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Abstract—Traditional mobile crowdsensing photo selection
process focuses on selecting photos from participants to a server.
The server may contain tons of photos for a certain area.
A new problem is how to select a set of photos from the
server to a smartphone user when the user requests to view
an area (e.g., a hot spot). The challenge of the new problem is
that the photo set should attain both photo coverage and view
quality (e.g., with clear Points of Interest). However, contributions
of these geo-tagged photos could be uncertain for a target
area due to unavailable information of photo shooting direction
and no reference photos. In this paper, we propose a novel
and generic server-to-requester photo selection approach. Our
approach leverages a utility measure to quantify the contribution
of a photo set, where photos’ spatial distribution and visual
correlation are jointly exploited to evaluate their performance
on photo coverage and view quality. Finding the photo set with
the maximum utility is proven to be NP-hard. We then propose
an approximation algorithm based on a greedy strategy with
rigorous theoretical analysis. The effectiveness of our approach
is demonstrated with real-world datasets. The results show that
the proposal outperforms other approaches with much higher
photo coverage and better view quality.

I. INTRODUCTION

The proliferation of sensor intensive mobile devices and
the demand for pervasive sensing lead to a new sensing
paradigm, known as mobile crowdsensing (MCS) [1]. In MCS,
individuals use their own mobile devices instead of specialized
sensors to sense and collect real-time environment data [2].

Photo mobile crowdsensing is a widely adopted technique
in the MCS paradigm due to its informativeness, and fuels
a plenty of applications [3]. An illustrative example is the
street view application that helps people see the city online.
While industries employ a war-driving way to provide a coarse
grained and infrequently updated street view, mobile crowd-
sensing can yield a more detailed, on-demand and specific
view for an interested area with the crowd’s (e.g., visitors’)
eyes [4][5]. A sketch of photo mobile crowdsensing process
is shown in Fig. 1, where the sensed photos undergo two
processes of selection. Photo pre-selection usually takes place
among the participants during the participants-to-server stage,
while photo selection is performed by the server during the
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Fig. 1. The traditional participants-to-server photo pre-selection and the
server-to-requester photo selection.

server-to-requester stage. Most previous work focuses on the
pre-selection process for servers to obtain crowdsensing data.

How to attain a proper set1 of photos for the requester
with photo selection is a new problem. Unlike the traditional
pre-selection process that aims to reduce the redundancy for
transmission efficiency [6][7][8], the photo selection process
will find a photo set to satisfy the requester’s expectation in
understanding a target area. Therefore, the challenge faced in
this process is that the selected photo set should attain both
photo coverage and view quality (a.k.a. certain coverage in this
work). Namely, the requester favors a photo set that captures
as many Points of Interest (PoIs) of the target area with clear
and accurate view (i.e., not a blocked, blurred, or wrong
direction view). In fact, tons of photos are still aggregated
to the server even with pre-selection. As a result, a selection
process to transmit limited photos to the requester, if not being
carefully performed, would ruin the informativeness of mobile
crowdsensing, and degrade requester experience.

Traditional participants-to-server pre-selection approaches
may not be helpful to handle the new challenge in the selection
process as they fail to consider the uncertainty properties
of crowdsensing photos. From the aspect of photo coverage,
existing approaches (e.g., [7][9]) require varied geometric data
(including location, shooting direction, etc.) to be provided
during a metadata collection stage, and use these informa-
tion to formulate exact coverage model for collected photos.

1In fact, a photo subset of the raw photo collection is selected. We use
photo set for short in this paper.



However, the required shooting direction information is in
fact not accessible via the built-in camera applications of
mobile devices. The photo coverage of an area becomes unsure
with uncertain directions, since photos at a location may
have different views when facing different directions. As to
view quality, previous approaches [10][11][12] in MCS usually
assume the existence of a quality criterion for the sensory data
such that they could use data analysis techniques (i.e., EM,
clustering) to classify the collection. However, the view quality
of photos is specific to the potential PoIs in the target area.
It is difficult to set up certain photo criteria with no reference
photos. Therefore, the photo selection for certain coverage
remains challenging in terms of the photo uncertainty.

In this paper, we propose a novel photo selection approach
to the new server-to-requester selection problem in mobile
crowdsensing. The approach takes crowdsensing geo-tagged
photos in the server as inputs, and selects a representative set
of photos for offloading. The geo-tagged photos have simple
location information but without any additional metadata.
During the selection process, we should be able to assess the
coverage capability of a photo set with merely photos’ location
information, and guarantee photos view quality without any
reference photos.

In view of these challenges, this paper first designs a utility
measure to quantify the contribution of a selected photo set.
The measure leverages two factors to quantify photo coverage
and view quality, respectively. First, a spatial factor exploits
the distribution entropy of photo locations to meet the coverage
expectation. The underlying idea is that two photos located in
different subareas capture either two different PoIs or different
aspects of one PoI. By finding an uniformly distributed photo
set, we would obtain a better coverage on potential PoIs.
Second, a content factor is designed based on the fact that
useful photos of one PoI are similar while ones with awful
view quality are distinct. Then we exploit the visual correlation
between a photo set and its complementary set, and use the
correlation degree as a metric for the set’s view quality (i.e.,
a set containing more useful photos should show a larger
correlation with its complementary set, and vice versa). By
jointly considering these two factors, our approach then selects
the photo set with the maximum utility (greedy algorithm) to
obtain a certain coverage.

