
Software-Defined Firewall: Enabling Malware Traffic Detection
and Programmable Security Control

Shang Gao
Department of Computing
The Hong Kong Polytechnic

University
cssgao@comp.polyu.edu.hk

Zecheng Li
Department of Computing
The Hong Kong Polytechnic

University
cszcli@comp.polyu.edu.hk

Yuan Yao
Northwestern Polytechnical
University & The Hong Kong

Polytechnic University
yaoyuan@nwpu.edu.cn

Bin Xiao
Department of Computing
The Hong Kong Polytechnic

University
csbxiao@comp.polyu.edu.hk

Songtao Guo
College of Electronic and
Information Engineering
Southwest University
stguo@swu.edu.cn

Yuanyuan Yang
Department of Electrical and

Computer Engineering
Stony Brook University

yuanyuan.yang@stonybrook.edu

ABSTRACT

Network-based malware has posed serious threats to the
security of host machines. When malware adopts a private
TCP/IP stack for communications, personal and network
firewalls may fail to identify the malicious traffic. Current
firewall policies do not have a convenient update mechanism,
which makes the malicious traffic detection difficult.

In this paper, we propose Software-Defined Firewall (SDF),
a new security design to protect host machines and enable
programmable security policy control by abstracting the
firewall architecture into control and data planes. The control
plane strengthens the easy security control policy update, as
in the SDN (Software-Defined Networking) architecture. The
difference is that it further collects host information to provide
application-level traffic control and improve the malicious
traffic detection accuracy. The data plane accommodates all
incoming/outgoing network traffic in a network hardware
to avoid malware bypassing it. The design of SDF is easy
to be implemented and deployed in today’s network. We
implement a prototype of SDF and evaluate its performance
in real-world experiments. Experimental results show that
SDF can successfully monitor all network traffic (i.e., no
traffic bypassing) and improves the accuracy of malicious
traffic identification. Two examples of use cases indicate that
SDF provides easier and more flexible solutions to today’s
host security problems than current firewalls.

CCS CONCEPTS

• Security and privacy → Firewalls; Malware and its
mitigation;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ASIACCS’18, Incheon, Republic of Korea

© 2018 ACM. 978-1-4503-5576-6/18/06. . . $15.00
DOI: 10.1145/XXXXXX.XXXXXX

KEYWORDS

Malicious traffic detection, software-defined networks, software-
defined firewall, network programmability.

ACM Reference format:

Shang Gao, Zecheng Li, Yuan Yao, Bin Xiao, Songtao Guo, and Yuanyuan
Yang. 2018. Software-Defined Firewall: Enabling Malware Traffic
Detection and Programmable Security Control. In Proceedings of

ACM Asia Conference on Computer and Communications Secu-
rity, Incheon, Republic of Korea, June 4–8, 2018 (ASIACCS’18),
12 pages.

DOI: 10.1145/XXXXXX.XXXXXX

1 INTRODUCTION

Malicious software (malware) has become one of the most
serious threats to host machine security. Today’s malware
needs network connections to conduct malicious activities
(e.g. flooding packets, leaking private data, and downloading
malware updates). To detect these malicious activities, secu-
rity companies have proposed security solutions on both host
side (personal firewalls such as Microsoft Windows firewall
and anti-viruses) and network side (network firewalls such
as intrusion detection systems and ingress filtering). How-
ever, when malware lies in a lower layer than the personal
firewalls, this malicious traffic becomes invisible to personal
firewalls. Though network firewalls can capture all traffic, a
lack of host information can make them fail to differentiate
malicious traffic from other benign traffic. A typical example
is the Rovnix bootkit [20] that can bypass the monitoring of
a personal firewall via a private TCP/IP stack. Mixed with
benign traffic, the network firewall may also fail to identify
its traffic when Rovnix does not have significant features in
the attack signature database, as depicted in Fig. 1.

Many solutions have been proposed for malware pattern
analysis and dynamic security policy update [7, 9, 10, 15, 17].
Perdisci et.al. present a network-level behavioral malware
clustering system by analyzing the structural similarities
among malicious HTTP traffic traces generated by HTTP-
based malware [17]. Amann et.al. propose a novel network



Malware Network 
Applications

Host MachineNetwork 

Firewall

Attack signature 
database

Packet filter

Internet
TCP/IP protocol 

driver

Personal 
firewall

NIC hardware

Private TCP/IP 
protocol driver

Figure 1. Personal and network firewalls may fail to identify
malicious traffic when malware uses a private TCP/IP stack.

control framework that provides passive network monitor-
ing systems with a flexible and unified interface for active
response [1]. The high programmability in software-defined
networking (SDN) also introduces security innovations. Flow-
Guard [10] enables both accurate detection and effective
resolution of firewall policy violations in OpenFlow networks.
Another approach, PBS [7], evaluates the idea in SDN to
enable fine-grained, application-level network security pro-
grammability for mobile apps and devices. PBS introduces
a more flexible way to enforce security policies by applying
the concept of SDN. However, these approaches may incur
high false-positive rate in attack traffic identification with
no reference to host information or can be bypassed when
malware adopts mechanisms to avoid personal firewall check
(e.g., via a private TCP/IP stack).

To address the problem of reliable malicious traffic de-
tection, we propose software-defined firewall (SDF), a new
architecture that can prevent malicious traffic bypassing to
enhance the security of host machines. The new architecture
of SDF can be witnessed from its design of “control plane”
and “data plane” as in SDN. The “control plane” in SDF
collects host information (e.g., task names, CPU and memory
utilizations of tasks) to improve the accuracy of malicious
traffic detection and provides fine-grained flow management.
The data plane monitors both incoming and outgoing traffic
in a network hardware. The two-layer design in SDF can
successfully avoid malware bypassing by integrating the host
information. Another salient feature of SDF is its high pro-
grammability and application-level traffic control. Based on
[7], we design a programmable language for SDF to allow
users to develop control apps, through which the control
plane of SDF can install rules on the data plane to manage
network traffic. Thus, users can dynamically update host
machine security policies, and achieve timely and precise
malicious traffic filtering.

SDF is also robust to different attacks against its control
plane. We leverage an audit server to avoid compromised
control plane or malware installing illegal rules and removing
legal rules on the data plane. When attacks are detected, the
audit server will alert the network administrators about the
abnormal events. With these alerts, network administrators
can further check the host machine to remove the malware.
SDF is easy to implement and can be deployed in either
traditional or OpenFlow networks without many changes
of the existing network framework. With the assist of SDF,
many today’s security solutions can be simplified by applying
different control apps.

Malware Network Applications

NDIS miniport driver

Host Machine

Socket

TCP/IP protocol driver

NDIS intermediate driver

NDIS filter driver

Private socket

Private TCP/IP driver

P
o
ssib

le lay
ers o

f p
erso

n
al firew

all

Private miniport 
handler function

Hooked

NIC hardware

Figure 2. Malware bypasses a personal firewall.

Our main technical contributions on protecting host ma-
chine security are as follows:
•Novel Architecture. We propose a novel firewall architec-

ture by abstracting the control and data planes in SDN. The
“data plane” monitors network traffic on a network hardware
and filters out illegal traffic based on security rules. The
“control plane” collects host information and dynamically up-
dates security rules in the “data plane”. Besides, an audit
server is applied to detect attacks against the control plane.
•New Mechanism. We introduce new mechanisms to pro-

tect host machine security and provide high programmable
application-level security control. Different from existing fire-
wall solutions, which adopt fixed classification algorithms
and features, our designs allow network administrators to
set up security rules based on user-defined algorithms or fea-
tures. Furthermore, our design could detect malware traffic
even when the malware utilizes a private TCP/IP to bypass
traditional firewalls.
•Implementation and Evaluation. Based on the mentioned

architecture and mechanisms, we design and implement SD-
F, and evaluate its performance in real-world experiments.
Experimental results show that SDF can monitor all network
traffic and precisely identify malicious traffic. The audit serv-
er can alert users when the control plane is poisoned or shut
down. Furthermore, two use cases of SDF are presented to
show that the network programmability simplifies today’s
security solutions.

