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Abstract—With the development of sensing technology, smartphones can provide various kinds of data, including inertial sensing
data, WiFi data, depth data and images. These data make it possible to construct accurate indoor floor plans that are the critical
foundations of flourishing indoor location-based services for smartphone. However, even with the popular crowdsourcing approach, the
wide construction of indoor floor plans has not yet to be realized due to the intensive time consumption. In this paper, we utilize deep
learning techniques to build PlanSketcher, a system that enables one user to construct fine-grained and facility-labelled indoor floor
plans accurately. First, the proposed system extracts novel integrated features to recognize diverse landmarks. Second,
traverse-independent hallway topologies are constructed based on the sensing data, depth data and images through the proposed
hallway construction algorithms. Finally, PlanSketcher constructs the room shape and labels recognized facilities in their corresponding
positions to generate a complete indoor floor plan. Because PlanSketcher exploits different kinds of data collected from smartphones
with new feature extraction method, it can obtain accurate indoor floor plan topology and facility labels. We implement PlanSketcher
and conduct extensive experiments in 3 large indoor settings. The evaluation results show that the 90th percentile accuracy of
positions and orientations of facilities are 1m ~ 2.5m and 4° ~ 6°, while 85% ~ 95% facilities are recognized and labelled precisely.

Index Terms—Indoor floor plan construction, sensing data, facility label, energy consumption, smartphone.

1 INTRODUCTION

‘ N J ITH the development of mobile communication networks

and Internet of Things (IoT), a large amount of data are
generated on a daily basis. Such huge data make the network
systems super-complex and very difficult to model and manage.
Benefitted from the advanced data analysis techniques (such as
the artificial intelligence), the novel data-driven network man-
agement will enable us to dynamically and adaptively meet with
the spatio-temporal network demands in the most resource-aware
and resource-smart manner. In various spatio-temporal network
demands, location based service (LBS) [1], [2] is one of the
most important network service applications. Abundant outdoor
location based services [3], such as finding nearby point-of-
interests (POIs), localization, and navigation, have been provided
through the online digital maps (e.g., Google Maps). However,
for indoor environments where people spend over 80% of the
time, similar indoor location based services are still not widely
supported.This is because the fundamental infrastructures, i.e.,
indoor digital maps, are extremely scarce and unavailable in
most buildings. In order to construct indoor digital maps, service
providers have to conduct effort-intensive and time-consuming
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business negotiations with building owners or operators to collect
the floor plans, or wait for them to voluntarily upload such
data. Neither is conducive to large scale coverage in short time.
Therefore, under many resource constraints such as user privacy
and computation power of mobile devices, accurate and scalable
indoor floor plan construction method at low costs is urgently
needed.

Driven by the flourishing of smartphones and their capability
of processing diverse data, we are motivated to construct indoor
floor plans by these new techniques. Through analysing sensing
data gathered from smartphones, we can capture crucial geo-
graphic features of indoor environments [4]. Many efforts have
been devoted to construct indoor floor plans using smartphones by
crowdsourcing [5], [6], [7]. CrowdInside [8] first utilized inertial
sensing data to automatically generate user traces and construct
indoor pathways. Walkie-Markie [9] used locations where the
trend of WiFi signal strength changed as the landmarks to con-
struct indoor floor plans. Jigsaw [10] inferred the approximate
structures and shapes of hallways and rooms from the inertial data
and images. CrowdMap [11] utilized sensor-rich video data from
mobile users for indoor floor plan construction. Shopprofiler [12]
resorted to SSIDs collected in each shop to infer the categories
and names of shops.

However, there are some limitations in current indoor floor
plan construction systems. First, most of the existing systems
utilize crowdsourcing to collect data, which will encounter the
slow-start problem. These systems often need users to install
applications in their smartphones which is not preferred in consid-
eration of privacy and security. If not enough users participate, the
collected data are insufficient to construct accurate indoor floor
plans. Collecting a large amount of sensing data will consume
much energy in smartphone, which is a critical constraint for these
methods. Second, to construct accurate indoor floor plans, users
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need to traverse all hallways and corners in indoor environment.
However, hallways are often blocked by furniture or other objects.
Third, the constructed indoor floor plans with existing methods
often lack valuable labels to guide users. Users may not find
their destinations or know the surroundings with a floor plan
without facility labels. Although Shopprofiler [12] recognizes the
categories and names of shops and labels them in the floor plans,
the accuracy of recognition can still be improved. The reason is
that some areas are unreachable and the WiFi access service is
usually provided by the shopping mall which results in the same
WiFi SSID in all shops. It is extremely crucial to provide a user-
friendly floor plan with facility labels for location-based services.
As a consequence, we ask the following question: Is it feasible to
enable a user to easily construct his own indoor floor plans by
himself without compromising on location accuracy and facility
labels?

In this paper, we provide an affirmative answer through the
systematic design and implementation of PlanSketcher, which
utilizes deep learning technique to construct facility-labelled and
highly fine-grained indoor floor plans using smartphone. Differ-
ent from current schemes, the proposed PlanSketcher constructs
indoor floor plans with various data collected by a single person.
This manner can save extensive manpower and energy consump-
tion to effectively construct indoor floor plans and protect the
user’s privacy. Utilizing the mature object detection technique,
the proposed system can also provide abundant valuable labels
to distinguish various facilities. Moreover, the constructed indoor
floor plans with PlanSketcher are highly fine-grained (e.g., accu-
racy within 1m ~ 2.5m), thus users can locate their positions
more precisely and receive much better location-based services.

Compared with previous works, PlanSketcher has the fol-
lowing advantages: (1) Recognizing more landmarks with high
accuracy from collected data to improve the accuracy of the
constructed indoor floor plans. (2) Constructing more accurate
hallway topology from the landmarks, depth data and images
with less energy consumption. (3) Constructing more accurate
room shape with less energy consumption and labeling recognized
facilities precisely in the indoor floor plans.