Our approach only needs the generalized location metadata
and the visual content in the selection process, which makes
it immune to the photo uncertainty properties. We conduct
experiments on real-world datasets to evaluate the performance
of our design and demonstrate its effectiveness. The main
contributions of this work include:

1) We analyze the certain coverage challenge and photo
uncertainty properties of a new server-to-requester photo se-
lection problem in mobile crowdsensing. To the best of our
knowledge, it is the first attempt to attain good photo coverage
of a target area from uncertain crowdsensing photos.

2) Our approach leverages a novel utility measure for
photo coverage and view quality. It is effective even with
simple metadata information (i.e., GPS location). Finding the

maximum utility is proven to be NP-hard, and a (1-1/e)
approximation greedy algorithm is proposed accordingly.

3) We evaluate the approach with two real-world photo
datasets. Experimental results show that our proposal outper-
forms existing clustering-based approach [6] and a random
selection approach by an average of 87% and 84% on photo
coverage, and 35% and 32% on view quality, respectively.

II. PHOTO SELECTION PROCESS

A. The Goal of Photo Selection

During photo mobile crowdsensing, photo selection is per-
formed by the server to obtain a photo set with certain
coverage considering the offloading constraint. In Fig. 2, we
use an illustrative example to describe this selection process
in a MCS task. Briefly, the downward steps prepare a photo
collection for selection, and the upward steps perform the
selection strategy and transmit the results to the requester.
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Fig. 2. An example of typical photo mobile crowdsensing task in a park
scenario.

Initially, the requester releases a sensing task regarding a
target area via the MCS server. Mobile crowd can choose to
join the task (participatory sensing with or without monetary
incentives [1]), and use the built-in camera applications on
their own mobile devices to collect and report photos of PoIs
in the area. In fact, the submission can be either a photo just
captured or a relevant photo stored in the album. Each photo
pi is tagged with the location Li where it is taken, which can
be extracted from its EXIF header2.

The server would collect tons of photos with even only
one photo from each participant. Offloading all these photos
is not efficient for the requester, so a representative subset is
preferred. As shown in the 5th step in Fig. 2, the collected

2Location annotation is an available function of the built-in camera
applications in both Android and iOS systems. In contrast, the shooting
direction information required in [7][13][9] cannot be obtained with the
camera applications.



photos together capture a group of PoIs and have varied view
quality (e.g., clear view, blocked view). Thus, in order to
satisfy requester’s expectation in understanding the area, the
selection process should attain both photo coverage to capture
as many PoIs and view quality to provide useful summations
(i.e., certain coverage).

B. Challenges in Photo Selection

We formulate the photo selection problem for certain cov-
erage and describe the challenges as follows. We denote
D={p1, ..., pn} as the raw crowdsensing photo collection, K
as the maximum number of photos that could be offloaded, and
I (I ⊂ D, |I| ≤ K) as the selected photo set (a.k.a. photo
selection). Within the sensing area AT , a group of uniformly
distributed objects (i.e., PoIs) are captured with photos in D,
where photos of the i-th PoI constitute subset PoIi ⊂ D,
and PoIs={PoI1, ..., PoIm}. Each photo in PoIi can be
considered as a unique aspect of the i-th PoI. For a subset
I, we say an aspect of the i-th PoI is covered by I if we have
PoIi ∩ I ̸= ∅.

Definition 1: (Photo Coverage) Assuming the PoIs in AT

are known, photo coverage considers the number and aspects
of PoIs that are captured by the photos in I, and is formally
defined as,

C(I)=-NI
cov ·

|PoIs|∑
i=1

|I ∩ PoIi|
|PoIi|

· log2(
|I ∩ PoIi|
|PoIi|

) (1)

where |A| denoted the number of photos in set A, and NI
cov

is the number of PoIs covered by I. Obviously, a photo set
that can cover as many PoIs uniformly is preferred.

Definition 2: (View Quality) A photo is determined to be
of good view quality if it does not provide a blocked (the PoI
is blocked by an obstacle, e.g., the 4th photo in Fig. 2) or
blurred view, or shooting at a wrong direction (no object is
captured, e.g., the 6th photo in Fig. 2). Then the view quality
of a selection I can be defined as,

Q(I)=1-
NI

in

|I|
(2)

where NI
in is the number of unexpected photos with awful

quality in I.
Definition 3: (Certain Coverage) We define certain cover-

age as an integrated performance metric of photo coverage in
space and view quality in content,

V (I)=(∥C(I)∥+∥Q(I)∥)/2 (3)

where ∥ · ∥ denoted normalization operation.
However, challenges in finding a photo selection with best

certain coverage are that C(I) and Q(I) cannot be directly
assessed in the server due to the uncertainty properties of
crowdsensing photos:

• The shooting direction information of crowdsensing pho-
tos is not recorded in the built-in camera applications of mobile
devices. The distribution of potential PoIs is unknown for an

uncharted sensing area. As a result, the server cannot figure
out the geographical relations between I and PoIi in Eq. 1.