2 BACKGROUND AND PROBLEM
STATEMENT

2.1 Adversary Model

Regular network applications (e.g. Chrome and MSN) use
the TCP/IP stack and interfaces provided by the operating
system (OS) for network communication. Specifically, the
traffic of these applications will pass through the TCP/IP
protocol driver, network driver interface specification (NDIS)
intermediate driver, NDIS filter driver, and NDIS miniport
driver before reaching network interface card (NIC) hardware,
as depicted in Fig. 2. The personal firewall lies in one of the
four layers to analyze both incoming and outgoing traffic.
When malicious traffic is detected, the firewall reports it
to the user for decisions or drops it based on the security
policies.



Some malware can use a private TCP/IP stack to bypass
personal firewalls [20]. Specifically, the malware hooks NdisM-
RegisterMiniportDriver() and NdisMRegisterMiniport() func-
tions, and registers malware’s own miniport handler function
before the network adapter driver registers to NDIS. With
malware’s own miniport handler function, the malware is able
to send/receive packets through its private TCP/IP stack
and bypass the monitoring of personal firewalls, as depicted
in Fig. 2.

Malware also has the ability to poison personal firewalls,
such as intercepting the communication between firewall and
OS or even shutting down the firewall. When malware tries
to damage a defense system, we should ensure that these
malicious operations are noticeable to users. Users can take
a further step to scan the host to remove the malware.

2.2 SDN Background

Software-defined networking (SDN) is a new network para-
digm that separates the control and data planes in a network
[16]. The control plane of SDN dictates the whole network
behavior. This logical centralization introduces a simpler but
more flexible way to manage and control network traffic by
a “southbound” protocol (i.e. OpenFlow [16]).

The OpenFlow networks adopt flow rules to handle network
traffic. When a packet comes, the OpenFlow switch searches
its flow table to see whether this packet matches any flow
rules. If a match is found, the OpenFlow switch will follow
the action field of this flow rule to process the packet. The
actions could be (not limited to): (i) forward the packet; (ii)
drop the packet; (iii) report the packet to the control plane. If
the packet does not match any flow entries (table-miss), the
OpenFlow switch normally sends a packet in message to the
control plane for instruction. The control plane then decides
how to process the new packet based on the logic of the apps
and responds with action and flow rule(s). This reactive flow
installation approach enables an easier and more flexible way
to manage and control network traffic, and has been widely
used in most OpenFlow applications.

2.3 Problem and Challenge

The problem studied in this paper is how to detect malicious
traffic of malware on a host machine. To solve this problem,
we face the following challenges.

How to avoid malicious traffic bypassing a personal
firewall? As we mentioned above, malware can use a private
TCP/IP stack to bypass the detection of personal firewalls.
Therefore, a good solution should conduct the detection in
network hardware layer (lower than the layer that malware
works on to avoid being bypassed). Unfortunately, no existing
personal firewall monitors traffic in NIC layer. Meanwhile,
when malware attacks the firewalls, how to ensure the system
remains functional or alerts users when attacks occur is also
a challenging problem. Therefore, we need a new security
framework for malicious traffic detection.

How to precisely identify malicious traffic? Even
though malware cannot bypass network firewalls, a lack of

host information on network firewalls may lead to incorrect
traffic classification. Personal firewalls can adopt TCP port
to associate each packet with some host information (e.g. task
name), and report to the user to update blacklist/whitelist
dynamically for more precise identification. However, the
host information, which is not contained in a packet, cannot
be used in network firewalls to identify attack traffic. For
instance, the security database of a network firewall has
“server name = ‘evil.com’” in its blacklist to drop all traffic to
“evil.com”. When the malware server updates its hostname
(e.g. from “evil.com” to “newevil.com”), the network firewall
may fail to identify these malicious packets without the
information provided by the host machine.

How to provide programmability of security ser-
vices? Though firewalls may automatically update security
policies based on some specific features and algorithms, mal-
ware can still bypass them when these features and algorithm-
s (i.e. classifiers) are revealed. The management of security
policies still remains in the realm of network administrators.
Furthermore, we cannot directly apply SDN into host ma-
chine security for programmability since no application-level
controls are enabled in OpenFlow specifications. Besides, the
controller cannot control network devices that do not sup-
port SDN functions. The programmability of the network
will be lost with existing commodity switches. Not many
companies can afford the expensive replacement of tradition-
al network equipments. Therefore, a good solution should
follow the mechanisms in SDN to enable a fine-grained flow
management on some controllable network devices (e.g. NIC).
Companies can then replace their network devices on some
crucial servers to protect them.

3 SYSTEM DESIGN

3.1 System Model and Architecture

The design of SDF is based on the concept of SDN by uti-
lizing the “southbound” APIs (OpenFlow) to provide pro-
grammable and flexible security policy control. SDF has a
network hardware as its data plane for traffic monitoring. It
processes each packet based on the flow rules in its flow table
to avoid malicious traffic bypassing the detection and sup-
port programmable security control with OpenFlow interfaces
(similar to an OpenFlow switch). The implementation could
be either on host side (using NetFPGA or programmable
NIC [27] to replace traditional NIC), or on switch side (using
an OpenFlow switch to replace the traditional switch1). The
control plane of SDF is built in a host machine to provide
programmable and flexible security policy control. This con-
trol plane is not centralized, which is different from that
of SDN. Besides, it also collects host information to enable
fine-grained, application-level traffic control. Based on traffic
statistics from the data plane and host information from the
control plane, control apps (similar to the controller applica-
tions in SDN) could precisely identify malicious traffic.

1The control applications in switch replacement scenarios should be
carefully designed, since multiple controllers are involved, and each
controller should only control the traffic of its host.



OS

 Control App Abstraction

Attack 
detection

Control App  

Controller Platform

Network Applications

Host Status 
Monitor

T
r
a
ff

ic
 M

o
n

it
o

r
 

(N
e
tw

o
rk

 H
a
rd

w
a
re

)

Internet

Host Machine

Audit 
Server

: Logic control link : Logic data link

Figure 3. The architecture of SDF. Network applications
mean network softwares such as chrome and twitter. Here
we use an SDN-like expression to regard network application-
s as hosts in SDN and do not mean the network applications
are “lower” than OS layer.

The architecture of SDF consists of six functional mod-
ules: traffic monitor, host status monitor, controller platform,
control app abstraction, attack detection and audit server,
as depicted in Fig. 3:

Traffic monitor module works as the data plane and runs
on a network hardware. It processes and monitors both in-
coming and outgoing traffic based on the flow rules in its
flow table.

Host status monitor module is a monitor application on
the host machine that monitors host information. It provides
host information to the control app abstraction module to
enable application-level management and a precise attack
detection.

Controller platform operates much like existing SDN soft-
ware controllers (e.g. NOX, POX, and RYU). Since it could
be implemented commonly by installing software controllers,
we skip its design description in this paper.

Control app abstraction module is a middle layer between
the controller platform and the control applications. It col-
lects host and traffic information and associates each packet
with host information. Besides, the control app abstraction
module abstracts the controller implementation language to
a high-level language and provides user-friendly interfaces to
dynamically update the network security policies.

Attack detection module is a pre-installed control app
which identifies malicious traffic based on the host and traffic
information. We also allow users develop their own attack
detection module based on their own demand.

Audit server is an additional device in the Intranet to
detect whether the control plane is poisoned by malware (e.g.
the controller is shut down or the flow rules are intercepted
and replaced by malware). Audit server works in the Intranet
to verify the flow rules on the traffic monitor. It periodically
collects the host and traffic information and uses the same
database and attack detection algorithm (same classifier) to
verify the legality of flow rules.

