follow the following four steps to process the packet. First,
the switch will buffer this packet, encapsulate its header into
a packet_in message, and report to the controller'. Second, the
controller decides the action(s) based on the logic of controller
applications and sends a packet_out message to indicate the
reaction to the table-miss packet. Third, the switch will process
this packet based on the action field of the packet_out message.
Finally, the controller can further install flow rules on the
switch to allow it to process the packets of the same flow
without consulting to the control plane.

The reactive approach allows the controller to manage traffic
dynamically and enables a global view of the network for
the controller (e.g. collecting network topology information
via LLDP packets). For instance, the controller can use a
packet_out message to make a switch to broadcast LLDP
packets. When neighbor switches receive these LLDP packets,
they will report them to the controller. The controller then
knows the connections between these switches, and can further
learn the network topology. The reactive approach has been
applied in most SDN applications.

B. Data Plane Attacks in SDN

Threat 1: DoS attacks. DoS attacks against SDN is regard-
ed as the biggest threat. The data-to-control plane saturation
attacks [5] utilize table-miss to flood both control and data
planes. Specifically, an attacker uses several compromised
hosts (botnet) to send massive packets to an OpenFlow switch
by randomly forging some fields. Since these packets have
a very low probability to match with existing flow rules, the
switch will regard them as table-miss packets and deliver to the
controller in packet_in messages. These packet_in messages

'A packet_in message will contain the whole packet when the memory of
the OpenFlow switch is full.

will consume great switch-controller bandwidth and controller
resources (e.g. CPU and memory). Besides, the memory of the
switch will also be exhausted by table-miss packets, and when
the controller decides to install flow rules to handle attack
traffic, the switch’s flow table will be overloaded.

Threat 2: topology poisoning attacks. Topology poisoning
attacks forge or relay some control packets (i.e. LLDP) in an
OpenFlow network to poison the globe information collected
by a controller [7]. First, an attacker monitors genuine LLDP
packets and records the corresponding LLDP syntax. Second,
the attacker can either modify some specific contents of the
LLDP packets (e.g. port number) to forge a response to the
controller or repeat them to other compromised hosts to trigger
the connected switches respond to the controller. As a result, a
nonexistent link between two disconnected switches is created.
The attacker can further launch DoS attacks (blocking some
legal ports of the target switch) or man-in-the-middle attacks
(building an LLDP relay channel) based on the topology
poisoning attacks.

Threat 3: side-channel attacks. Side-channel attacks uti-
lize the processing time of a control plane to learn network
configurations [8], [9], [10], [11]. In these attacks, an attacker
specially crafts different kinds of timing probes (e.g. ARP
requests for MAC layer and low TTL packets for IP layer)
and sends a stream of probes (test stream) and some baseline
packets with known effects (e.g. should be reported to the
controller before forwarding) to the OpenFlow network. By
comparing the responding times of the test stream and baseline
packets, the attacker can learn whether the network runs Open-
Flow [8], the size of switches’ flow table [9], whether links
contain aggregate flows [10], host communication records
[11], network access control configurations [11], and network
monitoring policies [11].

C. Countermeasures Against Data Plane Attacks

DoS countermeasures. AvantGuard [5] is the first defense
system against data-to-control plane saturation attacks. It ex-
tends the hardware of OpenFlow switches with a TCP proxy
to mitigate TCP-based attacks. The proxy responds with SYN-
ACK packet and forwards SYN packet to check the existence
of the source and destination. AvantGuard will regard the
connection as legal only when both source and destination
exist. The problem is that AvantGuard can only deal with
TCP-based attacks and introduces a long delay for legal SYN
packets.

To mitigate other attack traffic (e.g. UDP and ICMP),
FloodGuard [12] pre-installs possible flow rules (proactive
flow rules) to handle as much normal traffic as possible, and
forwards attack traffic to an additional device (data plane



cache) to mitigate attacks. The data plane cache sorts incoming
packets based on protocol and reports the head of each
protocol queue by round-robin scheduling under a predefined
rate. The problem of FloodGuard is a lack of packet filtering.
Therefore, it may introduce long delay and high packet loss
rate for some packets (e.g. UDP packets will be affected by
UDP-based attacks [13]).