• There are no reference photos of AT for comparison in
photo mobile crowdsensing applications. Hence, we cannot
simply assess Q(I) by comparing photos in I with a prede-
fined photo criterion and counting NI

in.
In view of these challenges, existing approaches require the

participants to provide additional metadata information [14][7]
and manually verify the view quality [15]. In contrast, we
design a more generic approach which leverages a novel utility
measure to quantify the photo coverage and view quality
performance of a photo set.

III. NOVEL PHOTO SELECTION APPROACH

Our selection approach alternatively looks for the best utility
photo subset to solve the intractable selection problem. Briefly,
the approach takes the crowdsensing photos as inputs, and
jointly exploits the spatial and content characteristics of a
photo set to facilitate a utility measure for its contribution
in covering an area. Then the photo set with the maximum
utility while satisfying the offloading constraint is selected
and delivered to the requester. To ease the presentation, we
summarize some important notations in the paper in Table I.

TABLE I
FREQUENTLY USED NOTATIONS.

AT the target sensing area
D a mobile crowdsensing photo set
I a selected photo set (or photo selection) for offloading
K the maximum number of photos that can be offloaded
pAi a photo in set A
SD(A) spatial diversity of photo set A
CI(A) content influence of photo set A

A. Photo Set Utility

The utility measure consists of a spatial diversity factor
and a content influence factor. Spatial diversity represents the
distribution of photos’ locations, which implicitly measures its
photo coverage capability for potential PoIs. Content influence
assesses the correlation between a photo subset and its com-
plementary set, which reflects the content representativeness
of the photos in that subset regarding the rest ones. A better
content representativeness indicates a better view quality. An
example of the spatial distribution and content correlations
of photos is illustrated in Fig. 3. We then introduce how to
quantify these two factors to facilitate a utility measure in the
following sections.

1) Spatial Diversity Factor: The requester would favor the
selected photos to cover as many potential PoIs. Recall that a
photo mobile crowdsensing task focuses on collecting visual
descriptions of an area, which covers a range of objects (i.e.,
PoIs). For two photos located significantly different in AT ,
they could either be visual summations of two PoIs or views
from different aspects of one PoI. Therefore, by introducing
the spatial diversity factor, we intend to select a uniformly
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Fig. 3. An example of spatial distribution and content relations of a
crowdsensing photo collection. Each photo captures a unique aspect of an
object in content, and is located in a grid in space. As a result, photos are
correlated with each other via their visual similarities in the content layer,
and featured with their location tags in the spatial layer.

distributed photo set, which would enlarge the coverage of
PoIs and their aspects during photo selection.

We propose to model the spatial diversity of a photo set
as the location distribution entropy of the contained photos.
The rationale of this model is that entropy owns the following
properties: if the locations of a photo set is close to a uniform
distribution, then the entropy is high; if the distribution is
skewed (e.g., all photos located in the same cell), then the
entropy is low. Without loss of generality, we regard AT as a
rectangle area, and record the ratio of its height and width as
r. Then we propose to partition AT into nw=⌈|I|/r⌉ columns
horizontally, and nh=⌊|I|/nw+0.5⌋ rows vertically. In this
way, the partition granularity would be adaptively tuned to
capture the uniform degree of a group of photos’ locations.
Given the grids, we calculate one photo set’s spatial diversity
with,

SD(I)=-
nh·nw∑
i=1

ni

|I|
· log2(

ni

|I|
), ni ̸= 0 (4)

where ni is the number of photos in I taken in the i-th grid.
The ni=0 terms are ignored.

We use the PARK dataset (see Section IV-A) to examine the
effectiveness of our spatial diversity model. We consider four
constraint conditions with the offloading constraint ranging
from 20% to 35% of the size of the raw collection. For
each case, we enumerate all the possible selections3, and
calculate their prior spatial diversity (Eq. 4) and posterior
photo coverage (Eq. 1). Then we sort each selection in the
ascending order of its spatial diversity, and examine the mean
photo coverage of selections under each diversity level. Fig. 4
shows the results where spatial diversity is normalized to range
[0, 1]. As shown, a photo set with bigger spatial diversity
shows higher photo coverage. This validates the proposal of
seeking photo coverage with location distribution entropy.

3Enumeration is only used here to analyze the relation between spatial
diversity and photo coverage.
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Fig. 4. The relation between spatial factor and photo coverage of a selection.
K=x% means that the maximum number of offloading photos is x% · |D|.

We further describe this factor with the spatial layer in
Fig. 3. If the offloading constraint is K=3 photos, then the
area is partitioned into 6 grids. During selection, SD(I1)
of I1={p1, p2, p3} is about 0.92, while the entropy for
I2={p1, p2, p5} is about 1.6. From the aspect of photo cover-
age, we would select I2 in this case.

2) Content Influence Factor: The consideration of spatial
diversity factor could provide a series of selections with proper
photo coverage. To improve certainty on the coverage, we
further adopt the content influence factor to measure the view
quality of a photo set.