The workflow of SDF is as follows. Normally, the traffic
monitor module checks and forwards incoming/outgoing traf-
fic between the Internet/Intranet and host machine based on
the flow rule entries (security rules) in its flow table. When
abnormal traffic is detected by the traffic monitor, SDF will

Header 
Parser

Flow Table 
Lookup

Action 
Processor

Input_FIFO

Result_FIFO

OpenFlow Data Processing

Flow Table
TCAM

Input Flow Output Flow

Figure 4. Packet processing pipeline in the traffic monitor.

follow three steps to handle it. First, the traffic monitor
reports the abnormal traffic flows to the controller platfor-
m. Second, the reported abnormal flows will be sent to the
control app abstraction module along with host information
from the host status monitor. Flows will be tagged with host
information and sent to the control app (attack detection)
to precisely identify malicious traffic. Finally, the attack de-
tection or other control apps decide actions to the reported
flows and update security rules on the network monitoring
module.

While other modules are activated, the audit server peri-
odically collects flow entries, host and traffic information to
verify the legality of flow entries. The audit server will also
alert the network administrator once unexpected/missing
flow rules are detected.

3.2 Traffic Monitor

Traffic monitor is a forwarding fabric that processes each
packet based on its flow rules. It is specific network hard-
ware which monitors network traffic at network NIC layer
to avoid malware to bypass SDF (e.g. via a private TCP/IP
stack). The functionality of the traffic monitor stems from
the maintenance of flow rules in the flow table (similar to the
flow rules in an OpenFlow switch), which are used to enforce
security policies. Traffic monitor also provides southbound
APIs (i.e. OpenFlow interfaces) to support programmable
security control. As we mentioned before, the implementation
could be either on the host or switch side. Here we describe
a more common scenario that the traffic monitor is a specific
hardware.

Similar to an OpenFlow switch, traffic monitor decides
the actions (e.g. forwarding, dropping, or reporting) of each
incoming/outgoing flow based on flow rules in its flow table
stored in Ternary Content Addressable Memory (TCAM). It
adopts two ports (two virtual ports when implemented on the
host side) to connect the host machine and Internet/Intranet.
This scheme allows us to distinguish between incoming traffic
and outgoing traffic by network port with great ease. The
traffic monitor contains four major components: flow table,
header parser, flow table lookup, and action processor, as
depicted in Fig. 4. Though traffic monitor module could
be implemented by exactly following OpenFlow v1.3 [21]
or higher versions, we describe minimum requirements in
designing since the resources can be limited in some scenarios.

Flow Table. Flow table component stores flow entries in
TCAM. Besides match and action fields, a flow entry also
has priority, counter, and timeout fields, as depicted in Fig.
5-a.



struct flow_entry {
    match;     /* match against packets based on header */
    priority;  /* matching precedence */
    counter;  /* received packets and bytes */
    action;     /* actions applied to matched flows */
    timeout;   /* maximum amount of time before expired */
}

(a) The structure of a flow entry.

struct header {
    IN_PORT;  /* input port (from host or internet) */
    ETH_SRC;  /* ethernet source address */
    ETH_DST;  /* ethernet destination address */
    ETH_TYPE;  /* ethernet frame type */
    VLAN_ID;  /* VLAN ID */
    VLAN_PCP;  /* VLAN priority */
    IP_SRC;  /* IP source address */
    IP_DST;  /* IP destination address */
    IP_PROTO;  /* IP protocol */
    IP_TOS;       /* IP type of service */
    PORT_SRC;  /* transport source port */
    PORT_DST;  /* transport destination port */
}

(b) The structure of a header.

Figure 5. Structures in traffic monitor.

In SDF, we only need to support three actions in the action
field: forward to host/Internet, drop the packet, and report
to controller. In the counter field, we only need to count
matched packets and bytes of this flow entry.

To ensure malicious activities are noticeable when malware
attacks the control plane, the flow table component also
provides read-only APIs for the audit server to get the current
flow entries. Therefore, the audit server can find out whether
the control plane is compromised (the verification will be
discussed later).

Header Parser. Header parser component extracts the
header information of each packet to identify each flow. Fig.
5-b shows different fields in a header.

Most fields in SDF have the same meaning with those in
OpenFlow protocol. The IN PORT field is slightly different.
Since the traffic monitor only has two data ports in SDF (in-
terfaces to Internet and host), IN PORT in SDF only denotes
whether a packet is an ingress packet (from the Internet to
host) or an egress packet (from the host to Internet).

Flow Table Lookup. After extracting header informa-
tion, the flow table lookup component conducts both exact
and wildcard lookups to match flow entries in the flow table.
To ensure efficiency and reduce collisions, we apply two Hash
functions on the flow header in the exact lookup. Paralleled
with the exact lookup, the wildcard lookup uses a mask to
check for any matches in the flow table. If any flow entries are
matched with the packet, the flow table lookup will deliver
the results (all matched flow entries) to the action processor.
Otherwise, the lookup result will be null.

Action Processor. Action processor decides which action
should be applied to the packet. Specifically, the action(s) of
a flow entry with the highest priority is applied to the packet.
The default action (report to the controller) is applied in the
null result scenario. Once an action is applied, the counter
field of the applied flow entry is updated.

Though OpenFlow v1.3 [21] indicates that OpenFlow
switches can preserve the original packet and only encap-
sulate the header information into packet in messages, the
traffic monitor delivers the whole packet to the controller by
adopting “encapsulate the whole packet to the controller” in
the action field of flow rules (in switch replacement scenarios
the action can be “mirror to controller”). It is because the
memory in NIC is always limited. Besides, encapsulating the
whole packet also allows the control app abstraction module
to match the application layer payload with attack signature
database (e.g. malware server URL and private information).

3200 chrome.exe 5.3

3201 msn.exe 00:05:55

New record insertion Record lookup

KEY VALUE

Port Task

3200 chrome.exe

3201 chrome.exe

3205 chrome.exe

3208 chrome.exe 6.3

(4) Expired, invalid record

(3) Not expired, valid record

 : update field  : valid record  : invalid record

(1)

(2)

CPU (%) Memory (MB) Time

57.55.7

6.3 60.8

4.3 52.4

00:05:40

00:05:45

00:00:00

60.8 00:05:45

66.1 00:05:55

2.3 46.1

Figure 6. Port-host info table with two operations: insertion
and lookup.

3.3 Host Status Monitor

Host status monitor works on the host machine. It provides
APIs to get the task name, CPU and memory utilizations
of the task based on a specified port (GetHostInfoByPort).
The task name information (task) serves the purpose of
identifying the application that generates the packet. CPU
and memory information (CPU and memory) indicates the
current status of the task. With these features, the accuracy
of attack detection can be improved. The control apps can
also provide a fine-grained application-level flow management.

We use a port-host info table to associate host informa-
tion with each port. The host status monitor first queries
all process id (pid) records on all enabled ports (port− pid
record). Then, it queries all task records based on the ob-
tained pids, CPU and memory utilizations of these tasks.
Finally, it associates each port record with task (even though
multiple processes can listen on the same port, these process-
es belong to the same task), CPU and memory. CPU and
memory will be the same for different pid records with the
same task. To ensure the efficiency of indexing, a port field
is used as a key for a hash table (port-host info table). time
field is added when inserting a new record. Each record will
expire after texpire time (initially set to 120 seconds). The
port-host info table will be updated in every 5-second.

The port-host info table supports two functions, new
record insertion and record lookup, as depicted in Fig. 6.
When the host status monitor finds that the port-host info
table already has an existing record during insertion, the host
status monitor compares the task field between the existing
and new records. If the task is the same, the host status
monitor only updates the CPU , memory, and time fields,
as shown in (1)-operation in Fig. 6. Otherwise, the host s-
tatus monitor overwrites the whole record, as depicted in
(2)-operation. When record lookup is called, the host status
monitor checks the time field of the matched record. If the
record is not expired, the host status monitor returns the
matched record, as shown in (3)-operation. Otherwise, the
host status monitor returns EXPIRED, as depicted in (4)-
operation. Since new records can overwrite existing records,
and time field is applied to identify expired records, the port-
host info table does not need to support deletion function
in regular hash tables. The size of the port-host info table



Match := TASK | CPU | MEMORY | HEADER | PAYLOAD | HEADERS | *
Event := (FORWARD | DROP | LOG | REPORT)
Rule := OFMatch | Action | Trigger
OFMatch := HEADER | *
Action := (FORWARD | DROP | REPORT)
Trigger := Begin | End
Begin := (IMMEDIATE | Time)
End := (NO_EXPIRE | Time)
Time := HH : MM : SS

Figure 7. A high-level abstract language in the control app
abstraction. The values in the brackets enumerated values of
this field. “HEADER” in Match field means the whole header
of a packet (from MAC layer to transport layer if applicable),
while “HEADERS” represents the specific headers (e.g. eth-
ernet type and source IP).

is set to 1000 entries initially. It also supports appending and
compacting strategies to adjust its size dynamically.

