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Abstract

In dynamically changing network environments, no single data communica-

tion approaches for wearable devices are guaranteed to yield the best performance-

cost ratio. To illustrate how different approaches perform in different environ-

ments, we conduct a theoretical analysis to four basic approaches that rely on

either Wi-Fi, or smartphone-tethered cellular network, or both, to transmit data

on wearable devices. In order to achieve energy efficient data communication on

wearable devices (and associated smartphones), we propose a Lyapunov based

on-line approach designation mechanism that dynamically chooses an appropri-

ate data communication approach based on data transmission queue, estimated

network conditions and the device moving speed. Due to the property of Lya-

punov optimization framework, the proposed mechanism is able to minimize the

power consumption of data communication for wearable devices (and associated

smartphones) while meeting the delay time constraint. Moreover, it requires no

prior knowledge of future network conditions and data request arrivals. Our

trace-driven simulations demonstrate that our on-line designation mechanism

delivers very close performance to the mechanism that can foresee the future,

leaving very little space for further improvement.
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1. Introduction

Recently, the emerging wearable devices, such as Google Glass and Apple

Watch, reveal great potentials to bring up another heated wave of technologi-

cal enthusiasm. Their portability and hands-free interaction with humans will

fundamentally change how the physical world is augmented by the seamless in-5

tegration with the virtual world. Indeed, wearable devices are now fulfilling the

vision of Internet of Things [1][2][3].

Though blessed with such vision, wearable devices will inevitably be faced

with the issue of limited battery life, due to their inherent small form factor and

the slow progress in battery technology. This generation of wearable devices are10

usually not equipped with cellular interface, and thus require being connected

with smartphones via Bluetooth or other means of communications in order to

be fully functional, such as making phone calls and sending/receiving SMS. Such

continuous connection requirement further worsens the battery life on wearable

devices.15

One effective way to prolong the battery life on wearable devices is to im-

prove the energy efficiency of their data communication [4]. Different types of

network interface for data communication impose different power consumption.

Normally, wearable devices can connect to Wi-Fi Access Points (AP) via their

built-in Wi-Fi interface, or cellular stations via Bluetooth-tethering by their20

associated smartphones. Wi-Fi is generally more efficient than other network

interfaces in terms of power consumption per unit speed [5]. However, blindly

minimizing the energy consumption on wearable devices (i.e., using Wi-Fi) may

lead to unexpectedly long delay in response, since Wi-Fi is not always available

or stable. On the other hand, cellular network has a much wider coverage than25

Wi-Fi. However, relying on cellular network can greatly accelerate the battery

draining on smartphones.

In this paper, we focus on the problem of energy-efficient data communica-

tion between wearable devices, smartphones, Wi-Fi APs and cellular stations.

The goal is to jointly minimize the energy consumption of data communication30
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on both smartphones and wearable devices subject to a delay time constraint.

Yet, there exist two major challenges to solve the problem. First, the solution

must be easily applied to most off-the-shelf platforms, as nowadays wearable de-

vices and smartphones may run on different operating systems. The proposed

solution should work irrespective of the operating systems running on the de-35

vices. Second, the solution must perform equally well in both static and mobile

environments in terms of energy efficiency. In mobile environments, Wi-Fi AP

availability and quality change constantly due to user mobility [6], resulting in

significantly different performance. Since it is fundamentally difficult to predict

the variation in Wi-Fi AP availability and quality, the solution must avoid using40

prediction-based techniques.

Contributions. To have cross-platform support, we investigate four ap-

proaches that users can actually adopt in practice to enable data communi-

cation for both devices. These approaches do not require system-level code

modification, or complicated coordination between both devices. However, our45

theoretical analysis shows that they deliver different performance in achieved

bandwidth and power consumption across a variety of environments. To perform

equally well in static and mobile environments, we propose a Lyapunov-based

on-line designation mechanism to determine which approach to adopt so as to

minimize energy consumption while ensuring quality of service (e.g., delay time).50

Due to the property of Lyapunov optimization framework, the proposed mech-

anism does not require any prior knowledge of future network conditions and

data request arrivals. It uses smartphones to monitor environment information

(e.g., network bandwidth and density), as well as data transmission queue to

make energy efficient decisions.55

To evaluate the performance of our on-line designation mechanism, we con-

duct extensive trace-driven simulations. To do so, we collect two types of real-

world traces, user request traces and network availability and quality traces,

both of which have a significant impact on the performance of our mechanism.