The content of a photo reveals a potential PoI from a unique
aspect. If two photos share similarities on their contents, then
they are likely to be visual descriptions of the same PoI. We
denote such similarity between two photos as their content
influence to each other. Intuitively, useful photos regarding
one PoI are more likely to be similar with each other, while
photos with low view quality (i.e., blocked, blurred, wrong
direction) are supposed to have their own defects, thus distinct
on their content. Based on this idea, we regard photos in a
selection as ‘candidates’ for offloading, the rest photos in the
raw collection as ‘voters’, and the similarity level between
‘candidates’ and ‘voters’ as the content influence of this photo
selection. In this way, a photo set with higher content influence
is deemed to show better view quality as more remaining
photos vote for (or support) it, and vice versa. Specifically,
we formulate the content influence factor based on a visual
similarity metric.

We first calculate the content influence of one photo pi
regarding a set of photos A as,

INFA
i =

∑
pj∈A

S(pi, pj) (5)

where S(pi, pj) is the visual similarity function, and reflects
the content correlation between two photos. Many well-studied
image feature extraction methods (e.g., SIFT, SURF, GIST,
pHash) can be used to explore the similarities between images.
Here, we propose to use SIFT to extract features and calculate
the similarity between two photos as,

S(pi, pj)=
|M(Fi, Fj)|

1
2 · (|Fi|+|Fj |)

(6)

where Fi denotes the SIFT features of pi, and M(Fi, Fj)
denotes the matching level of two photos’ feature spaces.
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Fig. 5. The relation between content factor and view quality of a selection.

The above influence model is for one photo. For a selected
photo set I, the content influence is defines as,

CI(I)=
∑
pi∈I

INFD-I
i (7)

In fact, CI(I) measures the correlation between subset I
and subset D-I. For the photos left behind in D-I, a stronger
correlation means that the selected photo set I can better
represent them visually, which in turn indicates the higher
view quality of I as photos in D-I give more support to it. It
is straightforward to see that CI(I) = CI(D-I). Given two
subsets I1, I2 ⊂ D, we also have the following properties:∑

pi∈I1

INFA
i <

∑
pi∈I2

INFA
i if I1 ⊂ I2 (8)

∑
pi∈I1∪I2

INFA
i =

∑
pi∈I1

INFA
i +

∑
pi∈I2

INFA
i -

∑
pi∈I′

INFA
i

if I1 ∩ I2=I ′ (9)

We examine the relation between our content influence
factor and view quality of a photo set. We first enumerate
all the possible photo selections in the considered conditions,
and calculate their prior content influence (Eq. 7) as well as
posterior view quality (Eq. 2). Then the selections are sorted
in the ascending order of their content influence, and we
calculate the mean view quality for photo selections under
each influence level for relation analysis. As shown in Fig. 5,
a photo selection with higher content influence (normalized)
shows better view quality. Such positive correlation validates
our content influence model for view quality improving.

Taking photo set {p4, p5} in the content layer of Fig. 3 as an
example, it has a content influence of 2.9, which equals to the
sum of similarities between set {p4, p5} and set {p1, p2, p3}.

3) Photo Set Utility Measure: In order to attain photo
coverage and view quality simultaneously, we jointly consider
spatial factor SD and content factor CI in the utility measure.
Besides, we would select as many photos to cover more PoIs
and their aspects if the constraint allows, so the set size is also
introduced to assure the priority of a larger photo set. To this
end, the utility of a photo selection is formulated as,

U(I)=(1-α) · ∥SD(I)∥+α · ∥CI(I)∥+|I| (10)

where SD and CI are normalized to the range of [0, 1], and
α is the weight characterizing and balancing the importance
of the two factors.

Algorithm 1 The Greedy-based Photo Selection Algorithm
1: procedure GREEDY PS(D, K, α)
2: I ← ∅;
3: Compute S(pi, pj) for each photo pair in D;
4: repeat
5: for each photo pi in D-I do
6: ∆i

SD ← SD(I ∪ {pi})-SD(I);
7: INFD-I-pi

i ←
∑

pj∈D-I-pi
S(pi, pj);

8: ∆U(pi)← (1-α) · ∥∆i
SD∥+α · ∥INFD-I-pi

i ∥;
9: end for

10: p̂← argmax
pi

{∆U(pi)};

11: I ← I ∪ {p̂};
12: until |I| > K or D-I=∅
13: return I;
14: end procedure

B. Utility-based Photo Selection

Recall that the selection objective is to maximize the photo
coverage and view quality of the offloading photos to the
requester. Based on the constraint and utility model, we can
formulate our photo selection problem as follows.

Definition 4: (Utility-based Photo Selection Problem)
Given a mobile crowdsensing photo set D and an offloading
budget K, the selection problem finds a subset I ⊆ D so that
utility of I in Eq. 10 is maximized under constraint |I| ≤ K.

Theorem 1: The utility-based photo selection problem is
NP-hard.