In this paper, we make following contributions:

e We propose the PlanSketcher system architecture to con-
struct fine-grained and facility-labelled indoor floor plans
with less energy consumption in smartphone.

e We develop novel landmark recognition approaches to
detecting various landmarks from the inertial sensing data,
WiFi signals and images. Adequate landmarks are recog-
nized such that our system is reasonably accurate.

o We present hallway construction algorithms to construct
the topology of hallways with high fine-granularity. A new
method is proposed to construct hallways that a user has
traversed by fusing the depth data, inertial sensing data and
images. Considering the robustness of system, we also pro-
pose the corresponding measurement calibration method.
In addition, a novel Non-Traversed Hallway Construction
method is designed to construct the hallways which are
not traversed by a user.

e We design a labelled room construction method to con-
struct the room shape from depth data and label facilities
in their corresponding positions to generate a complete
indoor floor plan. Different from most previous works, the
proposed method does not need user to traverse in the
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Fig. 1: PlanSketcher System.

room and can achieve a high accuracy and provide users
valuable room information.

o In addition, we develop the prototype and conduct exten-
sive evaluations across 3 large complex indoor settings
on a variety of mobile devices. The results illustrate that
our proposed PlanSketcher outperforms the state-of-the-art
methods with smaller position and orientation error, more
recognized facilities and less energy consumption.

The rest of this paper is organized as follows. We first provide
the system overview of PlanSketcher in Section II. Then we
detail each module of our system in Section III, IV and V. The
implementations and evaluation are illustrated in Section VI. We
further review the related works in Section VII and conclude our
work in Section VIIL

2 DESIGN OVERVIEW

PlanSketcher system leverages inertial sensing data, depth data
and images collected from smartphones to construct fine-grained
and facility-labelled indoor floor plans with less energy consump-
tion. High-performance sensors integrated in modern smartphones
provide abundant information to depict user motion patterns and
indoor architectural structures. With the rise of Augmented Reality
(AR) technique, the time-of-flight (TOF) depth camera has been
equipped within more and more smartphones. The TOF depth
camera can obtain the distance between the camera and the
subject for each point in the image through measuring the time-
of-flight of a laser light. Images captured by cameras equipped
with smartphones offer luxuriant visible and valuable description
about surroundings. Fig. 1 sketches the PlanSketcher system
architecture. In the following, we describe four modules of the
system briefly.

Data collection. Various inertial sensing data, WiFi data,
depth data and images are gathered from smartphone while users
move around in the indoor environment. Smartphone sensors such
as accelerometer, gyroscope and magnetometer could measure
acceleration, rotational velocity and magnetic field respectively.
TOF depth camera obtains the distance between the camera and
the subject for each point in the image. In addition, users leverage
cameras to capture images of corners and facilities.
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Fig. 2: RSSI value drops and reverses when the user enters and
leaves the elevator.

Landmark recognition. PlanSketcher recognizes real land-
marks and virtual landmarks existing in a building. We first extract
novel efficient integrated features (inertial sensing data and WiFi
signals) to recognize the real landmarks, which involve elevators,
escalators and stairs etc. Then two photographing manners: Corner
Photographing Manner (CPM) and Facility Photographing Manner
(FPM) are proposed to gather various information to recognize
the virtual landmarks (hallway corners, stores and restrooms etc).
Moreover, to distinguish various hallway corners, we define the
novel and unique fingerprint for each corner through recognizing
the store or room names from images with advanced deep learning
technique.

Hallway construction. With the recognized landmarks, the
topology of hallways is constructed based on the inertial sensing
data, depth data and images. We divide the hallway construction
into two types: user traversed hallways and user non-traversed
hallways. A new method is proposed to construct hallways that
a user has traversed by fusing the depth data, inertial sensing
data and images. Considering the robustness of system, we also
proposed the corresponding measurement calibration method. We
propose the novel Non-traversed Hallway Construction method to
construct complete floor plans through matching the fingerprints
of corners, even hallways are not traversed by the user.

Labelled room construction. To generate a relatively com-
plete indoor floor plan, PlanSketcher constructs room shape from
depth data and label recognized facilities in their corresponding
positions. Different from most previous works, the user collects
3D depth data of the ceiling at the entrance instead of traversing
in the room to construct room shape. Utilizing the projection of 3D
depth data in the horizontal plane, PlanSketcher detects the edges
and infer the geometric vertices. To label the recognized facilities
(such as elevators, escalators, shops, etc), PlanSketcher calculates
the position of facility entrance and its orientation.

Different from the data collection approaches adopted in
prior works [8], [12], [13], our proposed system could construct
accurate labelled indoor floor plans by a single person from a small
amount of data. It is assumed that the participate user collects data
though our defined photographing manners: Corner Photographing
Manner (CPM) and Facility Photographing Manner (FPM).

3 LANDMARK RECOGNITION

In this section, we describe the method to extract novel integrated
features from human motion patterns and images to recognize
various landmarks in a building. Special architectural structures,
such as elevators, hallway corners and rooms, are critical to
construct indoor floor plans because they describe the principal
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Fig. 3: RSSI and magnetic field changes when the user takes the
escalator.
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Fig. 4: A generalized framework for real landmark recognition.

architectural features of a building. The floor plans could be
constructed more accurately if these structures are recognized and
located precisely.

We consider these structures as landmarks which are divided
into two categories: real landmarks and virtual landmarks. Real
landmarks compel people to move in the expectable motion
patterns. Virtual landmarks are detected through matching two
proposed photographing manners and recognizing the captured
images.

3.1 Real Landmark

When people are moving within the elevators, escalators and
stairs, sensing data collected by acceleration and magnetometer
will present distinct features. These real landmarks are distin-
guished by recognizing unique features extracted from the magni-
tude of accelerometer and magnetometer [8], [14]. However, the
recognition is erroneous (false positive or false negative) because
the sensing data are easily disturbed by the unstable environment
or the body’s moving vibration.

To solve this problem, we combine the Received Signal
Strength Indicator (RSSI) value of WiFi connection with the
sensing data to recognize three common landmarks: elevators,
escalators, and stairs. This idea is inspired by the observation
of correlation between the RSSI value and human position. Fig.
2 plots the differentials of RSSI value against accelerometer
magnitude when the user takes an elevator. This figure shows that
when the user enters the elevator and the door is closing, the RSSI
value drops to an undetectable level due to the shielding effect
of metal materials. When the elevator stops to open the door, the
RSSI value reverses to the normal level. Similarly, we can also
separate the escalator from the human stationary case utilizing
the variance of RSSI field and magnetic field. In both cases, the
accelerometer magnitude tends to be stable, but the RSSI field and
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(a) A corner. (b) A T-junction. (c) A crossroad.