Host status monitor also calls the OS to get task, CPU ,
and memory based on the port in real-time when no matched
record is found or the record is expired in the port-host info
table. This operation is to avoid the 5-second delay in table
updating. It may seem that real-time calls would satisfy the
requirement of GetHostInfoByPort. However, the lookups in
the port-host info table are much more efficient than real-
time calls. In some scenarios, when the connection is closed
before calling GetHostInfoByPort, the host status monitor
cannot get any information without previous records.

3.4 Control App Abstraction

Control app abstraction provides programmable interfaces
to users to dynamically update the network security rules.
Based on the high-level language described in [7], we de-
sign a programmable language with new match fields (i.e.
payload and host information) for SDF. Designed upon the
existing SDN controller platform, the control app abstraction
tags additional fields to flow rules to provide fine-grained
and application-level traffic control, and encapsulates the
controller implementation language to provide user-friendly
APIs.

To enable application-level traffic management, the control
app abstraction appends task, CPU , and memory fields to
each incoming application-level packet based on port. With
PORT SRC or PORT DST, the control app abstraction uses
GetHostInfoByPort to tag incoming packets, which allows
control apps to process them based on task, CPU , memory,
and other match fields (e.g. IP SRC). After deciding the
actions of these packets, the control apps can further install
flow entries to the traffic monitor (these flow entries should
follow the flow entry structure described in Section III-B).

The control app abstraction also utilizes a high-level ab-
stract language (via XML) to encapsulate “northbound” APIs
of the controller to provide convenient facilities for control
app development. This language simplifies controller APIs in
SDF scenario and enables a more convenient way to develop
control apps even without knowing much about OpenFlow
and controller APIs (we also allow users to embed Python
script in XML). Three basic elements are included in this lan-
guage: Match, Event, and Rule, as depicted in Fig. 7. Match
defines a specific group of flows which the policy targets. If “*”
is specified, the policy will be applied on all received packets.

<!--Example 1-->
<Policy PolicyID=Training_Classifier_Based_On_DB>
    <Match PAYLOAD=in_DB HEADER=in_DB>
    <Event>SVM_UPDATE</Event>
    <Rule></Rule>
</Policy>

<!--Example 2-->
<Policy PolicyID=Reporting_Suspicious_Flows_To_User>
    <Match CPU_More=20 SVM_CLASS=TRUE>
    <Event>REPORT</Event>
    <Rule></Rule>
</Policy>

<!--Example 3-->
<Policy PolicyID=Blocking_Hidden_Task_Flows>
    <Match TASK=null IN_PORT=host>
    <Event>DROP,LOG</Event>
    <Rule RuleID=Egress_Block>
        <OFMatch IN_PORT=host IP_DST=ip_dst>
        <Action>DROP</Action>
        <Trigger Begin=IMMEDIATE End=NO_EXPIRE>
    </Rule>
    <Rule RuleID=Ingress_Block>
        <OFMatch IN_PORT=internet IP_SRC=ip_dst>
        <Action>DROP</Action>
        <Trigger Begin=IMMEDIATE End=NO_EXPIRE>
    </Rule>
</Policy>

Figure 8. Three examples of control apps.

Event describes the action(s) to the matched flows, such as
logging the packet (LOG) and reporting to the user/app-
s (REPORT). Lastly, Rule specifies the update of security
rules. It will trigger the control app abstraction and con-
troller platform to generate a new flow rule and install it in
the traffic monitor. Thereby, users can utilize sophisticated
techniques (e.g. machine learning) to create intricate and
dynamic security policy control apps.

Fig. 8 illustrates three examples of the control apps. Ex-
ample 1 implies a use case to update the parameters in
attack detection. The user first updates the attack signa-
ture database manually. Then, SDF trains the SVM classifier
(traffic-based classification in attack detection component)
based on the results of database-based classification. An-
other very useful example is to report suspicious traffic to
the user/apps, as depicted in Fig. 8 (Example 2). Based
on this policy, SDF reports each packet to the user/apps
when traffic-based classification identifies it as illegal and
its task consumes more than 20% CPU. The user/apps can
then decide the action of these packets2. A more complex
scenario is the application-level table-miss management. In
this scenario, the action of each table-miss packet is decid-
ed by the task. For instance, the user may want to block
the traffic of hidden tasks (most malware conceals its task
from the OS), and generate rules to block the traffic from/to
malware servers, as shown in Fig. 8 (Example 3). Note that
the policies described here work on the host machine and
could provide application-level traffic management, which is
different from the flow rules in the traffic monitor. Generally
speaking, policies could generate new flow rules based on the
packets delivered to the control plane, while flow rules ensure
the efficiency of SDF and reduce the overhead.

The control app abstraction is designed to facilitate con-
trol apps to manage table-miss packets. Therefore, a packet

2Though SDF can atomically drop these suspicious packets, we do not
encourage this action since some benign packets are dropped as well
due to the false positives in traffic-based classification.



F
lo

w
 P

o
o
l

Attack Signature 
Database

SVM Classifier
Signature 
Matching

Host Status 

Monitor

Traffic 

Monitor

Control

Apps

Attack Detection

Update 

Interfaces

tagged packets

host 

info

packet 

info

Training Data
Update 

Interfaces

Figure 9. Two-phase matching in attack detection module.

will be first processed based on flow rules, and then handled
based on control policies. The traffic monitor only delivers
table-miss packets and “report”-action packets to the con-
troller, and the control apps apply the control policies only
on these reported packets. In this way, we reduce the re-
sponse time of non-table-miss packets (matched packets),
since adding task, CPU , and memory fields to each packet
can be time-consuming. Furthermore, this mechanism also
allows application-level management for table-miss packets,
as we discussed in example 3.

3.5 Attack Detection
Attack detection serves the role of identifying malicious traffic
and marking each reported packet to assist the easy manage-
ment of control apps. We adopt a two-phase matching tech-
nique to identify malicious traffic based on attack signatures,
as depicted in Fig. 9. When a packet arrives, the flow pool will
associate this packet with host information, classify this pack-
et to different flows based on header fields described in header
parser (in section 3.2), and store the packet in a queue of this
flow. In the first phase, attack detection module matches some
fields of each packet with the attack signatures in the data-
base and associates with in DB (e.g. PAYLOAD=in DB); in
the second phase, attack detection module employs Support
Vector Machine (SVM) to identify malicious flows and tags
SVM CLASS (e.g. SVM CLASS=TRUE. TRUE represents
the flow is classified as malicious traffic.). The control apps
can further decide the action of each packet.

In the first phase, the attack detection module adopts a
packet-level classification by checking whether some fields of
a packet (the payload is the most significant field since most
signatures in attack signature database are in the payload of
application layer) are matched with signatures in the attack
database. If a packet contains attack signatures, it will be
classified as malicious traffic, and associates with in DB
(e.g. PAYLOAD=in DB). Otherwise, the packet will not be
associates with in DB (e.g. PAYLOAD 6=in DB). We also
provide interfaces to update the attack database with great
ease. For instance, a user can download new attack signatures
from the Internet and update the database manually, or write
a control app to update the database based on the attack
patterns identified by the traffic-base classification.