We prove the NP-hardness of this problem by a reduction
from the Max Cut problem. The detailed proof is provided in
the appendix of this paper. Designing algorithms to find the
best offloading photo subset I is challenging since it belongs
to NP-hard. To relieve this pitfall, we propose to leverage the
greedy strategy to obtain an approximate solution. Our greedy-
based algorithm Greedy PS is listed in Algorithm 1.

The basic idea of Greedy PS is to iteratively find the best
photo which yields the maximum increase on the utility (ties
are broken arbitrary), and add it to the selection (Line 9-10).
In each iteration, the spatial diversity gain ∆i

SR and content
influence of each photo pi are calculated to estimate the utility
gain (Line 5-8). The algorithm stops when either constraint
is active (Line 12). The time complexity of Greedy PS is
bounded by O(K · |D| · log2 |D|) when merge sort is used.

Further, we use the example in Fig. 3 to explain the
algorithm. We constrain that only two photos can be delivered.
Initially, the spatial gain for each photo is the same, so
Greedy PS looks for the most influential photo. The sum of
similarities between p2 and D − p2 (the unselected subset)
is the largest (i.e., 2.4), so p2 is selected in the first round.
Similarly, p4 is picked out in the second round as ∆U(p4)
is the largest in subset D − p2. Thus, Greedy PS provides
a solution {p2, p4}, which has a spatial diversity of 0.5
and a content influence of 3.3. Note that this is not the
optimal solution, in which {p3, p5} is selected with the same



spatial diversity while a bigger content influence of 3.5. The
approximation ratio of Greedy PS is analyzed next.

Lemma 1: The utility of a photo set given by Eq. 10 is
monotone and submodular.

Proof of this lemma can be found in the appendix.
Theorem 2: The proposed greedy-based algorithm provides

an approximation ratio of (1-1/e), where e is the based of the
natural logarithm.

Proof: According to [16], the greedy algorithm can
provides a (1-1/e) approximation ratio for the optimization
problem of a monotone submodular function. We have proved
in Lemma 1 that the utility function in Eq. 10 posses such
properties.

Discussion: One may argue that we can simply filter out
some photos with low visual similarities to the rest, and then
select photos merely based on spatial diversity. However, a
photo showing weak visual correlations with others may be
the only description for a PoI or a description from a unique
aspect. Hence, the content factor must be considered jointly
with the spatial factor to obtain a proper photo selection.

IV. EVALUATION

In this section, we first examine the effectiveness of our
photo selection approach, and then evaluate its performance
by comparing it with two other photo selection approaches.

(a) Sensing area in a resort. (b) Sensing area in a park.

Fig. 6. PoIs distribution and collected photos’ locations on the satellite images
of the target areas.

A. Experimental Setup

We conduct our experiments on two real-world photo
datasets collected by ourselves4. During the photography, we
have two independent researchers take photos around the
interested spots. We use the built-in camera applications of two
Huawei Mate 7 phones with Android 6.0 to take photos and
stored them in the albums. The localization service is turned on
for the application to automatically record the location where
each photo is taken. In fact, this photo collection process can
be compared to the participants-to-server data collection phase
of mobile crowdsensing tasks.

4As the first work devoted to photo selection for certain coverage, there lack
photo datasets with location tags and view quality labels in MCS. Manually
collecting photos is labor intensive, which limits the scale of our datasets.

TABLE II
STATISTICS OF PHOTO DATASETS.

Dataset # PoIs # photos Ratio of inaccurate photos
RESORT 7 43 19%
PARK 5 20 35%

Table. II shows the statistics of these two photo datasets. The
RESORT dataset consists of photos collected from an islet.
The distribution of PoIs and photos are depicted (photos with
wrong directions are ignored) in Fig. 6(a). Totally 43 photos
are taken within the interested area, and 19% of them are with
awful quality. For the PARK dataset, a group of 20 photos are
collected regarding 5 PoIs in a technology park as shown in
Fig. 6(b). Wherein, 7 of them are inaccurate reports with either
wrong shooting direction or blocked view. Typically, PoIs are
uniformly distributed and each PoI is captured from several
aspects with photos at different locations.

We use the photo coverage in Eq. 1, view quality in Eq. 2,
and certain coverage in Eq. 3 as performance metrics during
evaluation. We emphasize that merely having advantage in
either C(I) or Q(I) is not enough, a proper selection should
yield better V (I). In order to obtain the ground truth about
the coverage and view quality of each photo, we ask students
who are familiar with the sensing areas to tag the photos5.
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(a) Impact analysis for the RESORT dataset.
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(b) Impact analysis for the PARK dataset.

Fig. 7. Impact of the weight α on the overall performance of the selection.

B. The Impact of the weights

We first study the impact of the weights for the spatial
diversity factor (α in Eq. 10) and content influence factor
(1-α). The weights are used to reconcile SD and CI to
facilitate a utility estimation. We vary α from 0 to 1, and
test the overall performance of the selected photo set our

5These students are not part of the research team, making them independent
consultants.
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Fig. 8. Evaluation results for the RESORT dataset.
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Fig. 9. Evaluation results for the PARK dataset.

Greedy PS algorithm generates6. The test is performed under
different budgets (i.e., the percentages of photos allowed
for offloading) for both photo datasets. Compared with the
RESORT dataset, smaller budgets are assigned to the PARK
dataset as it has fewer photos.