Using these real-world traces makes it possible to compare our mechanism with60

others in a controlled environment, yet being able to generate convincing results.
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We compare our mechanism against static mechanisms that only adopt one fixed

approach, as well as other dynamic mechanisms that adopt approaches based on

different rules. Simulation results show that our mechanism delivers consistently

better performance than static mechanisms and other dynamic mechanisms. We65

also demonstrate that the performance of our mechanism is very close to the

ideal mechanism that can foresee the future, leaving very little space for further

improvement.

The rest of the paper is organized as follows. We present the problem formu-

lation in Section 2. Followed is the pool of practical approaches in Section 3 and70

the on-line approach designation mechanism in Section 4. We evaluate our pro-

posed mechanism and present the trace-driven simulation results in Section 5.

Related work can be found in Section 6. Finally, we conclude this paper in

Section 7.

2. Problem Formulation75

2.1. System Model

We consider a new mobile computing model, where wearable devices, smart-

phones, Wi-Fi APs and cellular stations are actively involved in data transmis-

sions. The smartphone is equipped with cellular, Wi-Fi and Bluetooth inter-

faces, and can decide whether to enable Bluetooth tethering to provide network80

access to the associated wearable device. The wearable device is only equipped

with Wi-Fi and Bluetooth, and will first attempt to establish network connec-

tions via Bluetooth tethering on the smartphone, and if failed, will repeat the

attempt via Wi-Fi. Now, we make several reasonable assumptions as follows.

Cellular stations are deployed in such a way that it provides its users with con-85

stantly stable access to Internet, while Wi-Fi APs only provide intermittent

network connections with varying quality. The smartphone maintains a con-

stant connection with the wearable device via Bluetooth, since it is necessary

for the latter to take over basic functions available on the former, such as mak-

ing phone calls and sending text messages. Both devices are also assumed to90
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Figure 1: Data Communication Model

keep Wi-Fi turned on, and Wi-Fi is in Power Saving Mode (PSM) when not

used to save energy. Figure. 1 gives an overview of the established model.

Based on the model, we focus on the problem of energy efficient data commu-

nication among wearable device, smartphone, APs and cellular stations. The

wearable device needs to transmit data to and download data from remote95

servers. It can either tether the smartphone or connect to an AP for data com-

munication between itself and remote servers. To solve the problem, we need

to design efficient methods to coordinate the communication among devices ac-

cording to available wireless resources around the wearable device, as shown in

Fig. 1. Specifically, we study the problem of minimizing the overall energy con-100

sumption of both the wearable device and the smartphone subject to some delay

time requirement.

A theoretical optimal solution would be easy to obtain for this problem,

if we could foresee all the relevant information in the future, such as paths

that users will take, request arrival time, etc. However, such assumption is not105

realistic in practice, as users move randomly in unknown environments, and

request Internet connections randomly. Although prediction techniques may

be applied to estimate future information, they are expensive yet unable to
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guarantee accurate estimates for all predictions. Moreover, solutions generated

under erroneous estimates would incur even more energy consumption than110

those without any predictions.

2.2. Approach Designation Mechamism Overview

To make this problem more tractable, we investigate a pool of practical ap-

proaches for data communication, from which we dynamically designate one

that achieves good energy efficiency while satisfying the delay time require-115

ment. These practical approaches vary in different performance metrics, such

as power consumption for different devices and incurred delay time. Now, the

new problem becomes how to designate approaches to minimize the overall en-

ergy consumption subject to some delay time requirements. Note that, adopting

a limited number of practical approaches shrinks the set of feasible solutions,120

thus possibly risking not finding any solutions that are theoretically optimal to

the original problem. Nevertheless, these practical approaches represent a set of

feasible solutions that we can easily apply to most off-the-shelf platforms, and

thus fit better with the real-world use case.

Like the original problem, an optimal solution to the new problem also re-125

quires foreseeing the future. In other words, all inputs should be given in ad-

vance so as to optimally designate approaches, which, again, is not realistic in

practice. This leads us to propose an on-line approach designation mechanism

that makes decisions only based on historical and present environment informa-

tion, such as AP quality and user moving speed. Meanwhile, this mechanism130

should not assume any probability distributions of AP inter-arrival times, AP

connection times and request inter-arrival times. Finally, the proposed on-line

designation mechanism should be able to produce near-optimal results as com-

pared to that assuming knowledge of the future. Figure. 2 plots a high-level

description of the proposed mechanism.135
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Figure 2: Approach Designation Mechanism Overview

3. Practical Approach Pool

In this section, we investigate a pool of practical approaches for data commu-

nication among the wearable device, the smartphone, APs, and cellular stations.