Fig. 5: Corner Photographing Manner (CPM).
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Fig. 6: Illustration of multiple rooms recognition via deep learning.

magnetic field will change obviously when the user moves within
the escalator (shown in Fig. 3).

In Fig. 4, we give a generalized framework to recognize differ-
ent real landmarks and movements, including elevators, escalators,
stairs, walking, and stationary. In the decision tree, the top level
can recognize the elevator from the proposed pattern (as shown in
Fig. 2). Then the second level distinguishes the variable velocity
classes (walking and stairs) from the constant velocity classes
(escalator and stationary) based on the variance of the acceleration.
The last level separates walking and stairs by the correlation
of accelerations in Z and Y axes, and separates escalator and
stationary by the proposed pattern (as shown in Fig. 3). Thus,
by integrating the RSSI value with the sensing data, PlanSketcher
is inherently more robust than existing methods which merely look
into the acceleration and magnetometer reading.

3.2 Virtual Landmark

Hallway corners and rooms depict the basic characters of indoor
environments. Because images could provide more diverse and
reliable descriptions about indoor settings than the sensing data,
we recognize corners and rooms from images and model them
as the virtual landmarks. Two photographing manners: Corner
Photographing Manner (CPM) and Facility Photographing Manner
(FPM) are proposed to gather data to recognize virtual landmarks.
Moreover, to distinguish various corners, we define the novel and
unique fingerprint for each corner through recognizing the room
names from images with advanced deep learning technique.

Corner Photographing Manner (CPM). In PlanSketcher, we
design Corner Photographing Manner (CPM) which defines a few
actions for the user to collect the inertial data and images of corner.
As illustrated in Fig. 5, when the user is traversing a corner, he
takes a photo of the hallway with some rooms in one direction and
then spins his body to photograph in another direction. During
this process, the gyroscope and accelerometer offer the angular
velocity and acceleration measurements, and the photographing
behaviors are also recorded.

Detecting the corners from the CPM. As shown in Fig. 7,
the bumps (upward or downward) of gyroscope readings show that
the user is turning left or right. During the two bumps, the user is
capturing a photo of the hallway. Because the user just rotates his
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Fig. 7: Gyroscope and accelerometer measurements when the user
photographs at the corner.

Fig. 8: Two stores are detected from the image captured at the
corner.

body during the photographing, the accelerometer magnitudes stay
stable with less jitters. Triggered by the photographing behavior,
the special characteristics emerged in the inertial data can indicate
that the user is at the corner.

Distinguishing the corners with the fingerprints. Leveraging
the advanced deep learning technique, we propose a method to
precisely recognize multiple room names in a hallway image based
on their various logos. In order to distinguish various corners, we
further define the fingerprint of corner utilizing the recognized
room names.

Convolutional neural network (CNN) is a dominant deep
learning approach for object recognition in images. It can predict
the label of a given image after training the network. However,
because more than one room may be captured in a hallway
image, directly using CNN to classify the image cannot recog-
nize multiple rooms simultaneously. Thus, in PlanSketcher, we
precisely recognize multiple rooms in a hallway image from their
logos based on the object detection technique [15] and the latest
CNN architecture, i.e., deep dense convolutional neural network
(DenseNet) [16]. The process of multiple rooms recognition via
DenseNet is illustrated in Fig. 6. First, about 3000 subregions are
extracted from the input image utilizing the selective search [17].
Then for each extracted subregion, we use a trained DenseNet to
recognize the room logo and classify its label. Because extracted
subregions may have overlap, many different subregions can be
classified into the same room. We further remove redundant
subregions of a room by calculating and comparing both the
intersection-over-union (IoU) overlap and classification scoring.
In addition, to conduct the room recognition by the DenseNet,
a training data set is built in advance. The training images are
collected from two parts, which contains 2,000 images about 100
categories of facilities, alphabet and numbers. The first part images
(300 out of 2000 samples) are collected via photographing the
facilities from various viewpoints in the real situation (different
from the test buildings). The second part images (1700 out of
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Fig. 10: Facilities are recognized from the photos.

2000 samples) are downloaded from the internet to enable the
generality of the images. Thus, given a set of images of the
target objects (e.g., the logos of various stores, alphabet and
numbers) from different viewpoints, our method can recognize:
1) the target rooms contained in each image; and 2) the spatial
relations between these rooms. Fig. 8 shows that two rooms are
detected in the image captured at the corner.

Once the room is detected, we obtain the corresponding name
which is associated with the room. The closer the detected room
is to the center of image, the farther it is to the photographer’s
location (the corner). After recognizing the rooms in each direction
of the corner, we define the fingerprint of corner C; as

Ny Niy -~ Ni,

o , Ni, N, N3,
Fi=[fl, s fi" =1 | ) : (1)

b N Nim

where ffl is sequence of room names detected in the direction
n of corner C;, and N!  is the name of the mth room along
the direction n. Thus, the generated fingerprint of corner can be
viewed as a unique identification to distinguish various corners.

Facility Photographing Manner (FPM). In PlanSketcher,
we design Facility Photographing Manner (FPM) for the user
to gather the inertial data and images of facilities. The facilities
involve various kinds of rooms in the buildings, such as stores and
restrooms etc. As illustrated in Fig. 9, when the user is traversing
a facility (such as a store), he stops and turns to face the facility
to take a photo which contains the facility logo. At the same time,
the gyroscope and accelerometer record the angular velocity and
acceleration measurements.