As shown in Fig. 7, for both datasets, depending only on
either spatial diversity (α=0) or content influence (α=1) cannot
provide satisfactory result. In contrast, jointly considering both
factors (0 < α < 1) generates a selection with better overall
performance. Without loss of generality, in the rest of the
experiments, we set 0.5 as the default value of α. One can
easily adjust α to satisfy different application requirements
(e.g., assigning a bigger value would yield better view quality).

C. Performance Evaluation

Next, we evaluate the performance of our approach on
mobile crowdsensing photo selection by comparing it with the
following selection approaches.

• Clustering-based selection. The raw photo collection is
clustered into groups by using visual similarity in Eq. 6 as
the distance metric (i.e., a high similarity between two photos
indicates a small distance). Specifically, the first photo of each
cluster is set to be the centroid. For each unclassified photo,
we compare it with every cluster’s centroid by calculating their
visual similarity, and add it to the first cluster that presents a
similarity larger than a predefined threshold. Otherwise, a new
cluster is formed with that photo as the centroid [6]. Instead of
setting up a specific threshold, we use the mean value of the
similarities between each pair of photos in the raw collection

6We have already examined the effectiveness of spatial diversity on attaining
photo coverage, and content influence on improving view quality. Thus, we
only test the level of certain coverage that can be achieved with varied α.

as the threshold. Based on the clustering results, we select one
photo from each cluster (clusters with more photos first) until
the offloading constraint is active.

• Random selection. A set of photos with a size equal to
the offloading amount constraint are randomly selected from
the raw photo collection.

For each dataset, we choose 5 constraint levels (smaller
budgets for the PARK dataset) and examine the photo cov-
erage, view quality, and overall performance of the photo sets
selected by these three schemes. Fig. 8 and Fig. 9 summarize
the evaluation results.

From Fig. 8(a) and Fig. 9(a), we see that a more informative
photo subset can be selected by Greedy PS. When fewer
photos are allowed for offloading, the performance on photo
coverage of three approaches is similar as the number of
covered PoIs is limited for them all. While with a looser
constraint, Greedy PS would more likely select photos for
those uncovered PoIs. With Greedy PS, the posterior photo
coverage of its selected photo set keeps increasing linearly
with the budget until nearly all PoIs are covered (i.e., K=25%
for the RESORT and K=20% for the PARK). Specifically, our
approach outperforms the clustering-based approach and the
random one by an average of 87% and 84% on photo coverage.

As shown in Fig. 8(b) and Fig. 9(b), Greedy PS can formal-
ly avoid the low view quality ingredients during the selection
for both test scenarios, while the other two approaches have no
guarantee on this metric. The improvement of our approach on
view quality are 35% and 32% on average regarding the other
two. Note that the selected set’s view quality of Greedy PS
would degrade slightly if the budget exceeds a certain level,
because it would be unavoidable to accept some noise when
they become the majority of the remaining photos. Though,



Greedy PS would still yield a better view quality.
Fig. 8(c) and Fig. 9(c) depict the selected photo sets’ overall

performance of three approaches. As shown, our algorithm
can provide more valuable photos to the requester than the
other two approaches under different budgets. We owe the
performance advantages of Greedy PS to the jointly consid-
eration of spatial and content factor during the selection. The
clustering-based approach fails to group photos for different
aspects of each PoI, and ignores the view quality expectation
of the requester. Meanwhile, we notice that the performance of
the random approach is not steady, and generally worse than
the clustering-based one.

Finally, the execution time of our approach is mainly oc-
cupied by the photo analysis (i.e., feature extraction) process,
while the photo selection time is quite small due to the greedy-
based strategy. Specifically, in our two test cases, the photo
analysis time are 71s and 30s, while both taking a selection
time of less than 0.1s. We emphasize that photo analysis can
be performed during photo collection to reduce this part of
time cost, and it only has to be performed once for each task.

V. RELATED WORK

We summarize relevant work of photo selection for photo
coverage and view quality separately, and discuss the differ-
ences from our work.

Existing efforts on photo coverage during photo selection
can be classified into two categories: context-based approaches
and clustering-based approaches. The context-based approach-
es refer to the photo metadata to obtain a representative photo
set [7][9]. In [7], the value of photos is quantified by their
expected spatial coverage, and the selection process attempts
to find photos that yield the maximum coverage. Guo et al. [9]
use multi-dimension metadata (i.e., light, shooting angle) to
extract the most representative flier photo set for repost.
However, the required geometric information in these models
is in fact difficult to obtain as the built-in camera applications
on mobile devices would only record photos’ locations. It
would undoubtedly discourage the participation of the mobile
crowd by requiring them to install additional applications
for information collection. The clustering-based approaches
propose to group (i.e., k-means) a given photo collection into
clusters based on either content or location [6][17][18]. Then
first arrival (i.e., selecting the 1st photo) [6], semantic tag-
based [17], or centroid-photo similarity-based [18] strategy is
used to select certain number of photos from each cluster. We
point out that it is not scalable to setup some thresholds (e.g.,
number of clusters) for clustering in every crowdsensing case.