They are practical and lightweight in the sense that they impose no system-level

code modification and thus can be easily applied to most off-the-shelf platforms.140

We conduct a theoretical analysis to the performance of each approach, and

show that no single data communication approach can guarantee to yield the

best performance across a variety of environments.

3.1. Approach Overview

We investigate four approaches that differ in wearable devices’ using network145

interface and delay requirement, which are described as follows.

• Approach C: Delay-Free Cellular Only Data Communication enables

wearable devices to access remote servers through the smartphone’s cellu-

lar network. To this end, the smartphone should enable Bluetooth teth-

ering. Considering that cellular network is normally available, we expect150
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that Approach C incurs little to no delays for any incoming requests except

for the inherent cellular network delay.

• Approach W: Delay-Ignorant WiFi Only Data Communication requires

wearable devices to wait for Wi-Fi connections irrespective of any specified

maximum tolerable delay time. Approach W does not require smartphones155

to assist wearable devices to gain network access.

• Approach CW: Combined Cellular and WiFi Data Communication takes

advantage of both cellular and Wi-Fi network, where the wearable device

is connected with remote servers via either Bluetooth tethering provided

by the smartphone or their own Wi-Fi interface. The smartphone enables160

Bluetooth tethering only when no usable APs are found nearby. The wear-

able device does not explicitly tell the smartphone to enable Bluetooth

tethering.

• Approach CWD: Delay-Tolerant Cellular and WiFi Data Communi-

cation favors delay-tolerant applications for more data transmission via165

WiFi. The smartphone does not turn on Bluetooth tethering until con-

firming no nearby APs have been found for a continuous period of time,

which is normally set to Dmax to satisfy the delay time requirement.

Note that these approaches are ad hoc and thus do not require coordination

between wearable devices and smartphones. The smartphones makes decisions170

of enabling tethering only based on whether Wi-Fi is available or not, while

wearable devices always choose, if any, the more energy efficient interface to

communicate. Such ad hoc approaches eliminate the need of system-level code

modification, and thereby can be easily applied to different platforms.

3.2. Performance Analysis175

Now, we give a theoretical analysis of the performance of each approach.

We assume that Wi-Fi connection times and inter-connection times follow ex-

ponential distributions with µ = v
R [7] and θ ≈ 2Rvρ [8], respectively, where v

8



WiFiOFF WiFiOFFWiFiON WiFiON

Request Arrivals

CellularON CellularON

Figure 3: The denotation of network states in the simulation.

is the average moving speed, R is the common effective transmission range of

Wi-Fi APs, and ρ is the density of deployed Wi-Fi APs. In addition, we as-180

sume that Wi-Fi bandwidth Bw and cellular bandwidth Bc follow exponential

distributions with rate λw and λc, respectively. The bandwidth of Bluetooth

is assumed to be stable, denoted by Bb. We use WiFiON to denote the state

that Wi-Fi APs are available, and WiFiOFF otherwise. For Approach CWD,

we also explicitly use CellularON to denote when the cellular network can be185

used. A typical state switch graph is shown in Figure. 3.

In Approach C, the achieved bandwidth can be expressed as min(Bc, Bb),

since the slowest link in the transmission determines the maximum bandwidth.

Thus, the expected bandwidth achieved by Approach C is

E[BAppr C ] = E[Bc|Bc < Bb] · Pr(Bc < Bb)+

Bb · Pr(Bc ≥ Bb)

= λ−1
c − (λ−1

c +Bb)e
−λcBb +Bbe

−λcBb

= λ−1
c (1− e−λcBb).

We simplify the expected overall power consumption, including the smartphone

and the wearable device, of Approach C as follows:

E[PAppr C ] = P 1
b + P 2

b + P 2
c + P 2

proc,

where P 1
b is the power consumption of Bluetooth transmission on the wear-

able device, and P 2
b , P 2

c , and P 2
proc are the power consumption of Bluetooth

transmission, cellular transmission, and tethering-related data processing on

the smartphone, respectively.190
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In Approach W, the bandwidth is only available when Wi-Fi is connected,

which has a probability of µ−1

µ−1+θ−1 . Thus, the expected bandwidth achieved by

Approach W

E[BAppr W ] = E[Bw] · Pr(WiFiON)

= λ−1
w ·

µ−1

µ−1 + θ−1

=
2λ−1

w R2ρ

1 + 2R2ρ
.