In the second phase, the attack detection module adopt-
s a flow-level classification with SVM to precisely identify
malicious traffic based on training data. SVM can maximize
the distance between training samples and hyperplane. This
classification algorithm is robust even with noisy training

data. Besides CPU , memory, task, and header, we also use
frequency as a feature of each flow by counting “packets
per flow” and “bytes per flow”. For the training set, we use
the traffic of two attacks (i.e. SYN flood and leaking private
information) and normal traffic as training data to build the
hyperplane f(x) with Gaussian kernel. The SVM classifier
can further efficiently classify each flow xs by judging the sign
of f(xs). All packets in “illegal”-classified flows will be tagged
with SVM CLASS = TRUE, while packets in “legal”-
classified flows will be tagged with SVM CLASS = FALSE.
To dynamically adjust the SVM classifier, we also provide
interfaces to update the training data. When new training
samples are added, the attack detection module can use the
new training data to train the classifier.

The overhead may be a concern when much traffic are
processed by the attack detection module. Since we can install
flow rules in traffic monitoring to drop malicious traffic and
forward benign traffic, only some “suspicious” traffic are
processed by the attack detection. Furthermore, based on
our experiments, the SVM classifier is time-consuming when
training, but efficient when classifying. Therefore, we think
the overhead of attack detection is acceptable.

3.6 Audit Server
The audit server is an additional device in the Intranet to
verify the legality of the flow entries on the traffic monitor. It
can be centralized, which is able to support several hosts with
only one audit server. When some flow entries are identified
as illegal or some crucial flow entries are missing (the control
plane is poisoned or shut down by malware), the audit server
alerts the network administrators for further analysis on the
host machine.

Audit server collects traffic information and host informa-
tion (task, CPU , memory, and attack signature database)
periodically, and applies the same classification algorithms
(classifiers) and security policies of the control apps to gen-
erate flow entries for verification. Similar to the procedures
on the host, the audit server first tags the task, CPU , and
memory to each packet, and then generate the flow entries
based on the security policies. These generated flow entries
will be used to identify the unexpected and missing flow
entries from the traffic monitor. The inconsistencies will be
reported to the network administrator to notify the network
administrator when the control plane is attacked (e.g. poi-
soned or shut down) by malware.

To understand how serious the misclassified/missing flow
entries are to reduce false alerts, we introduce “risk level” for
the inconsistencies. Risk level is represented by the normal-
ized distance from the misclassified/missing sample (a tagged
packet) to the hyperplane in SVM. For instance, suppose the
hyperplane is f(x) = ωTx+b, where ω is the normal vector of
the hyperplane, and could be represented by m training sam-
ples (xi, yi) and Lagrange multipliers αi: ω =

∑m
i=1 αiyixi.

The distance between the hyperplane and one misclassified
sample xs is Ds = |ωTxs + b|/||ω|| = |

∑m
i=1 αiyix

T
i xs +

b|/||ω||. When the kernel function κ is employed, Ds can
be calculated by Ds = |

∑m
i=1 αiyiκ(xi,xs) + b|/||ω||. The

risk level is represented by the normalized distance (divided



Internet

SDF+Malware

Mirror all traffic 
between Internet and 

host 1/2 to monitor host

Monitor Host

Personal Firewall
+Malware

Host 1

Host 2

Figure 10. Topology in malware traffic detection experiment.

by the average distance of samples): Rs = mDs/
∑m

i=1Di.
The risk levels of other inconsistent flow entries (e.g. flow
entries triggered by the exact matches in the attack signature
database) will be set to 100 by default.

It may seem that the audit server can take over the role
of the controller (similar to the centralized control plane in
SDN) to avoid control plane attacks. However, this design will
inevitably consume much host-controller (or traffic monitor-
controller) bandwidth because of the communication between
the controller and host status monitor, especially when SDF
provides application-level traffic management. Therefore, we
think designing the control plane on the host will reduce the
communication overhead and delay. Though in this design,
the control plane may be a target of malware, the audit server
can alert the network administrator for the abnormality.

4 EXPERIMENT

4.1 Implementation
The prototype of traffic monitor in SDF is built on a specific
OpenFlow-enabled network hardware, Broadcom BCM56960
Series [19], which supports the described OpenFlow functions
in Section III. We adopt RYU controller [22] as the controller
platform and install RYU controller on a PC equipped with i7
CPU and 8GB memory. The host status monitor and control
app abstraction are written in Python. We use LIBSVM [3]
as the SVM classifier to design the attack detection module.
The audit server is built on another Linux host in Python. It
adopts the same classifier and control apps on the host.

4.2 Setup
Bypassing Personal Firewalls. One of the most signifi-
cant improvements in SDF is avoiding malware bypassing
personal firewalls. To evaluate malware traffic monitoring
performance of SDF, we install SDF and Rovnix bootkit on
a tested host (host 1) machine and apply the policy “Match:
*; Event: LOG, FORWARD; Rule: null” to log all captured
traffic. Besides, two different personal firewalls (McAfee and
Norton) and Rovnix bootkit are installed on another host
(host 2) as a control subject. A switch is used to connect to
the Internet, traffic monitor module, and the two hosts, and
mirrors all traffic between the Internet and tested host to
the monitor host to record all traffic from/to the tested host,
as depicted in Fig. 10. In this way, the performance can be
evaluated by comparing logged traffic with mirrored traffic.

Classification with Host Information. We further s-
tudy how host information (task, CPU and memory fea-
tures) affects the accuracy of malicious traffic identification.
Two programs are built to generate malicious traffic, SYN-
flooder (generating SYN packets with forged source IP) and
privacy-leaker (regularly sending host information to a server,
including MAC address, IP address, hostname, and running

Table 1. Packet Capturing Rate

SDF McAfee Norton

Total traffic 100% 84% 87%

Rovnix traffic 100% 0% 0%

tasks). We apply two policies “Match: (PAYLOAD=in DB or
HEADER=in DB); Event: LOG, DROP; Rule: null”, and log
other suspicious traffic classified as illegal by SVM classifier.
Furthermore, we disable the host status monitor by returning
task = null, CPU = 0, memory = 0 and for all requests to
show the classification without host information (the task,
CPU and memory features in the training data are also set
to null or 0). We collect our training data under different
kinds of attacks in three scenarios: website browsing, data
downloading, and data uploading, and generate new traf-
fic (not from training data) to evaluate the performance of
both host-info-enabled and host-info-disabled classifications
in different cases.

Attacks Against Control Plane. We test whether the
audit server can alert the network administrator when mal-
ware attacks against the control plane. Specifically, we use
(i) a malware (mal1.exe) to hook the “modify state” message
(for installing/removing flow entries to the traffic monitor)
and add a flow entry to forward its traffic (intercepting flow
rule installation attacks); (ii) another malware (mal2.exe) to
hook the “FlowStatsReply” function triggered by
ofp event.EventOFPFlowStatsReply event and replace the
packet count and byte count of its flows by 3 and 198 re-
spectively to lead incorrect classification (poisoning traffic
statistic attacks); and (iii) the third malware (mal3.exe) to
shut down the control plane when it finds that the destination
is unreachable, and install a flow rule to forward its traffic
(shutting down control plane attacks). All malware will flood
SYN packets to a server (20 packets per second). The security
policies are set to block an illegal packet identified by the
SVM classifier, and only the task feature of mal1.exe is in
the attack signature database.

Packet Processing Overhead. The packet processing
overhead is mainly incurred by the procedures of table-miss
flows, including flow table lookup, packet in request, ap-
pending features, classification, and flow rule installation.
Thus, it is imperative to include all mentioned procedures
in the evaluation of overhead (e.g. Rule=null is not accept-
able). We apply the policy “Match: (SVM CLASS=FALSE,
IN PORT=host); Event: FORWARD; Rule: (OFMatch:IN
=host & IP DST=ip dst, Action=FORWARD)” to allow the
connections when identified as benign traffic by the SVM
classifier. We evaluate the packet processing overhead by
measuring the round trip time of 100 packets generated by
two tested hosts (with and without SDF).

4.3 Experimental Result
Malware Traffic Capturing. In this experiment, we use
(Packets Captured by Host)/(Packets Captured by Monitor
Host) to calculate the packet capture rate. The result is
depicted in Table 1. In the control subject, even though
McAfee and Norton alert that malware is detected when
Rovnix is copied to the host (the file of Rovnix matches with



 ARP-attacker TPR  ARP-attacker FPR Privacy-leaker TPR Privacy-leaker FPR
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

host-info enabled
host-info disabled

(a) Browsing websites.