FloodDefender [13] uses existing SDN features to mitigate
data-to-control plane saturation attacks without additional de-
vices or hardware modifications. It first saves switch-controller
bandwidth by offloading attack traffic to neighbor switches
with protecting rules. Furthermore, it uses a two-phase filtering
(first filtering out most attack traffic based on frequency and
then precisely identifying the rest of attack packets) to reduce
control plane resource consumptions. Finally, it separates the
flow table into cache region and flow table region to reduce
useless flow rules. The biggest problem of FloodDefender is its
protecting efforts. Without additional devices, FloodDefender
is not as efficient as solutions like FloodGuard.

Topology poisoning countermeasures. The main strate-
gy of topology poisoning attacks is sending LLDP packets
through a host connected port. Therefore, TopoGuard [7]
aims at identifying the type of neighbor devices connected
to OpenFlow switches. LLDP packets from a host connected
port will be regarded as illegal and discarded. Specifically,
TopoGuard works on the control plane and tracks the type
of neighbor devices connected to switches’ ports. If a port
firstly receives LLDP packets, TopoGuard will regard the
neighbor device as a switch. When packets from a first-hop
host are firstly received, the neighbor device is regarded as a
host. Otherwise, TopoGuard continues monitoring incoming
traffic. Based on the port property, TopoGuard can avoid
topology poisoning attacks by blocking LLDP packets from
host connected ports. To verify a topology update, TopoGuard
also uses host probes to check the existence of the host in
the former location. Since TopoGuard enables a flexible way
to identify the type of connected device dynamically, it may
allow attackers to forge a neighbor device transfer from host
to switch (firstly sending Port_Down signals and then LLDP
packets).

Side-channel countermeasures. Side-channel attacks uti-
lize the delay of some packets to guess network configurations.
Therefore, [11] introduces a timeout proxy on the data plane
as an extension to normalize control plane delay. When the
control plane fails to respond within a fixed period of time,
the timeout proxy will send a default forwarding instruction
to the request. The timeout proxy reduces the responding time
of some long delay packets to avoid side-channel attacks, but
can also reduce the network programmability (by changing
the processing strategies of these long delay packets into a
proactive approach). Besides, the predefined responding time
should be adjusted dynamically with the workload of the
control plane.

III. BUILDING A ROBUST DATA PLANE

We introduce a common architecture, FlowKeeper, to build
a robust data plane against different data plane attacks. We
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Fig. 1: Architecture of FlowKeeper.

first present the architecture of FlowKeeper. Then we discuss
how to use FlowKeeper against different attacks.

A. FlowKeeper Architecture

FlowKeeper consists of two modules: traffic agent and
global view agent, as depicted in Figure 1. Traffic agent stands
between the control plane and data plane. It can replace most
data plane extensions to make FlowKeeper compatible with
existing OpenFlow devices. By introducing some intelligence
into the data plane, the traffic agent processes some traffic to
reduce the workload of the controller. Global view agent works
on the control plane as a controller application. It provides
global network information to the traffic agent and delivers
some flows to other controller applications.

Traffic agent module can process some table-miss pack-
ets autonomously to offload some workload of the control
plane. Instead of reporting table-miss packets to the controller,
OpenFlow switches can follow some forwarding rules to
forward these packets to the traffic agent. With these the traffic
information, the traffic agent can identify and filter out illegal
packets (against DoS attacks) and delay some packets (against
side-channel attacks). Besides, the traffic agent can also work
actively to verify the existence of hosts by sending probing
packets (against topology poisoning attacks).

Global view agent module is the bridge between the traffic
agent module and other controller applications. It serves three
roles. First, the global view agent installs default rules to
forward table-miss packets to the traffic agent instead of
reporting to the controller. Second, it monitors network status
and provides global information to the traffic agent. With
this global information, the traffic monitor more precisely
identifies illegal packets. Finally, the global view agent also
delivers some packets from the traffic agent to other controller
applications to update the global view of the control plane.