The expected overall power consumption of Approach W is

E[PAppr W ] = P 1
wPr(WiFiON) + P 1

w scan + P 2
w scan,

where P 1
w is the power consumption of Wi-Fi transmission on the wearable

device, and P 1
w scan and P 2

w scan are the power consumption of Wi-Fi scanning

on the wearable device and the smartphone, respectively.

In Approach CW, the bandwidth achieved is equal to that achieved by Ap-

proach C when Wi-Fi is not connected. When Wi-Fi is connected, the band-

width achieved is equal to the Wi-Fi bandwidth. Thus, the expected bandwidth

achieved by Approach CW

E[BAppr CW ] = E[BAppr C ] · Pr(WiFiOFF )+

E[Bw] · Pr(WiFiON)

= λ−1
c (1− e−λcBb) · θ−1

µ−1 + θ−1
+

λ−1
w ·

µ−1

µ−1 + θ−1

=
λ−1
c (1− e−λcBb) + 2λ−1

w R2ρ

1 + 2R2ρ
.

The expected overall power consumption is simplified as

E[PAppr CW ] = E[PAppr C ]Pr(WiFiOFF )+

P 1
wPr(WiFiON) + P 1

w scan + P 2
w scan.

In Approach CWD, the cellular network is only used when the Wi-Fi discon-

nection time exceeds Dmax. The usage of cellular network is thus substantially

10



Table 1: Power Consumption for Different Operations

Operation Value Operation Value

P 1
w 1450 mw P 1

w scan 1000 mw

P 1
b 430 mw P 2

w scan 1000 mw

P 2
b 430 mw P 2

c 1400 mw

P 2
proc 1100 mw

reduced. The average usage time of cellular network is recalculated as follows,

E[t′c] = (E[tc|tc > Dmax]−Dmax) · Pr(tc > Dmax)+

0 · Pr(tc ≤ Dmax)

= θ−1e−θDmax .

(1)

Thus, the expected bandwidth achieved by Approach CWD

E[BAppr CWD] = E[BAppr C ] · Pr(CellularON)+

E[Bw] · Pr(WiFiON)

= λ−1
c (1− e−λcBb) · E[t′c]

µ−1 + θ−1
+

λ−1
w ·

µ−1

µ−1 + θ−1

=
λ−1
c e−2RvρDmax(1− e−λcBb) + 2λ−1

w R2ρ

1 + 2R2ρ
.

The expected overall power consumption of Approach CWD is

E[PAppr CWD] = E[PAppr C ]Pr(CellularON)+

P 1
wPr(WiFiON) + P 1

w scan + P 2
w scan.

We study how two variables, i.e., the average moving speed v and the AP

density ρ, affect the performance of each approach. These two variables com-195

bine to determine the mean AP connection time and inter-connection time. We

consider different network environment by setting different values to the av-

erage bandwidth of Wi-Fi and cellular network, since network conditions may

11
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Figure 4: The effect of Wi-Fi AP density ρ on the average bandwidth achieved

for different moving speeds when Wi-Fi bandwidth is higher than cellular

bandwidth on average.

greatly affect the data transmission efficiency. We set the effective transmission

range R of APs to 20 m, considering the complexity of dynamic environments.200

According to the literature [9], we set the power consumption of different op-

erations involved in the data transmission as shown in Table 1. The Bluetooth

bandwidth is set to 2 Mbit/second. The parameter Dmax for Approach CWD

is set to 20 seconds.

We first compare four approaches when Wi-Fi bandwidth is in general higher205

than cellular bandwidth. We set the average bandwidth λ−1
w and λ−1

c to 10

Mbit/second and 3 Mbit/second, respectively. Figure 4 shows how Wi-Fi AP

density ρ affects the average bandwidth achieved for different moving speeds.

Except for Approach C, as ρ increases, the average achieved bandwidth for other

approaches increases in general. Higher AP density increases the probability of210

using Wi-Fi for data transmission, and Wi-Fi has higher bandwidth than cellular

network on average, thus resulting on higher average bandwidth achieved for

approaches except Approach C. However, when rho is particular small (e.g.,

lower than 200), Approach W has the least average bandwidth, because for
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Figure 5: The effect of Wi-Fi AP density ρ on the average bandwidth achieved

for different moving speeds when Wi-Fi bandwidth is lower than cellular

bandwidth on average.

most of the time, no data are transmitted due to the unavailability of Wi-Fi.215

Comparing Figure 4a and Figure 4b, we observe that the moving speed only

has an impact on the performance of Approach CWD. When v is small, Ap-

proach CWD exhibits similar performance as Approach CW, because according

to Equation 1, small v results in higher average usage time of cellular network.