There exists many work for data quality estimation in
MCS [10][11][12]. These schemes focus on the analysis of
structured data (i.e., decimal measurements, or binary observa-
tions), which are not applicable to the unstructured photos. For
example, we can fit decimal data into a normal distribution to
filter out the outliers, while we cannot analyze the photos with
a statistical distribution. Crowdsourcing-based photo quality
verification is adopted in [15] to assure that an accurate
result is returned during the photo searching service. However,

no reference photo is available for either automatically or
manually verification in our server-to-requester selection. A
photo quality assessment technique is proposed in [19]. This
technique focuses on picking out the photos with distortion
caused by light intensity or motion, while we pay more
attention to avoid photos with blocked views and wrong
shooting directions.

Different from the previous work, for the first time, we
consider the server-to-requester photo selection problem, and
attempt to attain photo coverage and view quality based on
uncertain photos. We argue that existing approaches cannot
be simply combined or directly applied to our scenarios due
to the uncertainty properties of crowdsensing photos. That is,
we manage to solve a more generic problem without requiring
either photos’ shooting directions or photo references.

VI. CONCLUSION

In photo mobile crowdsensing applications, the server col-
lects tons of photos of a target area, and delivers a representa-
tive photo set to the requester to view the area online. In this
paper, we first study the server-to-requester photo selection
problem and analyze the certain coverage challenges in terms
of photo uncertainty. In view of these challenges, we design
a utility measure to quantify the contribution of a photo set
in terms of photo coverage and view quality based on a
spatial factor and a content factor. Then we propose a greedy-
based algorithm to select the photo set with the approximately
maximum utility. In this way, our approach can formally
bridge the gap between uncertain crowdsensing photos and
certain coverage of a target area. We conduct extensive exper-
iments on two real-world photo datasets. Experimental results
demonstrate the effectiveness of our proposal, and show the
performance advantages over a clustering-based approach and
a random selection approach. In the future, we will investigate
the effective offloading of crowdsensing short videos.

APPENDIX

Proof of Theorem 1:
We prove the NP-hardness of the utility-based photo selec-

tion problem by reducing the Max Cut problem to it.
An instance of Max Cut problem involves a graph G =

(V, E), in which each edge (u, v) has a weight ωuv. The
optimization objective is to find a cut (S,V-S) that maximizes∑
u∈S,v∈V-S,(u,v)∈E

ωuv .

Our reduction regards V as D, where each vertex of G
becomes a photo in D. We construct the similarities between
each pair of photos with the weight of each edge in E (0 if no
edge exists between two vertex), and set |I|=|S|. In this way,
finding the maximum cut (S,V-S) is equivalent to selecting
|S| photos so that the content influence to the rest photos
is maximized. Since this process can be done in polynomial
time, we prove that maximizing content influence under the
constraint, which is a special case of the selection problem
(i.e., α=1), is NP-hard. Therefore, we conclude that the utility-
based photo selection problem is NP-hard.

Proof of Lemma 1:



We define the two properties, namely, monotonicity and
submodularity regarding set function as follows.

Definition 5: (Monotonicity) A function f : 2V → R is
monotone if for every A ⊆ B ⊆ V , f(A) ≤ f(B).

Definition 6: (Submodularity) A function f : 2V → R is
submodular if for every A, B ⊆ V , f(A)+f(B) ≥ f(A ∪
B)+f(A ∩ B).

Since the linear combination of monotone submodular
functions is still monotone and submodular, we prove the
monotonicity and submodularity of the two terms SD(I) and
CI(I)+|I| in the utility function separately. For simplicity,
we ignore the weights and normalization symbol of SD and
CI during the proof.

Recall that we formulate SD(I) as the one dimension
entropy of the distributed locations in the sensing area. The
Shannon entropy is shown to be monotone submodular in [20].
Hence, SD(I) is a monotone submodular function.

As to CI(I)+|I|, we first prove the monotonicity. Given
two subsets I1 ⊆ I2 (we assume ∃I ′ ⊂ D, I1 ∪ I ′=I2) of
D, we have,

CI(I2)+|I2|-(CI(I1)+|I1|)
=CI(I2)-CI(I1)+|I ′| (11)
≥0

where |I ′| ≥ 1 and CI(A) ≤ 1 is a normalized value. Hence,
function CI(I)+|I| is monotone.