Recognizing facilities from the FPM and image. Similar to
the hallway corner, the facility is detected through the proposed
FPM. Leveraging the object detection technique, PlanSketcher
obtains the names and categories of facilities from the captured
photos. During the object detection process, the training examples
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Fig. 11: The model of hallway and corner.

are given as the triples < name, category,images >, which
indicate the correspondences between the names and categories
of target facilities and their images. The training images are
gathered via photographing the facilities from different viewpoints
or downloading from the Internet. Based on the observations
of multiple indoor environments, we distribute the facilities into
seven classes {fashion}, {supermarket}, {accessories}, {personal
care}, {electronics }, {food} and {others}. Thus, when a facility is
recognized from the image, the corresponding name and category
are obtained. Fig. 10 shows that facilities are recognized from the
captured photos.

4 HALLWAY CONSTRUCTION

After recognizing various landmarks, we construct the topology of
hallways based on the inertial sensing data, depth data and images.
Especially, we identify two scenarios in hallway construction: 1)
constructing hallways which are traversed by the user with high
fine-granularity, and 2) constructing hallways which the user has
not traversed. We illustrate these two scenarios as follows.

4.1 Constructing Traversed Hallways

It is not trivial to construct the hallway topology with high fine-
granularity. Although the hallway topology could be derived from
the user’s trajectories tracked by the inertial sensors [18], the
accuracy of construction is relatively coarse. Thus, for hallways
traversed by a user, we propose a novel method to construct the
hallway utilizing the inertial sensing data, depth data and images.
To formally define this problem, we represent a hallway
segment and a corner as a line segment and a cross point, and
denote them as C;C; and C, respectively (shown in Fig. 11).
Thus k corners have a set of cross points C = {C1,Cs,...,Ci}.
D € Rand w € [—m,7) are the set of the distances of hallways
and angles between them. To construct the fine-grained hallway
topology, our system calculates the configuration < D, w > of
hallways, where D = (d1,ds, ..., d,), w = (w1,wa, ..., Wn).
Measuring and calibrating the distance D: In this part, we
propose a new method to calculate the distance of a hallway
through the accelerometer and the depth camera. When a user
traverses the hallway, he needs to stop and capture images of
rooms distributed along the hallway by Facility Photographing
Manner (FPM). This gives us a chance to transfer the problem of
calculating the distance d of hallway to the problem of calculating
the distance p between two photographing positions as follows:

a=3p @
i=1
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Fig. 13: Measuring the angle between two crossed hallways.

where p; denotes the distance of two adjacent photographing
positions.

Depth data: With the rise of Augmented Reality (AR) tech-
nique and the improvement of smartphone computing power,
many new sensors have been equipped, such as time-of-flight
(TOF) depth camera. The TOF depth camera can obtain the
distance between the camera and the subject for each point in
the image through measuring the time-of-flight of a laser light.
Thus, similar with the normal RGB camera, a 3D depth image can
be captured by the TOF depth camera with the depth of each point
known. Because of the internal property of TOF depth camera,
the measured distance can achieve a high accuracy in centimetre
level.

We measure the distance between two photographing positions
through two manners: accelerometer and depth camera. First, be-
tween two adjacent photographing positions, the steps are detected
and counted from the acceleration data [14], [19], as shown in Fig.
12. The distance is calculated by multiplying the step count with
the step size which could be estimated from the user’s weight and
height. Second, when the user captures an image in the corner
or turns to face the hallway after photographing a room, a 3D
depth image of the hallway will be captured by the depth camera.
Through the position of the recognized room in the RGB image,
the room position can be projected into the depth image. Thus,
after projecting the 3D depth image to the horizontal plane, we can
obtain the distance between two adjacent photographing positions
from the depth image.

The distance between two photographing positions is cali-
brated by fusing two measurement results. In our system, an
effective particle filter [20] is designed to calibrate the measured
distances. After activating the data collection, PlanSketcher gen-
erates particles spread from the first photographing position. Each
particle represents a possible distance between two photographing
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Fig. 14: The tradeoff between error threshold and accuracy of 90°
corner calibration.

positions and is updated according to the detected user’s steps
from the collected acceleration data. To compensate for the differ-
ences in user’s step length, a zero mean Gaussian noise is added
to each particle’s step length. The probability density function for
particle’s step length is:

flz) =

where p is measured distance from acceleration data, o is the
standard deviation. Then, each particle is weighted by the mea-
surement of depth data. PlanSketcher gives greater weights to the
more likely particles and the less likely particles are gradually
filtered out. The centroid of weighted particles approximates
the actual distance between two photographing positions. The
weighted particles are resampled after weight normalization. Such
calibration process is repeated until the user finishes data collec-
tion.

Particle weighting: Next, we describe how PlanSketcher
weights each particle according to the observed depth measure-
ment. With the distance measured from projected depth data, a
Euclidian difference Ad; can be obtained for each particle 7. When
particles need to be updated, their weights are set according to
their corresponding Euclidian difference via a Gaussian kernel. In
particular, for the ¢-th particle, its weight is set as follows:

1 EE
e 2t 3)

2no

Ady
weight; = e~ k| 4)
where Ad; is the Euclidian difference and & is a tunable parame-
ter.

Moreover, if the hallway is traversed repetitively, we use the
average of multiple estimations to be the distance.

Measuring and calibrating the angle w: To acquire the
spatial relation of hallways, the angle w between two crossed
hallways is measured and calibrated through the photographing
manner and depth data.

First, the angle w is measured by integrating angular velocities
captured by the gyroscope. As the prescribed Corner Photograph-
ing Manner (CPM), the user holds the smartphone perpendicularly
to the earth surface to photograph in the direction of a hallway, and
then turns to another direction. So the rotation angle represents the
angle between the two hallways as illustrated in Fig. 13 (a).

Second, after measuring the angle, out system calibrates the
measurement value to the truth value for the 90° corner. The
idea comes from the observation that most of the corners in
the building are 90° and there is a distinct gap between 90°
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Fig. 15: Constructing a non-traversed hallway through image
recognition.