B. FlowKeeper Solution

Against DoS attacks. We first show how to deploy
FlowKeeper against DoS attacks. In this scenario, the traffic
agent will filter out some attack traffic, and enforce data plane
security policies based on the direction from the global view
agent, as depicted in Figure 2-a. The global view agent will
first install forwarding rules to the victim switch. Therefore,
the table-miss packets are forwarded to the traffic agent via
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(a) FlowKeeper against DoS attacks.

(b) FlowKeeper against topology poisoning attacks.
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Fig. 2: FlowKeeper against different kinds of data plane attacks. Dash lines indicate logical connections.

data plane links, and the switch-controller bandwidth can
be saved. Second, the traffic agent classifies received flows
based on two frequency thresholds, fio and frign (flows
are identified based on protocol ID, source/destination MAC,
and source/destination IP if applicable). Low-frequency flows
(frequency lower than fi,,,) will be filtered out to elimi-
nate packets with forged sources, and high-frequency flows
(frequency higher than fp;4,) will be regarded as legal and
processed normally (delivering to the controller via global
view agent). Other flows are delivered to the global view
agent for further analysis. Third, the global view agent pre-
cisely identifies attack traffic based on the statistic traffic
information®. It can also update the blocking policies to the
traffic agent when attack packets with real source addresses
are identified (dropping packets from some malicious hosts),
and adjust the frequency thresholds based on the classification
result. Finally, the filtered packets are then delivered to other
controller applications (via controller platform) and processed
based on the logic of these applications. Flow rules can be
further installed on OpenFlow switches to process normal
traffic when received again.

The frequency thresholds (fiow and frign) will be set to 1
and 10 by default. We also allow administers and the controller
to adjust these two values based on their demands. A higher
fiow can filter out more attack packets but may sacrifice
some benign traffic. Similarly, a higher f;on will identify
less benign traffic but ensures fewer attack packets regarded
as benign ones. To set proper thresholds, administers can use
some training data to find proper fj,,, that can filter out more
than 50% attack traffic with less than 0.5% false-positives,
and fpign to identify more than 30% benign traffic with less
than 0.5% false-positives. The controller can also adjust the
thresholds dynamically based on traffic classification result.
For instance, when less than 50% attack traffic is filtered out,
the controller can increase f;,,, (by 1) to increase the effi-
ciency of filtering. Note that 50% and 30% are acceptable in
filtering, since we also adopt traffic classification after filtering.
Other attack and benign traffic can be further identified by
traffic classification.

Against topology poisoning attacks. FlowKeeper monitors

2Different techniques (e.g. machine learning) could be applied to precisely
identify attack traffic.

network topology changes with global view agent and uses
traffic agent to identify the type of neighbor device connected
to each switch, as depicted in Figure 2-b. Global view agent p-
reserves a list of neighbor device type (host/switch/any/untest-
ed) on all enabled ports of OpenFlow switches. Initially,
the devices will be set to “any”. When LLDP packets are
received from an any-port, the device type of this port will
be set to switch; when first-hop host packets are received
from an any-port, the device type of this port will be set
to host. Switch to any transfers can also be triggered by
receiving Port_Down signals. To avoid attackers forge illegal
host-to-switch transfers, we set the device type to untested
when receiving Port_Down signals from a host-port. After the
updates are verified by the traffic agent, the device type is set
to any. When LLDP packets are received by the global view
agent, it can filter out illegal LLDP packets (LLDP packets
from host/untested port) against topology poisoning attacks.

Traffic agent adopts a probing scheme to verify the existence
of the previous disconnected hosts on untested port. Specifi-
cally, it uses both ICMP echoes and ARP requests as probes to
test the existence. When no ICMP replies and ARP responses
are received, the updates will be identified as legal. The traffic
agent further informs the glove view agent with untested-to-
any updates. Otherwise, the previous host still exists, and the
updates will be regarded as illegal. The traffic agent will alert
the global view agent with the illegal updates.