 SYN-flooder TPR   SYN-flooder FPR  Privacy-leaker TPR   Privacy-leaker FPR
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

host-info enabled
host-info disabled

(b) Downloading data.

 SYN-flooder TPR   SYN-flooder FPR  Privacy-leaker TPR   Privacy-leaker FPR
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

host-info enabled
host-info disabled

(c) Uploading data.

Figure 11. Comparisons between host-info enabled and host-info disabled classifications in SDF.

the attack signature database), neither of them can capture
the traffic of Rovnix bootkit. On the other hand, SDF is
able to capture all packets of Rovnix bootkit. Since we can
hardly control the number of generated packets, we regard
the performances of McAfee and Norton are the same.

Malicious Traffic Identification. First, we analyze how
different features affect the classification result. In our eval-
uation, we find all features presented in Section 3.5 con-
tribute to the SVM classifier. While the weights of differ-
ent features vary for different kinds of attacks. Specifically,
task, frequency, CPU , and protocol field in header are sig-
nificant for ARP-attacker and SYN-flooder, and task and
protocol field are significant for privacy-leaker (note that
the traffic of privacy-leaker can also be identified by the
packet-level classification, but we only consider the affect
on SVM classifier here). Furthermore, we use true-positive
rate TPR=(Detected malicious packets)/(Malicious packet-
s) and false-positive rate FPR=(Benign packets classified
as malicious packets)/(Benign packets)to compare the per-
formances between host-info enabled and host-info disabled
classifications in each scenario (browsing, downloading, and
uploading). The results are shown in Fig. 11. Both of the
classifications under SYN-flooder are more precise than those
under privacy-leaker. It is because the malicious packets gen-
erated by SYN-flooder are SYN packets. Therefore, “TCP
protocol” becomes a significant feature. On the other hand,
the traffic of privacy-leaker is hard to be detected especially
in uploading scenario. It is because some private information
(e.g. running tasks) is not included in the attack signature
database. Distinguish malicious traffic from regular updating
traffic is difficult. The host-info enabled classification per-
formances better than host-info disabled classification in all
scenarios. The results show that host features increase the
TPR by more than 15% and reduces the FPR by around 5%
in identifying the traffic of privacy-leaker.

Alerts for Control Plane Attacks. The audit server
can identify the inconsistencies of flow entries and alert to
different kinds of control plane attacks. The notifications
of intercepting flow rule installation attacks (mal1.exe) and
poisoning traffic statistic attacks (mal2.exe) are presented in
Fig. 12, and those of shutting down control plane attacks are
presented in Fig. 13. In the intercepting flow rule installation
attacks, the risk level of its fraud flow entry (rule #1 in Fig.
13) is set to 100, because the task of mal1.exe is preserved
in the attack signature database. Since mal2.exe is not in

Figure 12. Alerts to intercepting flow rule installation attacks
and poisoning traffic statistic attacks.

Figure 13. Alerts to shutting down control plane attacks.

contained in the attack signature database, the risk level of
poisoning traffic statistic attacks (fraud rule #2 in Fig. 13) is
8.2 calculated by the normalized distance to the hyperplane.
When the controller suffers from shutting down control plane
attacks (mal3.exe), the audit server can also detect the incon-
sistency of flow entries. The risk level of the fraud rule is 6.4.
Besides, when the controller is shut down, we may find some
low-risk alerts if the classifier has a high false-positive rate
(the flow rules to block some regular traffic will also cause
inconsistencies). Notice that the results of these attacks are
almost the same (removing some flow entries and installing
fraud flow entries), the audit server cannot distinguish the
controller suffers from which kind of attacks. Network admin-
istrators can conduct a further analysis based on the alerts
from the audit server.

Packet Delay. Table 2 describes the packet processing
overhead in SDF system. The TCAM ensures very short
delays for processing matched packets, incurring less than
5ms average delay. However, the processing time of table-
miss packets is much longer. The average delay increases to
105ms because the traffic monitor needs to send the packets
to the controller, and the controller needs to decide and
send the actions back to the traffic monitor. Fortunately, the
table-miss packets are only a small portion of the network
traffic in most scenarios, since the controller can update the
flow rules on the traffic monitor to process the packet when
received again. Furthermore, we build the traffic monitor
as a specific hardware in our prototype. The link delay of
table-miss packets can be reduced when the traffic monitor
works on NIC side.



Table 2. Time Delays

Max Min Avg

Regular packets (w/o SDF) 62ms 14ms 18ms
Matched packets (w/ SDF) 66ms 16ms 21ms
Table-miss packets (w/ SDF) 214ms 78ms 105ms

Internet

Traffic Monitor

IN_PORT=internet & PORT_DST=80 or 443 FORWARD

IN_PORT=internet REPORT

OFMATCH ACTION

Basic policies

EVENT

PAYLOAD=in_DB

MATCH

IP_SRC or IP_DST=1.1.1.1 DROP

  

REPORT

RULE

null

Updated policies

P
r
io

r
ity

High

Low

IN_PORT=internet

DROP

null

Security 
Analysis App

suspicious traffic

update new 
patterns to DB

Web Server

update security policies

report to security analysis app

Analyze attack 
patterns of 

suspicious  traffic

HEADER=in_DB DROP Drop based on signature

drop flows with attack signatures

Figure 14. Use case 1: server protection.

4.4 Use Case
Use Case 1: Server Protection. Many servers (e.g. web
servers) are accessible for external users and become targets
of various network attacks, such as DDoS attacks and XSS
attacks. To protect these servers, a more and more awared
protection method is only allowing specific ports of these
services (e.g. 80 for HTTP and 443 for HTTPS). Other re-
quests to unauthorized ports will be redirected to the security
agent for further analysis. Meanwhile, a traffic monitor a-
gent is always applied to detected malicious traffic during
the communication (e.g. destination IPs are in the blacklist,
traffic follows WebShell models, and scripts are downloaded
rather than parsed). Originally, we need two agents (i.e. traffic
monitor agent and security agent) to protect the server and
need to update the attack database in traffic monitor agent
manually based on the feedback from the security agent.

In this scenario, we can adopt SDF to update the security
policies automatically without introducing the two agents. To
allow requests to port 80 and 443, and analyze other requests,
we first apply proactive flow rules (basic security policies) to
forward benign incoming packets (DST PORT=80 or 443)
and report other incoming packets to the controller. Second,
we design a Security Analysis App which can figure out new
attack signatures of these malicious incoming packets, such
as malicious servers’ IPs and WebShell models. Based on
these new signatures, the Security Analysis App dynamically
updates the attack signature database. Finally, we build a
security policy control app to report suspicious traffic to the
Security Analysis App and dynamically update the security
policies. A model to protect server security with SDF is
depicted in Fig. 14 (the audit server is not presented to
simplify the description).

In the test, we try to connect to an unauthorized port
(8080), and upload malware through port 80. When SDF is
activated, even port 8080 is open, we still cannot establish
a connection with the server through 8080. The upload is
also failed, and the client’s IP address is added to the attack
signature database.

Internet

Traffic Monitor

IN_PORT=host REPORT

OFMATCH ACTION

EVENT

IN_PORT=host | TASK=A

MATCH

IN_PORT=host & IP_DST=a s IP FORWARD, REPORT

RULE

P
r
io

rity

High

Low

REPORT null

Dst Analyzer
request packets

actions to 
these requests

PC

report to analyzer for action

IN_PORT=internet FORWARD

TIMEOUT

18:00

18:00

null

TRIGGER

08:00 to 18:00

Basic policies

If request is to a.com:
   Record external links
Else:
  If request not in external links:
     DROP
  Else: 

  FORWARD

IN_PORT=host & CPU>50% & MEMORY>50% LOG 08:00 to 18:00 null

log CPU and memory 

consuming events

Figure 15. Use case 2: parental network controls.