When v is large, however, the average bandwidth achieved by Approach CWD220

approaches Approach W, as ρ increases. This is due to the reduced average

usage time of cellular network. In other words, the portion of time when no

data are transmitted increases, thus resulting in lower average bandwidth.

We then compare four approaches when Wi-Fi bandwidth is in general lower

than cellular bandwidth. We set the average bandwidth λ−1
w and λ−1

c to 2225

Mbit/second and 3 Mbit/second, respectively. Worsened Wi-Fi network condi-

tions can lead to undesirable performance of approaches that rely on Wi-Fi, as

illustrated in Figure 5. Approach W has the lowest average bandwidth among

all, even though it increases as ρ increases. However, Approach C that only

uses cellular network does not have the highest average bandwidth, because the230

maximum Bluetooth bandwidth limits the maximum average bandwidth that
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Figure 6: The effect of Wi-Fi AP density ρ on the average power consumption

achieved for different moving speeds.

can be achieved by using cellular network.

The performance of Approach CWD depends on the moving speed. In partic-

ular, Figure 5b shows that the average bandwidth achieved by Approach CWD

first decreases and then increases, as ρ increases. As the AP density starts to235

increase, more data are transmitted via Wi-Fi, which, in turn, increases the por-

tion of time when no data are transmitted, because Wi-Fi disconnection occurs

more frequently. However, as the AP density exceeds some threshold value and

continues to increase, the usage of cellular network drops, and yet the usage of

Wi-Fi network increases, which combine to result in higher average bandwidth.240

Figure 6 shows how Wi-Fi AP density and the moving speeds affect the

average power consumption of each approach, regardless of Wi-Fi and cellular

bandwidth. Approach W has the lowest average power consumption among

all, even though it increases as ρ increases. Approach CW has the highest

average power consumption, because it incurs the cost of Wi-Fi scanning, and245

also uses the energy-hungry cellular network tethering. However, as ρ increases,

the average power consumption of Approach CW and Approach CWD both

decreases. In particular, when v is large, the average power consumption of

Approach CWD starts to approach that of Approach W, as shown in Figure 6b.
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This is due to the increased usage of Wi-Fi network, which incurs less energy250

than using cellular network.

4. Approach Designation Mechanism

In real-world scenarios, AP availability and quality change dynamically as

people move around, and the inter-arrival time and data size of requests also

vary with different user habits. As shown in last section, no single approach255

from the approach pool can deliver consistently good performance across a va-

riety of environments. This section presents the on-line approach designation

mechanism, which aims at minimizing the energy consumption of our proposed

model in such dynamic scenarios.

4.1. Lyapunov Based Algorithm260

To achieve the goal of energy minimization, we adopt the Lyapunov opti-

mization framework to designate an approach from the approach pool dynam-

ically. Due to the property of the framework, the resulting algorithm is able

to optimize the energy efficiency while keeping the delay time within certain

constraint. In the following, we present how we derive the Lyapunov based265

algorithm, and how it achieves the goal.

We consider a discrete-time model where the approach designation occurs at

time (t1, t2, . . .). Let Ai denote the amount of data that arrive in the timeslot

(ti, ti+1), Ci denote the amount of successfully transmitted data in the timeslot

(ti, ti+1), and Qi denote the queue backlog (number of bits in queue) at time

ti. In practice, the queue backlog Qi represents the size of data that are not yet

transferred on wearable devices. We model Ci as the output of a function, i.e.,

Ci , G(σi, Bi, Qi, Pi),

where σi represents the approach designated in the timeslot (ti, ti+1), Bi is

the average bandwidth achieved in the timeslot (ti, ti+1), and Pi is the overall

power consumption in the timeslot (ti, ti+1). Note that Pi consists of the power
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consumption on both wearable devices and smartphones. Ci is always less than

or equal to Qi. Over time, the queue backlog evolves as follows:

Qi+1 = Qi − Ci +Ai. (2)

Assuming that there are n timeslots, our goal is to minimize the average

power consumption on both wearable devices and smartphones

P =

∑n
i=1 Pi
n

,

while keeping Qi within a certain value.