Fig. 16: Two reverse sequences of room names are detected from
the photos captured at the corner A and B. (Photos have been
zoomed up and clipped to be more clear.)

corner and non 90° corner. Fig. 13 (b) shows the cumulative
distribution function (CDF) of angular measurement error of 90°
corner. The measurement error is minor, which is benefited from
the prescribed manner, with a fluctuation range from —4.75° to
6.3°. We define the absolute error E; € [0, 27) of the corner C;
as:

E; = |M; - T}| 5)

where M; and T; denote the measurement value and truth value,
respectively. In PlanSketcher, we set a threshold for E to calibrate
the angle measurement of 90° corner. The threshold is equal
to 5° in our system, indicating that the measurements between
(90° — 5°) and (90° + 5°) will be calibrated to 90°. Although
relatively loose threshold improves the measurement accuracy of
90° corner, it will introduce false negative calibration. We measure
about 300 corners in different buildings and calibrate them with
various thresholds. The accuracy of calibration is shown in Fig.
14. We observe that more 90° corners can be calibrated correctly
with larger threshold. However, when the threshold is more than
9°, non-90° corner will be wrongly calibrated to 90° corner. Thus,
in our system, we set the threshold as 5° to balance the quantity
and accuracy of 90° corner calibration.

Moreover, considering some corners are not 90°, we calibrate
the measured angle by the 3D depth image. After projecting the
3D depth image to the horizontal plane, we use the line detection
algorithm [21] to extract the outer contour of the hallway. By
detecting the cross point of the outer contour, the angle of the
corner can be obtained from the 3D depth image. Similar with the
hallway distance calibration, we also calibrate the corner angle
based on the particle filter. The weight of each particle is decided
through the measured angle from the 3D depth data.

Algorithm 1: Non-traversed Hallway Construction
Input:
adjacent corner pair (C;, C});
corresponding images set pair (I;,I;);
Output:
hallway indicator vector A;

for all (C;,C;) do
initialize A with 0;
calculate fingerprint pair (F;, Fj);
for all (p,q) do
if f == reverse (f]) then
A1
break;
end
end

D= -HEE B LY B R S

end

—
=)

4.2 Constructing Non-traversed Hallways

When the hallways are interlaced in the building, it is effort-
intensive and time-consuming for the user to traverse every hall-
way. If the user traverses the hallway without repetition, a fraction
of hallways could be constructed with the above method. Thus,
the Traversed Hallways Construction method is necessary but not
sufficient to construct the integrated hallway topology.

To construct the hallways which the user has not traversed, we
design a novel Non-traversed Hallways Construction method by
comparing the sequences f of room names in various fingerprints
F' of corners. The method is motivated by the observation that
the sequences of room names (f; and f;) are reserve if they are
detected from the photos captured at the two corners of the hallway
(C; and C}). As illustrated in Fig. 15, although the user does not
traverse the hallway C;C';, the photos are captured in each direc-
tion of the two corners as the prescribed Corner Photographing
Manner (CPM). And two reverse sequences of room names (such
as [LACOSTE,GEOX] and [GEOX, LACOSTE]) could
be detected from the photos, as shown in Fig. 16. (Photos have
been zoomed up and clipped to be more clear.)

The algorithm inputs are the adjacent corner pair which are
selected from the previous detected corners and their correspond-
ing images set pair. We assume that for each adjacent corner pair
there is an indicator A € {0,1} telling whether there exists a
hallway between them. Suppose ¢ corner pairs are selected from
the previous detected corners. First, for each corner pair (Cj,
Cj), the fingerprints of two corners F; and F); are calculated
through object detection from the images as the above definition
Equation (1). Second, we compare every row of room names f;,
and fg in the fingerprints F; and F}. If two reverse sequences are
observed, the system infers that the two corners belong to the same
hallway and the hallway is constructed to connect them as a linear
segment. The whole process is described in Algorithm 1. Thus,
PlanSketcher provides an opportunity for the user to construct the
non-traversed hallway utilizing the images captured in the corner.

5 LABELLED RooM CONSTRUCTION

After obtaining the topology of hallways, we construct a relatively
complete indoor floor plan with detailed shape and room informa-
tion by: 1) room construction, and 2) facility labeling. We illustrate
these two steps as follows.
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Fig. 17: Nlustration of room shape construction.

5.1 Room Construction

The shape of room is a crucial component in indoor floor plan.
Most existing works [8], [10], [12] on room shape construction
need users to traverse in the room to collect various data (e.g,
inertial sensing data, wireless data or images). However, these
approaches are labor-intensive and the accuracy of constructed
room shape is still limited. Thus, we propose a novel method
to construct room shape from depth data with high accuracy but
without traversing in the room.

In our system, we leverage the TOF depth camera equipped
in smartphone to construct the room shape. After the user takes
a photo of a room using FPM, he the captures a 3D depth image
of the scene in the room. Considering the problem of obstacles in
the room, we ask the user to capture a depth image including the
ceiling and the connecting line of wall segments. The insight of
this manner is that the ceiling can effectively represent the room
shape with less obstacles. Fig. 17 (a) shows the scene of a room
and Fig. 17 (b) is the 3D depth image captured by smartphone.
When the user captures a 3D depth image, the pose of smartphone
can be derived from sensor readings, i.e. yaw, pitch and roll. Then
we obtain a rough room shape through projecting the 3D depth
image to the horizontal plane, as shown in Fig. 17 (c).

To construct completely room shape, we model the room by
major geometric vertices and edges. First, we use the line detection
algorithm [21] to extract the outer contour of the rough room shape
(shown in Fig. 17 (d)) and infer the line segments of the room
(shown in Fig. 17 (e)). Next, we extend the line segments to find
the major geometric vertices in the room, as the two blue points
shown in Fig. 17 (e). Then we transfer the room shape constructed
in the local coordinate system to the global coordinate system of
the indoor floor plan, according to the position of photographing.
Moreover, to derive the connecting point between the room and the
hallway, we also extend the line segments in two sides to produce
the two cross points. Fig. 17 (f) gives an example, where the blue
line is the hallway. Especially, for some irregular room, simply
capturing one depth image may not cover all boundaries of walls

in the room. The user can make a scanning of boundaries of the
ceiling to construct the room.

Different from previous works, the room construction method
we proposed do not need user to traverse in the room and can
achieve a high accuracy. This non-traversed method can save
much labor, time and energy consumption in the smartphone. And
because of the internal fine-grained property of laser measurement
in the TOF depth camera, the accuracy of constructed room shape
is improved.