Use Case 2: Parental Network Controls on PC.
Parental controls can manage the network accessibility of
different users. Originally, parental controls associate each ac-
count with a blacklist/whitelist. The PC simply denies/allows
each request based on the blacklist/whitelist, which makes
the access control very inflexible. This inflexible strategy may
affect some websites with external links. For instance, if the
policy only allows connecting to “a.com”, other external links
(e.g. the img tag “<img src=‘b.com/1.png’>”) in “a.com”
will also be blocked. We cannot view any the images which
are not in the domain of “a.com”. Parental controls will also
fail to block online games when the games are not in the
blacklist. If the policies change with applications and time,
we may need to use two accounts with different policies, and
set the active period of each account. Furthermore, since
these policies are OS-level filters, they can be bypassed by
using a private TCP/IP stack.

With the assist of SDF, we can enable a flexible man-
agement of network accessibility with only one account, as
depicted in Fig. 15 (the audit server is not presented). We
first adopt three proactive flow rules to forward requests
to “a.com”, forward all responses, and report other requests
to the controller. Second, we apply a security rule to check
whether the packet is triggered by applications which con-
sume more than 50% CPU or 50% memory. In such cases, it
may be generated by some online games. Third, we design
a Dst Analyzer to check whether the current request is in
the external links of the previous request3, and decide the
action of each request to other domains. Finally, we adopt a
security policy control app to deliver each received request to
the Dst Analyzer and set the trigger time to 08:00 to 18:00
(free network accessibility during other time). Notice that in
the design of Dst Analyzer, we do not add new flow rules into
the traffic monitor (e.g. IP DST=b’s IP, FORWARD). This
ensures the requests to “b.com” will also be dropped even
when “b.com/1.jpg” appears in the external links of “a.com”.
In this way, we enable a flexible way for parental network
controls.

In our test, we allow “google.com”, and then search “Face-
book” in Google Image. The result shows all images (the
URLs of theses images belong to external links). We also try
to connect to “www.facebook.com” at 17:55, but blocked.
The connection request is allowed at 18:05. We use Warcraft

3The Dst Analyzer should also filter internal links to avoid flushing
EL. We do not present the detail of Dst Analyzer since we only show
a simple example.



to test our traffic, and find some Warcraft traffic and software
updating traffic can be logged.

5 LIMITATION AND DISCUSSION

Traffic monitor on NIC. We have pointed out that the
traffic monitor component can be implemented on either
switch side or NIC side, and this paper presents a more
common scenario that the traffic monitor is a specific net-
work hardware. Actually, the NIC-side implementation is
more convenient for common users. Besides, the switch-side
implementation is more complex with multiple hosts. The
value of IN PORT field should be more than two (to identify
different hosts), and the control apps should be separated
into different groups to isolate the management of each host.
We regard the NIC-side implementation as a more promis-
ing solution, but the hardware resource limitation can be
an obstacle. Therefore, our intention is to implement and
optimize SDF on NIC side with limited hardware resources
in the future.

Delay in application-level traffic control. Application-
level traffic control provides a more flexible way for traffic
engineering. Even though SDF is able to provide application-
level table-miss control by associating the host information
with each packet on the host side, the traffic monitor cannot
conduct this association without the port− host info table.
It seems that regarding all packets as table-miss packets
(OFMatch:*, Action=REPORT) can be a simple solution,
and the control apps can then receive and identify the host
information of each packet. However, this naive solution in-
curs much overhead into the network (e.g. long delay and
significant bandwidth consumption) in switch-side traffic
monitor implementation. Our intention is to maintain the
port−host info table on the traffic monitor side, and create
task, CPU , memory fields in the header. Though maintain-
ing the table consumes some bandwidth, the overhead is
significantly less than the naive solution. Since this solution
modifies OpenFlow protocol by introducing additional fields
and port − host info table, it might be impractical in the
switch-side implementation scenarios.

Evasion of SDF. SDF collects host information from
the host status monitor to identify illegal packets. However,
malware can also hook the APIs of host status monitor
to provide fake host information for the attack detection
and audit server. In such scenarios, we suggest the network
administrator train the classifier to get the normal network
behavior of each application with the application’s traffic.
Considering a client application, it normally connects to a
DNS server to get the server’s IP and establishes a connection
to the server. When the SDF detects TCP packets before
DNS queries, it can report these suspicious events to the
network administrator for further analysis. Besides, SDF can
also use some “checkpoints” to verify the host status. For
instance, when several services are activated, the CPU and
memory utilization rate should be in a range.

SDN attacks on control and/or data plane. Since
SDF is implemented following the mechanisms in SDN, it
might suffer some specific attacks. We have shown that the

audit server can verify the flow entries on the traffic monitor
and alert the network administrator when inconsistencies are
found. However, identifying which kind of attacks still lies in
the realm of the network administrator. Besides, SDN-aimed
attacks such as data-to-control plane saturation attacks [24]
and network topology poisoning attacks [8] (network topology
poisoning attacks only work in switch-side implementation
scenarios) can also be potential threats to SDF. The user can
limit some network traffic or deliver the attack traffic to a
specific device to mitigate data-to-control plane saturation
attacks [5, 24, 28], and use fixed topology or verify the legality
of link layer discovery protocol (LLDP) packets to avoid
network topology poisoning attacks [8]. Furthermore, existing
SDN security systems [14, 18, 29], can also facilitate users
against these attacks.

6 RELATED WORK

Malware traffic detection. Since most malware needs net-
work connections to conduct malicious activities, the detec-
tion of these malicious traffic attracts much attention of
recent studies [1, 4, 11, 17, 26, 30]. Perdisci et.al. present a
network-level behavioral malware clustering system by an-
alyzing the structural similarities among malicious HTTP
traffic traces generated by HTTP-based malware [17]. The
detection is effective for HTTP-based malware, but it does
no show structural similarities of other protocols. To deal
with packets of other protocols, Amann et.al. propose a novel
network control framework that provides passive network
monitoring systems with a flexible and unified interface for
active response [1]. Though the interface for monitoring is
flexible, it does not involve host information to ensure a
precise result. Jackstraws identifies command and control
connections from bot traffic [11]. It leverages host-based in-
formation and associates each network connection with a
behavior graph for the classification. Another approach pro-
vides an Internet worm monitoring system based “detecting
the trend” with Kalman filter [30]. An accurate signature
tree is proposed to detect polymorphic worms in [26].

SDN security. The approaches in SDN security can
be classified into two directions: SDN-self security, which
analyzes the vulnerabilities and potential threats in SDN
[2, 5, 6, 12, 24]; and SDN-enabled security, which utilizes
SDN to solve traditional network problems [7, 10, 13, 23, 25].
This paper mainly focuses on the SDN-enabled security. Shin
et.al. investigate how the new features provided by SDN can
enhance network security and information security process
[23]. Many examples of security applications are presented,
including firewall, intelligent honeypot, and network-level ac-
cess control. To facilitate accurate detection as well as flexible
resolution of firewall policy violations in dynamic OpenFlow
networks, FlowGuard framework is proposed to support the
stateful firewall for SDNs with various toolkits for supporting
visualization, optimization, migration, and integration of SD-
N [10]. Besides network security, SDN also brings new insights
into device security. PBS is a new security solution to enable
fine-grained, application-level network security programma-
bility for the purpose of network management and policy



enforcement on mobile devices [7]. By abstracting mobile
device elements into SDN network elements, PBS provides
network-wide, context-aware, app-specific policy enforcement
at run-time.

7 CONCLUSION

Personal firewalls always fail to detect malicious traffic when
malware adopts a private TCP/IP stack. Such traffic may also
escape the detection from network firewalls. Motivated by the
concept of SDN, we propose SDF, a programmable firewall to
detect malicious traffic by abstracting traditional firewall into
control and data planes. SDF monitors traffic on a network
hardware to avoid being bypassed by malware, and collects
host information to conduct a more precise classification to
identify malicious traffic and provide application-level traffic
control. SDF also enables programmable security control,
which allows control apps to dynamically update the network
security policies. Experimental results show that SDF can
monitor all network traffic and improve the accuracy of attack
detection. Besides, it also alerts the network administrator
about the inconsistencies of flow entries when malware attacks
the controller. We believe with the assist of SDF, many
existing security solutions could be solved in an easier and
more flexible way.