According to the Lyapunov optimization framework, we define the Lyapunov

function as:

L(Qi) ,
1

2
Q2
i ,

and the one-step Lyapunov drift as:

∆(Qi) , E{L(Qi+1)− L(Qi)|Qi}.

L(Qi) is defined as the half of the squared queue backlog. Using the squared

value is one of the common ways to evaluate the system in stochastic processes.

∆(Qi) is the conditional expectation of the change of the Lyapunov function.270

It shows the accumulated change of the size of the transmission queue. It must

be smaller than or equal to certain value so that the queue does not grow

unlimitedly.

From (2), we have

1

2
Q2
i+1 =

1

2
(Qi − Ci +Ai)

2

≤ 1

2
(Q2

i + C2
i +A2

i )−Qi(Ci −Ai),
(3)

since Ai and Ci are non-negative. Take expectation with respect to Qi on both

sides of (3), and then we have

∆(Qi) ≤
1

2
E{C2

i +A2
i |Qi}+QiE{Ai|Qi}

−QiE{Ci|Qi}

=Di +QiE{Ai|Qi} −QiE{Ci|Qi},

(4)
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where

Di =
1

2
E{C2

i +A2
i |Qi}.

By adding a penalty, the Lyapunov framework is able to minimize the ob-

jective specified in the penalty while keeping the queue length finite. Hence, we

add a weighted conditional expectation of power consumption to both sides of

(4), which now becomes

∆(Qi) + αE{Pi|Qi}

≤Di +QiE{Ai|Qi} −QiE{Ci|Qi}+ αE{Pi|Qi}

=Di +QiE{Ai|Qi} − E{QiE{Ci|σ,Bi, Qi, Pi} − αPi|Qi}.

(5)

Note that based on the Lyapunov optimization framework, the choice of α can

affect the tradeoff between the power consumption and delay time. In our trace-275

based simulations, we validate the effect of α on the performance of the proposed

algorithm.

To minimize the left-hand-side of (5), it is equivalent of maximizing the neg-

ative terms and minimizing the positive terms on the right-hand-side. Since we

can only determine the designated approach σ, we thus maximize the negative

term:

E{QiE{Ci|σ,Bi, Qi, Pi} − αPi|Qi}.

Therefore, the designated approach σi in the timeslot (ti, ti+1) can be obtained

as follows:

σi = arg max
σ∈Ω

{
QiE{Ci|σ,Bi, Qi, Pi} − αPi

}
, (6)

where Ω is the set of the four proposed approaches that can be designated.

4.2. Practical Consideration

The proposed Lyapunov algorithm requires to know the bandwidth that can280

be achieved by each approach in order to designate one approach that maximizes

the equation 6. We have shown the expected bandwidth and the expected overall

power consumption achieved by each approach in Section 3, which are related

to the average bandwidth of Wi-Fi and cellular network, the AP density and
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the moving speed. In the following, we illustrate how we obtain these related285

variables.

Average bandwidth of Wi-Fi and cellular network: We keep track of

the bandwidth of any network used during each interval by recording the trans-

mission time of requested data. These bandwidth data are then used to estimate

the average bandwidth of Wi-Fi and cellular network by filtering out obvious290

outliers. Since network conditions may vary both temporally and spatially, we

only consider bandwidth data that are recorded most recently.

Average user speed: The movement sensor on the smartphone can be

readily used to detect user movement. We are particularly interested in the

average speed vi of the user during last interval, since this information shows295

how fast the user is leaving current environment. Various localization methods

on mobile devices can also be utilized to help decide the moving speed.

AP density: Suppose we regard an area as a set of square grids to simplify

analysis. In this paper, we use AP density to denote the ratio of the number

of square grids covered by useable APs over the total number of visited square300

grids, instead of the number of APs per square grid. This is justified due to the

fact that several APs may cluster in a square grid while other grids are not cov-

ered, which may inaccurately infer that the user is in a dense AP environment.

This information is approximated via AP scanning and movement sensing on

the smartphone. Note that such approximation is performed separately during305

each interval, with results denoted by ρi. We take the latest approximation

result as the reference for the next approach designation.

5. Evaluation

In this section, we evaluate the performance of our proposed approach desig-

nation mechanism through extensive trace-driven simulations. We first present310

the methodology we adopt, and then the results of our comparison experiments.
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5.1. Methodology

Overview. To understand the performance of our approach designation mech-

anism, we conduct extensive trace-driven simulations. Two types of traces were

collected, i.e., request arrival traces and network availability and quality traces,315

both of which have a significant impact on the performance of our mechanism.