5.2 Facility Labeling

In this subsection, we calculate the entrance positions and orienta-
tions of facilities and label them in the constructed hallway plans
and rooms. The names and categories of facilities are extremely
valuable information for user’s reference. It is difficult for users
to find their destinations and know the surroundings with merely
the topology of hallways and rooms. Thus the complete indoor
floor plans should provide the names, categories and positions of
facilities.

The positions of elevators, escalators, stairs (viewed as the real
landmarks) and restrooms are directly derived from the recorded
inertial sensing data and the positions of photographing. The
positions and orientations of rooms are estimated from the Facility
Photographing Manner (FPM).

The proposed FPM provides a cue to estimate the positions
of entrances E = (E1, F», ..., E,). From our practical obser-
vations, we find that the logos are usually placed on the top of
or beside the entrances. Because the user takes photos in front
of rooms, we set the photograph’s locations as the positions
of entrances, which are derived from the acceleration data. The
orientations of facilities are inferred from rotation angles when the
user photographs. The rotation angle is calibrated as the hallway
angle measurement through the threshold-based approach. After
calculating the entrance positions and orientations of facilities,
PlanSketcher labels the facility icons or names in the hallway
plans. The spatial relations of facilities are ensured from the FPM.
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Fig. 18: The Performance of Landmark Recognition.
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Fig. 19: The Performance of Hallway Construction.

Thus, it is more accurate to locate facilities than the conventional
trajectory-based approaches.

6 IMPLEMENTATIONS AND EVALUATION

In this section, we present the evaluation of key functional
components of PlanSketcher. We evaluate PlanSketcher in three
representative indoor environments for a better understanding of
the effectiveness and limitation of system.

6.1

We implement PlanSketcher on the Android platform to collect
multiple sensing data and on an Intel core i7 machine with
32GB RAM and NVIDIA TITAN X graphics card to construct
the indoor floor plan. Many different types of sensing data
are collected through smartphone, including accelerometer data,
gyroscope data, magnetometer data, WiFi data, depth data and
images. Especially, to recognize room names from images via
deep learning, a training data set is built in advance. The train-
ing images are collected from two parts, which contains 2,000
images about 100 categories of facilities, alphabet and numbers.
The first part images (300 out of 2000 samples) are collected
via photographing the facilities from various viewpoints in the
real situation (different from the test buildings in the following
section). The second part images (1700 out of 2000 samples)
are downloaded from the internet to enable the generality of the
images. Moreover, to obtain the absolute walking direction in the
indoor floor plan construction, we leverage the loss of GPS signal
to detect whether a user enters a building. The absolute walking
direction can be obtained at the building entrance. After the user
enters the building, the walking direction can be derived from
inertial sensing data.

Experimental Methodology
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Fig. 21: Energy Consumption.

6.2 Performance Evaluation

We test PlanSketcher on a variety of Android mobile devices
(Lenovo Phab2 Pro, Google Nexus 5, Samsung Galaxy S2 and
Samsung Galaxy Note 3). Especially, we use Lenovo Phab2 Pro
to gather inertial sensing data, WiFi RSSI values, depth data and
images in three large complex indoor environments: one story
of a 145m x 40m shopping mall (Building A), one story of a
100m x 40m university building (Building B) and one story of a
40m x 40m exhibition center (Building C). Because other three
mobile devices have not been equipped with depth camera, we
test their energy consumption of collecting inertial sensing data,
WiFi RSSI values and images. The lighting conditions during open
hours allow user to capture bright images. The user holds the
smartphone in a perpendicular angle to the ground to collect tra-
jectories and images in the buildings. In each environment, we take
38, 16 and 31 photos of different corners in Corner Photographing
Manner and collect 33, 27 and 17 photos of different facilities in
Facility Photographing Manner. We also gather 12, 6 and 8 user
trajectories along the hallways in each building.

Performance of Landmark Recognition. We evaluate the
quantity of recognized landmarks and the accuracy of landmarks
recognition. Fig. 18 (a) shows the quantity of landmarks recog-
nized from the sensing data and images in each building. For the
building A, the composition of the landmarks is: 5 real landmarks,
24 corners and 30 facilities. For the building B, the composition
is: 6 real landmarks, 6 corners and 17 facilities. For the building C,
the composition is: 5 real landmarks, 12 corners and 9 facilities.
Because PlanSketcher recognizes various landmarks, the well-
known cumulative error is limited to a low level, which improves
the accuracy of whole system. Fig. 18 (b) shows the accuracy
of landmarks recognition for all categories of landmarks. By
the proposed integrated features, most of the real landmarks are
recognized (only 1 missed in building A). The reason for the
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TABLE 1: The Energy Consumption on Lenovo Phab2 Pro

Mode Period Power Current Bat.t ery
Life
Sleep 0s ~ 20s 190.90mW 51.18mA 79.13h
Idle 20s ~ 40s 884.12mW | 237.03mA | 17.09h
Work 40s ~ 200s | 2390.30mW | 640.83mA 6.32h

TABLE 2: Battery Life Measurements in Different Models of
Smartphones

Energy [[ Phab2Pro | Nexus5 [ GalaxyS2 [ Note 3
CBatte‘fy 4050mAh | 2300mAh | 1800mAh | 3200mAh
apacity
Battery
Life (Work) 6.32h 4.47h 3.11h 4.91h

undetected real landmark (an escalator) is the low magnitude
of RSSI (less than -80dBm), which cannot help the acceleration
readings to present a significant feature. All corners are detected
and the recognition rate of facilities is more than 85%. Although
some landmarks are missed, the recognition still achieves a high
accuracy with the overall rate: 93.65%, 85.29% and 96.30% in
three buildings.