ACKNOWLEDGEMENT

This work was supported in part by NSFC 61772446, HK
PolyU G-UACH, NSFC 61502394, and the Fundamental
Research Funds for the Central Universities 3102017OQD097.

REFERENCES
[1] Johanna Amann and Robin Sommer. 2015. Providing Dynamic

Control to Passive Network Security Monitoring. In Proc. of
the International Symposium on Recent Advances in Intrusion
Detection (RAID).

[2] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.
2015. A Distributed and Robust SDN Control Plane for Trans-
actional Network Updates. In Proc. of the IEEE International
Conference on Computer Communications (INFOCOM).

[3] Chang Chih-Chung and Lin Chih-Jen. 2017. LIBSVM. https:
//www.csie.ntu.edu.tw/∼cjlin/libsvm/. (2017).

[4] Juan Deng, Hongda Li, Hongxin Hu, Kuang-Ching Wang, Gail-
Joon Ahn, Ziming Zhao, and Wonkyu Han. 2017. On the Safety
and Efficiency of Virtual Firewall Elasticity Control. In Proc. of
the Network and Distributed System Security (NDSS).

[5] Shang Gao, Zecheng Li, Bin Xiao, and Guiyi Wei. 2018. Security
Threats in the Data Plane of Software-Defined Networks. IEEE
Network (2018).

[6] Shang Gao, Zhe Peng, Bin Xiao, Aiqun Hu, and Kui Ren. 2017.
FloodDefender: Protecting Data and Control Plane Resources un-
der SDN-aimed DoS Attacks. In Proc. of the IEEE International
Conference on Computer Communications (INFOCOM).

[7] Sungmin Hong, Robert Baykov, Lei Xu, Srinath Nadimpalli, and
Guofei Gu. 2016. Towards SDN-Defined Programmable BYOD
(Bring Your Own Device) Security. In Proc. of the Network and
Distributed System Security (NDSS).

[8] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. 2015.
Poisoning Network Visibility in Software-Defined Networks: New
Attacks and Countermeasures. In Proc. of the Network and
Distributed System Security (NDSS).

[9] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. 2012. Detecting
and Resolving Firewall Policy Anomalies. IEEE Transactions on
Dependable and Secure Computing (TDSC) 9 (2012).

[10] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao.
2014. FLOWGUARD: Building Robust Firewalls for Software-
Defined Networks. In Proc. of the ACM Workshop on Hot Topics

in Software Defined Networking.
[11] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten

Holz. 2011. JACKSTRAWS: Picking Command and Control
Connections from Bot Traffic. In USENIX Security Symposium
(USENIX Security).

[12] Samuel Jero, William Koch, Richard Skowyra, Hamed Okhravi,
Cristina Nita-Rotaru, and David Bigelow. 2017. Identifier Binding
Attacks and Defenses in Software-Defined Networks. In Proc. of
the USENIX Security Symposium (Security).

[13] Soyoung Kim, Sora Lee, Geumhwan Cho, Muhammad Ejaz
Ahmed, Jaehoon Jeong, and Hyoungshick Kim. 2017. Preventing
DNS Amplification Attacks Using the History of DNS Queries
with SDN. In Proc. of the European Symposium on Research in
Computer Security (ESORICS).

[14] Seungsoo Lee, Changhoon Yoon, Chanhee Lee, Seungwon Shin,
Vinod Yegneswaran, and Phillip Porras. 2017. DELTA: A Security
Assessment Framework for Software-Defined Networks. In Proc.
of the Network and Distributed System Security (NDSS).

[15] Zhen Ling, Junzhou Luo, Kui Wu, Wei Yu, and Xinwen Fu. 2014.
TorWard: Discovery of Malicious Traffic Over Tor. In Proc. of the
IEEE International Conference on Computer Communications
(INFOCOM).

[16] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulka-
r, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan
Turner. 2008. OpenFlow: Enabling Innovation in Campus Net-
works. In ACM SIGCOMM Computer Communication Review.

[17] Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behav-
ioral Clustering of HTTP-Based Malware and Signature Genera-
tion Using Malicious Network Traces. In Proc. of the Symposium
on Network System Design and Implementation (NSDI).

[18] Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner,
and Vinod Yegneswaran. 2015. Securing the Software Defined
Network Control Layer. In Proc. of the Network and Distributed
System Security (NDSS).

[19] Broadcom. 2017. Broadcom BCM56960 Series. https://www.broa
dcom.com/products/Switching/Data-Center/BCM56960-Series.
(2017).

[20] Microsoft. 2013. The evolution of Rovnix: Private TCP/IP stack-
s. https://blogs.technet.microsoft.com/mmpc/2013/07/25/the-e
volution-of-rovnix-private-tcpip-stacks/. (2013).

[21] Open Networking Foundation. 2012. OpenFlow Switch Specifica-
tion v1.3.0. https://www.opennetworking.org/images/stories/do
wnloads/sdn-resources/onf-specifications/openflow/openflow-s
pec-v1.3.0.pdf. (2012).

[22] RYU SDN Framework Community. 2013. RYU Controller. https:
//osrg.github.io/ryu/. (2013).

[23] Seungwon Shin, Lei Xu, Sungmin Hong, and Guofei Gu. 2016. En-
hancing Network Security through Software Defined Networking
(SDN). In Proc. of the International Conference on Computer
Communication and Networks (ICCCN).

[24] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei
Gu. 2013. AVANT-GUARD: Scalable and Vigilant Switch Flow
Management in Software-Defined Networks. In Proc. of the ACM
Conference on Computer & Communications Security (CCS).

[25] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith.
2016. Enabling Practical Software-defined Networking Security
Applications with OFX. In Proc. of the Network and Distributed
System Security (NDSS).

[26] Yong Tang, Bin Xiao, and Xicheng Lu. 2011. Signature Tree Gen-
eration for Polymorphic Worms. IEEE Transactions on Com-
puters (TC) 60 (2011).

[27] Ilenia Tinnirello, Giuseppe Bianchi, Pierluigi Gallo, Domenico
Garlisi, Francesco Giuliano, and Francesco Gringoli. 2012. Wire-
less MAC Processors: Programming MAC Protocols on Commod-
ity Hardware. In Proc. of the IEEE International Conference
on Computer Communications (INFOCOM).

[28] Haopei Wang, Lei Xu, and Guofei Gu. 2015. FloodGuard: A
DoS Attack Prevention Extension in Software-Defined Networks.
In Proc. of the IEEE/IFIP Dependable Systems and Networks
(DSN).

[29] Xitao Wen, Bo Yang, Yan Chen, Chengchen Hu, Yi Wang, Bin Liu,
and Xiaolin Chen. 2016. SDNShield: Reconciliating Configurable
Application Permissions for SDN App Markets. In Proc. of the
IEEE/IFIP Dependable Systems and Networks (DSN).

[30] Cliff C Zou, Weibo Gong, Don Towsley, and Lixin Gao. 2005.
The Monitoring and Early Detection of Internet Worms. In
IEEE/ACM Transactions on Networking (TON), Vol. 13.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
https://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
https://blogs.technet.microsoft.com/mmpc/2013/07/25/the-evolution-of-rovnix-private-tcpip-stacks/
https://blogs.technet.microsoft.com/mmpc/2013/07/25/the-evolution-of-rovnix-private-tcpip-stacks/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/

	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 Adversary Model
	2.2 SDN Background
	2.3 Problem and Challenge

	3 System Design
	3.1 System Model and Architecture
	3.2 Traffic Monitor
	3.3 Host Status Monitor
	3.4 Control App Abstraction
	3.5 Attack Detection
	3.6 Audit Server

	4 Experiment
	4.1 Implementation
	4.2 Setup
	4.3 Experimental Result
	4.4 Use Case

	5 Limitation and Discussion
	6 Related Work
	7 Conclusion
	References