Request arrival traces were retrieved from analyzing the network logs in five

mobile devices. Network availability and quality traces were generated by man-

ually testing network bandwidth and tracking network availability at different

environments. We present the trace collection in more detail in next section.320

In the simulation, we compare our approach designation mechanism with

four basic approaches, as well as three mechanisms that designate approaches

differently from ours. We also describe the performance metrics we adopt to

compare different approaches. Since our simulations are based on real traces,

we believe that they serve as a good reference for our future work of implemen-325

tations.

Trace Collection. We collected request arrival traces via Android smart-

phones. To capture the data size and arrival time of requests, we installed an

app, called Network Log, on five Android smartphones. Network Log provides

very detailed statistics about app connections, such as bytes transmitted and330

timestamps for each established connection. We recruited five volunteers to

carry these smartphones as their main communication tool, with Network Log

running in the background for one week. Note that we are only interested in

those connections logged in the daytime, thereby eliminating connections logged

in the nighttime. We aggregated the bytes transmitted in connections that share335

the same source and destination IP address, regarded as one request. Then we

divided these requests into a number of segments with each segment consisting

of requests collected in one day. Thus, we obtained 35 segments. Each segment

is served as one request arrival trace, consisting of a timestamped sequence of

request arrivals and their data size. Figure. 7a and Figure. 7b plot the distribu-340

tions of the data size and inter-arrival time of requests. We observe that more

than 80% of request data size is lower than 1000 KB, and 80% of inter-arrival
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Figure 7: Request Traces

time is shorter than 200 seconds.

We collected network quality traces by manually testing the bandwidth of

cellular network and Wi-Fi at different environments. We used an Android345

smartphone with SpeedTest installed to test both download and upload band-

width at three different locations. For simplicity, we averaged the tested upload

and download bandwidth as the bandwidth for an AP. Note that the density of

Wi-Fi AP deployment varies with each location, while the bandwidth available

for each Wi-Fi AP is affected by multiple factors, such as server load, conges-350

tion and AP-user distance. We walked in different speeds for two hours at each

location, and tested the bandwidth of both Wi-Fi (if any) and cellular network

(3G) every 20 seconds. As a result, we collected 20 traces for each location.

Each network quality trace is a timestamped sequence of available Wi-Fi APs

and cellar network with corresponding bandwidth. Figure. 8a and Figure. 8b355

depict the CDFs of bandwidth for cellular network (3G) and Wi-Fi observed at

three different locations, respectively.

To capture fine-grained network availability traces, we wrote a simple An-

droid app that takes advantage of ConnectivityManager to record the connec-

tion time and disconnection time with Wi-Fi and cellular network, respectively.360

ConnectivityManager is an API provided in the Android framework that can

monitor network connections and send broadcast intents when network connec-
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tivity changes. Conveniently, we managed to collect the network availability

traces while collecting network quality traces, since we ran the app in the back-

ground on the same smartphone used to test bandwidth. We find that cellular365

network connections are quite stable, so we do not show the availability result of

cellular network. Figure. 9a and Figure. 9b show the distributions of connection

time and inter-connection time of Wi-Fi.

In Figure. 8a and Figure. 8b, we find that the bandwidth of cellular network

(3G) at different locations does not vary a lot, which, however, is not case for Wi-370

Fi. The bandwidth of Wi-Fi at Location A (marked as the red line) is generally

much higher than that at other locations. The inter-connection time of Wi-Fi
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also shows location-specific patterns, as shown in Figure. 9b. Location A has the

highest AP density among all. On the other hand, the connection time of Wi-Fi

at different locations share very similar patterns. This partially validates the375

assumption of exponential probability distribution for Wi-Fi connection time,

whose rate is only related to Wi-Fi’s effective coverage range and user moving

speed.

Set-up and Comparison. We conduct the trace-driven simulation based on

the custom simulator we develop for evaluating the performance of four basic380

approaches in Section IV. Instead of deriving the request arrival rate λ and Wi-

Fi AP arrival rate θ and departure rate µ based on given user moving speed v

and Wi-Fi AP density ρ, now we serve one request trace and one network trace

at a time to the simulator as the input for one simulation run. One request trace

is a list of recorded requests in every timeslot, while one network trace is a list385

of bandwidths recorded in every timeslot, ordered by recording time. When no

requests are recorded or network bandwidth is not available, the request or the

bandwidth is recorded as zero. Unavailable network bandwidth can be caused

by several factors, such as human mobility, and network failure. Therefore, the

network trace served in our simulation reflects how the bandwidth changes in390

the real-world situation, including human mobility. Based on the network trace,

we estimate the average user speed v = µ
R and Wi-Fi AP density ρ = θ

2Rv by

backwards derivation. The maximum tolerable time Dmax is set to 20 seconds.