Next, we prove the submodularity. Given two subsets
I1, I2 ⊆ I, and I ′=I1 ∩ I2, we first have,

L=CI(I1)+|I1|+CI(I2)+|I2|

=
∑
pi∈I1

INFD-I1
i +|I1|+

∑
pi∈I2

INFD-I2
i +|I2| (12)

Then with Eq. 8 and Eq. 9, we could have,

R=CI(I1 ∪ I2)+|I1 ∪ I2|+CI(I1 ∩ I2)+|I1 ∩ I2|

=
∑
pi∈I1

INF
D-(I1∪I2)
i +

∑
pi∈I2

INF
D-(I1∪I2)
i

-
∑
pi∈I′

INF
D-(I1∪I2)
i +

∑
pi∈I′

INFD-I′

i +|I1|+|I2|-|I ′|+|I ′|

=
∑
pi∈I1

INFD-I1
i -

∑
pi∈I1

INF I2-I′

i +
∑
pi∈I2

INFD-I2
i

-
∑
pi∈I2

INF I1-I′

i +
∑
pi∈I′

INF
(I1∪I2)-I′

i +|I1|+|I2|

=L-
∑

pi∈I2-I′

INF I1
i -

∑
pi∈I1-I′

INF I2
i +

∑
pi∈(I1∪I2)-I′

INF I′

i

=L+
∑

pi∈I1-I′

INF I′

i -
∑

pi∈I1-I′

INF I2
i +

∑
pi∈I2-I′

INF I′

i

-
∑

pi∈I2-I′

INF I1
i < L (13)

where the two inequations are deduced from the photo sets’
relations mentioned in Eq. 8 and Eq. 9. Hence, function
CI(I)+|I| is also submodular. Since both two terms in U(I)
are monotone and submodular, we prove the Lemma.

ACKNOWLEDGMENT

This work is partially supported by NSFC grant
Nos. 61379144, 61772446, 61379145, 61672195, 61402513,
61602167, and HK PolyU 4-ZZFF, and Hunan Provincial
NSFC grant No. 2017JJ3037. Zhiping Cai, and Ming Xu are
the corresponding authors.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.
32–39, 2011.

[2] J. Wang, Y. Wang, D. Zhang, F. Wang, Y. He, and L. Ma, “PSAllocator:
Multi-task allocation for participatory sensing with sensing capability
constraints,” in CSCW. ACM, 2017, pp. 1139–1151.

[3] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou,
“Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm,” ACM Computing Surveys (CSUR),
vol. 48, no. 1, p. 7, 2015.

[4] “Geograph: geographically representative photographs of the whole
Great Britain and Ireland,” http://www.geograph.org.uk/.

[5] X. Wang, L. Ding, Q. Wang, J. Xie, T. Wang, X. Tian, Y. Guan, and
X. Wang, “A picture is worth a thousand words: Share your real-time
view on the road,” IEEE Transactions on Vehicular Technology, 2016.

[6] B. Guo, H. Chen, Z. Yu, X. Xie, and D. Zhang, “PicPick: a generic
data selection framework for mobile crowd photography,” Personal and
Ubiquitous Computing, vol. 20, no. 3, pp. 325–335, 2016.

[7] Y. Wu, Y. Wang, and G. Cao, “Photo crowdsourcing for area coverage
in resource constrained environments,” in INFOCOM. IEEE, 2017.

[8] M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and
T. Huang, “Photonet: a similarity-aware picture delivery service for
situation awareness,” in RTSS. IEEE, 2011, pp. 317–326.

[9] B. Guo, H. Chen, Z. Yu, X. Xie, S. Huangfu, and D. Zhang, “FlierMeet:
a mobile crowdsensing system for cross-space public information repost-
ing, tagging, and sharing,” IEEE Transactions on Mobile Computing,
vol. 14, no. 10, pp. 2020–2033, 2015.

[10] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and Y. Cheng, “Truth
discovery on crowd sensing of correlated entities,” in SenSys. ACM,
2015, pp. 169–182.

[11] S. Yao, M. T. Amin, L. Su, S. Hu, S. Li, S. Wang, Y. Zhao, T. Abdelza-
her, L. Kaplan, C. Aggarwal et al., “Recursive ground truth estimator
for social data streams,” in IPSN. IEEE, 2016, pp. 1–12.

[12] T. Zhou, Z. Cai, K. Wu, Y. Chen, and M. Xu, “FIDC: a framework
for improving data credibility in mobile crowdsensing,” Computer
Networks, vol. 120, pp. 157–169, 2017.

[13] H. Chen, B. Guo, Z. Yu, and Q. Han, “Toward real-time and cooperative
mobile visual sensing and sharing,” in INFOCOM. IEEE, 2016, pp.
1–9.

[14] Y. Wu, Y. Wang, W. Hu, X. Zhang, and G. Cao, “Resource-aware photo
crowdsourcing through disruption tolerant networks,” in ICDCS. IEEE,
2016, pp. 374–383.

[15] T. Yan, V. Kumar, and D. Ganesan, “Crowdsearch: Exploiting crowds for
accurate real-time image search on mobile phones,” in MobiSys. ACM,
2010, pp. 77–90.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions- I,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[17] L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury, “How
flickr helps us make sense of the world: Context and content in
community-contributed media collections,” in MM. ACM, 2007, pp.
631–640.

[18] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan, “Mediascope: Selective on-demand media retrieval from mobile
devices,” in IPSN. IEEE, 2013, pp. 289–300.

[19] D. Lee and K. N. Plataniotis, “Toward a no-reference image quality
assessment using statistics of perceptual color descriptors,” IEEE Trans-
actions on Image Processing, vol. 25, no. 8, pp. 3875–3889, 2016.

[20] A. Krause and D. Golovin, “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, vol. 3, no. 19,
p. 8, 2012.