Performance of Hallway Construction. Precision of the
constructed hallway is a critical criteria of PlanSketcher. We use
the distance errors and angle errors of conducted hallways (i.e.,
the difference between the calculation values and the ground truth
measurements) to evaluate the performance. As shown in Fig.
19 (a), PlanSketcher generates precise distances of hallways. The
constructed hallways achieve average accuracy of 0.51m, 0.69m
and 0.83m and 90th percentile accuracy of 1.32m, 1.72m and
2.02m in each building. Because abundant landmarks are recog-
nized in the building and the accurate depth data, the accumulation
error of distance is limited to a low level. As shown in Fig. 19 (b),
PlanSketcher produces accurate angles of hallways. PlanSketcher
yields the angles of hallways, with average accuracy of 1.15°,
2.87° and 2.92° and 90th percentile accuracy of 4.14°, 5.84° and
5.42° in each building. The high accuracy is benefitted from the
stable performance of Corner Photographing Manner (CPM) and
hallway angle calibration. Most angle measurements of corners
have been calibrated to the truth values.

Performance of Labelled Room Construction. We evaluate
the performance of labelled room construction using the distance
errors of constructed rooms and position errors of facility labeling.
Fig. 20 (a) shows the distance errors of constructed room edges.
The constructed room edges achieve average accuracy of 0.84m,
0.61m and 0.72m and 90th percentile accuracy of 1.37m, 1.07m
and 1.21m in each building. Because of the internal property of
high accuracy in TOF depth camera, the distance error of edge is
limited to a low level. Fig. 20 (b) shows the position errors of room
entrances where are used to label facilities. The average errors
of room entrances are 0.94m, 0.98m, 1.1m and 90th percentile
accuracy of 1.68m, 1.79m, 2.23m in each building. The high
accuracy of facility positions is achieved, because abundant rec-
ognized landmarks in the buildings help to calibrate the measured
distances.

Energy Consumption. PlanSketcher employs inertial sensors,
WiFi, camera as well as depth camera to collect various data for
indoor floor plans construction. Thus, given the energy bottleneck
of smartphones, the energy consumption issues should be taken
into consideration and discussion for practical use. We measure the
energy consumption on various models of smartphones utilizing
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TABLE 3: The Performance Comparison

Category [ Jigsaw | Shopprofiler [ PlanSketcher
Position 2m ~ 3m 2m ~ dm 1m ~ 2.5m
error
Orientation 6° ~ 9° 80 ~ 15° 40 o 6°
error
Facility None 9~ 25 20 ~ 40
quantity
Recognition None 30% ~ 60% | 85% ~ 95%
Energy 843mAh ~ | 411mAh ~ 224mAh ~
Consumption 1278mAh 634mAh 358mAh

the Monsoon power monitor [22]. The power monitor directly sup-
plies power to the smartphone and accurately tracks the current,
voltage and power. To precisely measure the energy consumption
of PlanSketcher, all background services and applications are
turned off. The WiFi module is turned on and the screen brightness
is set to auto-adjustment mode. All the sensor modules and WiFi
module are sampled and processed in real time. As the smartphone
has to be wired with the power monitor for measurement, we
keep the smartphone stationary or moving in limited space. We
synthetically trigger image capture in PlanSketcher every 5s to
20s.

Fig. 21 shows the working currents measured on the Lenovo
Phab2 Pro with a 4050mAh battery in different working modes as
an example. The current is sampled at SKHz utilizing the power
monitor and averaged over every window of 0.1s. During the
evaluation, the smartphone is in sleep mode during the period
from Os to 20s. We wake up and unlock the smartphone during
the period from 20s to 40s. And then we launch PlanSketcher at
around 40s and start to collect various sensing data and images.
The data collection is finished at 200s. We repeat the experiments
10 times and characterize the power draws in different modes in
Table 1. The work mode of PlanSketcher draws power at around
640.83mA and the expected battery life is 6.32h for the Lenovo
Phab2 Pro.

We also measure the expected battery life of the Google
Nexus 5 with a 2300mAh battery, the Samsung Galaxy S2 with a
1800mAh battery and Samsung Galaxy Note 3 with a 3200mAh
battery. Because these mobile devices have not been equipped
with depth camera, we test their energy consumption of collecting
inertial sensing datap, WiFi RSSI values and images. The mea-
surement results are presented in Table 2. For the Google Nexus
5, it can continuously work for about 6.32h. The expected battery
life of Google Nexus 5 is 4.47h in work mode. Powered by a small
battery, the expected life of Samsung Galaxy S2 is around 3.11h in
work mode. The expected battery life of Samsung Galaxy Note 3
is 4.91h in work mode. The expected battery life time is longer for
the Lenovo Phab2 Pro compared with the others, mainly because
of its larger battery.

The current version of PlanSketcher can be further optimized
for energy efficiency. PlanSketcher may reduce the image capture
quality to a discernible level to save energy and benefit from the
energy efficient mobile vision techniques [23]. When the user
traverses in the indoor environment, PlanSketcher may dynam-
ically adjust WiFi scanning rate to reduce energy consumption.
PlanSketcher can also benefit from energy efficient coprocessor
architectures for sensor fusion as well [24].

Performance Comparison. To further evaluate our proposed
system, we implement two systems (Jigsaw [10] and Shopprofiler
[12]), and compare the construction performance with them.
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Jigsaw constructs indoor hallway and room topologies from the
inertial sensing data and images. Shopprofiler utilizes the inertial
sensing data, acoustic data and WiFi access information to con-
struct indoor floor plans and recognize shops in the buildings. Both
of the systems use the crowdsourcing approach to collect data. In
the experiment, we recruited 10 volunteers to collect total 100
user traces (including acceleration and gyroscope data) and 250
photos in each building to implement Jigsaw. For Shopprofiler,
we also recruited 10 volunteers to collect total 100 user traces
(including acceleration data, gyroscope data, acoustic data and
WiFi access information) in each building. As shown in Table 3,
PlanSketcher outperforms the other two schemes. PlanSketcher
achieves a higher accuracy (1th and 2th rows in Table 3)
of indoor floor plans (including hallways and rooms) than the
others, because much landmarks are recognized and most of the
measured angles are calibrated to the truth values. PlanSketcher
can recognize more facilities (3th and 4th rows in Table 3)
based on the superior visual object detection technique instead
of inaccurate WiFi information. In addition, we test the energy
consumption in smartphone of completing the input data collection
in each building for each system. The battery of smartphone is
recorded when data collection is started and finished. Our system
consumes less energy in smartphone (5th row in Table 3). This
is because: 1) our system is a non-crowdsourcing-based approach
which spends less time collecting less amount of data, and 2)
the user is unnecessary to traverse all hallways and rooms. We
notice that Shopprofiler fails to recognize most of the facilities
in the buildings. This is because a fraction of stores or rooms
provide their own WiFi access while the others are provided by
the buildings which results in the same WiFi SSID. The above
results demonstrate that PlanSketcher can construct the facility-
labelled and highly fine-grained indoor floor plans with little
energy consumption in smartphone.