Against side-channel attacks. In this scenario, FlowKeeper
uses traffic agent to delay some traffic and disrupt the respond-
ing time against side-channel attacks, as depicted in Figure 2-c.
Global view agent randomly installs some temporary forward-
ing rules to OpenFlow switches to deliver some delay-tolerable
traffic to traffic agent. When traffic agent receives these
packets, it first applies a delay on these received packets and
then processes them based on the action from the controller.
The delay time can also be adjusted dynamically by the global
view agent based on the workload of the controller. Since
a delay is applied to some packets, the responding time of
the probes becomes unreliable to infer network configurations.
While this delay will not greatly affect benign traffic.

IV. EXPERIMENT

We implement FlowKeeper against DoS attacks and topol-
ogy poisoning attacks, and evaluate its performance in both
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software and hardware environments.

A. Implementation and Setup

We implement FlowKeeper system, including global view
agent and traffic agent modules. Global view agent is im-
plemented as a controller application on RYU controller in
Python, and traffic agent is implemented on an additional
Linux host between the control plane and data plane in C++.
To mitigate DoS attacks, traffic agent sets fi,,, = 2 and
frigh = 10 to classify received flows. Global view agent will
further use Support Vector Machine (SVM) [14], a supervised
learning model as our classifier to filter out attack traffic from
other flows (2 < flow.frequency < 10). In the design of
topology poisoning mitigation, we modify the port property
in [7] by adding untested type into the global view agent. In
traffic agent, we use scapy to send ARP and ICMP probes.

We evaluate the protecting effort of FlowKeeper system in
both software and hardware environments. The RYU controller
is installed on a computer equipped with i7 CPU and 8GB
memory. In the software environment, we use Mininet to create
the network with virtual OpenFlow switches; while in the
hardware environment, we use Polaris xSwitch X10-24S2Q
[15], a commercial OpenFlow switch to build the network.
The test topology is depicted in Figure 3.

B. Evaluation

DoS attacks. We compare the bandwidth consumption
under DoS attacks. Attacker 1 will flood S1 with TCP
packets (randomly forged source/destination IP and MAC).
We measure the available bandwidth between H1 and H2
to show the protecting effort of FlowKeeper. The result is
presented in Figure 4. In software environment, the bandwidth
of an OpenFlow network (without any protecting system)
will be quickly exhausted. the network becomes dysfunctional
under 450PPS (packet per second) attack rate. While with the
protection of FlowKeeper, the DoS attacks only consume 9%
bandwidth. Though the network still works under S00PPS in
the hardware environment, the DoS attacks consume more than
80% bandwidth. The network with FlowKeeper preserves 80%
available bandwidth in the hardware environment.

Topology poisoning attacks. We show the protecting effort
of FlowKeeper under topology poisoning attacks. Attacker 1
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Fig. 4: Available bandwidth under DoS attacks.

[Table update] Packet in received from 00:00:00:00:00:01 to 33:33:00:00:00:02.
[Table update] Packet in received from 00:00:00:00:10:01 to ff:ff:ff:ff:ff:ff.
Table update] Packet in received from 00:00:00:00:00:01 to 00:08:00:00:10:01.
Cink update] LLDP received from SI port 1: HOst port. lgnore LLDP packet.
Link update] LLDP received from 51 port 1: Host port. Ignore LLDP packet.
Table update] Packet in received from 00:00:00:00:18:01 to 00:00:00:00:00:01.

Fig. 5: Ignore illegal LLDP packets to avoid topology poison-
ing attacks.

and attacker 2 will send forged LLDP packets to forge a link
between S1 and S2. We show the verification of LLDP packets
on the controller in Figure 5. Once a link update is detected,
the global view agent will verify the legitimacy of received
LLDP packets based on the type of connected device. Since
these forged LLDP packets are received from a host-port, they
will be regarded as illegal and ignored.

V. CONCLUSION

Attacks from the data plane pose a great threat to SDN.
In this paper, we first systematically review three data plane
attacks (i.e. DoS attacks, topology poisoning attacks, and side-
channel attacks) and existing countermeasures. We further
present a common design, FlowKeeper against these three
attacks. We implement FlowKeeper to defend against DoS
attacks and topology poisoning attacks. Experimental results
show that FlowKeeper preserves more than 80% bandwidth
under DoS attacks and can avoid illegal topology updates by
filtering out forged LLDP packets.
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