Floor Plan Performance. Fig. 22 shows the ground truth
and the process of labelled indoor floor plan construction in the
shopping mall. The shadow areas represent some inaccessible
areas. In Fig. 22 (b), the anchor icons highlight all detected corners
and the lines show constructed hallways. When two corners
are detected belonging to the same hallway, they are connected
with a straight line to form a hallway. In Fig. 22 (c), the blue
lines indicate the constructed room shape. Especially, many room
shapes are different from the ground truth, because these shop
owners restructure the room space to generate extra functional
zones (such as storeroom). Facilities are recognized and labelled
in the floor plan, which involve elevators, escalators, restrooms
and stores etc. The circles indicate the positions of facility entries.
Because the training samples may not be collected perfectly
sufficient, a small quantity of facilities (1 escalator and 3 stores)
are not recognized and labelled. Compared with the ground truth,
the spatial relations of hallways and facilities are all correct in the
constructed floor plans. Moreover, Fig. 23 and Fig. 24 show the
constructed indoor floor plans in the university building and the
exhibition center, respectively. Compared with the room shapes
constructed in shopping mall, the room shapes are more consistent
with the architectural drawings in these two buildings. This is
because the room space is not restructured in these buildings,
which demonstrates the effectiveness of our proposed methods.
The spatial relations of hallways are correct and more than 85%
facilities are recognized and labelled successfully.

11

O =

(a) Ground truth

& &
&b b & L3 & &b &b
& &
& &
& b & &b &b & &b
o o Bodb
& &

(b) Construct hallways by corners

u (A ] Yl\ .
- NAI.ITI .lmilr teo }?::esslte
oHaagenDazs
@TE, l_1>§o_x| b9 ©tdtombia| | catalo
Tiaberland iE‘i_ _J

(c) Construct indoor floor plan with labels

o

Fig. 22: The Ground Truth and Constructed Indoor Floor Plan
with Labels in the Shopping Mall.
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Fig. 23: The Ground Truth and Constructed Indoor Floor Plan
with Labels in the University Building.

7 RELATED WORK

Indoor floor plan construction. Indoor floor plan construction
is an extensively studied field in mobile computing. Most of
the existing approaches focus primarily on inertial sensing data
aggregations. CrowdInside [8] is a crowdsourcing-based system
for automatically constructing indoor floor plans. It leverages
various inertial sensing data collected from the smartphones to
generate user motion traces. Some landmarks such as elevators,
stairs and locations with GPS reception are recognized to calibrate
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Fig. 24: The Ground Truth and Constructed Indoor Floor Plan
with Labels in the Exhibition Center.

users’ trajectories and accumulative errors. The proposed algo-
rithm is highly dependent on the accuracy of crowdsourced motion
traces. Jiang et al. [5] leverage WiFi fingerprints and user motion
information to obtain the room sizes and hallway orientations to
automatically construct indoor floor plans. Walkie-Markie [9] uses
the locations at which the trend of WiFi signal strength changes
as the landmarks to construct indoor floor plans. However, their
systems fully rely on the availability of WiFi fingerprints. Jigsaw
[10] combines both image and sensing data to construct the indoor
floor plan, which achieves a better performance. However, it only
uses images to infer the wall segments of the room entrance and
still uses aggregated user motion trace and camera position to
infer the shape of room. We cannot assume all edges and corners
of the room could be covered with user traces as it may be
inaccessible to users (e.g. blocked by desk). Most of the existing
works are based on the crowdsourcing method, which need to
collect abundant data. Although crowdsourcing-based scheme has
its own advantages and is promising for practical applications,
it won’t be the only way for constructing indoor floor plan.
The proposed PlanSketcher avoids the well-known shortcomings
caused by crowdsourcing, such as the slow-start problem, privacy
issue, high overhead, device heterogeneity, etc. Therefore, the
design in this paper presents a reasonable alternative to the existing
works.

Mobile big data and crowdsensing. With the development
of mobile communication and Internet of Things, analyzing mo-
bile data collected through crowdsensing [25] provides a new
research field. Considering the vehicular crowdsensing scenario,
the Nash equilibrium of the static vehicular crowdsensing game
is derived for various sensing tasks in [26]. A new payment
strategy and sensing strategy is proposed for the dynamic vehicular
crowdsensing game based on some deep learning techniques.
Cheng et al. [27] provide a comprehensive survey on the features,
sources and applications of mobile big data. Some challenges
and opportunities for research and development in this field are
discussed with an emphasis on the user modeling, infrastructure
supporting, data management, and knowledge discovery aspects.
In addition, with a huge amount of data collected in mobile
networks, recent research on mobile big data mining show great
potential for various purposes including traffic management im-
provement, providing personal and contextual service, and city
dynamics monitoring. The authors in [28] analyze many research
opportunities and challenges in the application of mobile big
data. Various scenarios are discussed including communication
and networking infrastructure, data security and privacy, as well
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as data mining and knowledge discovery.

8 CONCLUSION

In this paper, we utilize machine learning techniques to propose
PlanSketcher, a system that enables a user to construct indoor
floor plans by himself. Compared with previous works, PlanS-
ketcher can construct fine-grained and facility-labelled indoor
floor plan with less energy consumption. To realize this system,
various sensing data are collected from smartphone and novel
landmarks recognition approaches are presented. Then novel hall-
ways construction algorithms are proposed to construct traverse-
independent hallway topologies. With the object detection tech-
nique, PlanSketcher also constructs the room shape and labels rec-
ognized facilities in their corresponding positions. We implement
PlanSketcher and conduct abundant experiments. The evaluation
results illustrate that PlanSketcher outperforms the state-of-the-art
methods by showing smaller position and orientation error, more
recognized facilities and less energy consumption.
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