Normally, a new request is fulfilled upon its arrival, if the interface for the

available network is allowed in the adopted approach and is idle. For example,395

Wi-Fi is idle in the state of WiFiON using Approach CW. Otherwise, the request

is buffered in the waiting queue. When a request departures, namely completed,

the next request in the queue, if any, goes through the same process as above.

We also define the starting point of WiFiON, WiFiOFF and CellularON as three

events, each of which attempts to fulfill the remaining requests in the queue, if400

any, via the corresponding interface upon triggering. Note that a request that

fails to complete during a state will be put back to the queue with the data not

transmitted.
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First, we compare our approach designation mechanism with four basic ap-

proaches across a variety of scenarios. Then, we study how α would affect the405

performance of the proposed mechanism. Also, we compare our mechanism with

three different approach designation mechanism – random, local-optimal

and predictive.

The random mechanism chooses one approach randomly from the approach

pool, regardless of current network conditions, request delay time requirement,410

etc. The local-optimal mechanism strives to select the approach that yields

the most energy-efficient performance at present, without considering the pos-

sible variation in network quality or availability in the future. The predictive

mechanism is the ideal approach designation mechanism, which can foresee the

information of the Wi-Fi AP availability and quality in the future, and thus can415

make optimal approach designation decisions.

Performance Metrics. We use two terms, energy consumption per data unit

size eb and delay time per data unit size db, to characterize the performance of

each method. By doing so, we manage to compare different methods under dif-

ferent request patterns. When calculating the energy consumption, we consider420

all the energy consumption associated with data communication for wearable

devices, as defined in Section 3.2, including energy consumption incurred on

smartphones due to tethering. The delay time is calculated based on the arrival

time of data requests on wearable devices, and their arrival time on remote

servers. Note that it has implicitly included the Bluetooth data transmission425

time, and the data processing delay of cellular interface on smartphones.

We also introduce another term, called dispersion σ, to further show how

each method performs. Let emin and dmin denote the minimum energy con-

sumption per data unit size and the minimum delay time per data unit size,

respectively, among all the methods. The dispersion σ is then defined as the430

Euclidean distance between (eb, db) and (emin, dmin). By definition, the disper-

sion σ indicates how far the actual result is from the optimal (emin and dmin).

Theoretically, the smaller σ is, the better the corresponding method performs.
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Figure 10: Comparison between Approach CW, Approach CWD, Apporach

W, Approach C and our mechanism (denoted as DYNAMIC)

5.2. Performance Results

Performance against four basic approaches. We first compare our ap-435

proach designation mechanism with all the four basic approaches. We set α to

0.0005 for our mechanism in the simulation. The comparison results are shown

in Figure. 10.

In Figure. 10a, we observe that Approach W has the highest energy efficiency

at Location A and our mechanism has the highest at Location B and C. It is440

not surprising to see the good performance of Approach W in energy efficiency,

since data transmission via Wi-Fi at Location A is generally much more energy

efficient than that via cellular network and Bluetooth combined. However, this

is all at the cost of incurring excessively large delay time, which is not shown

in the other two figures. At location A, Approach CWD achieves almost the445

same energy efficiency as our mechanism, but performs much worse at other two

locations. Except Approach W, our mechanism delivers the best performance

in energy efficiency across all locations.

In Figure. 10b, we find that our mechanism incurs the smallest delay time

across all the locations, even better than the delay-free Approach C and Ap-450

proach CW. This result suggests that delaying data communication strategically

does not only improve energy efficiency, but also help reduce the overall delay

time. It is worthwhile to mention that our mechanism makes approach designa-

tion decisions merely based on previous and current monitored variables, which

24



0.64

0.645

0.65

0.655

0.66

0.665

0.67

0.675

0.68

3.5 4 4.5 5 5.5 6 6.5 7

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

m
J
/K

b
it
)

α (10
−4

)

0.654 0.654

0.660

0.665
0.667

0.672

0.675 0.675

(a) Energy Efficiency

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

3.5 4 4.5 5 5.5 6 6.5 7

D
e

la
y
 T

im
e

 (
m

s
/K

b
it
)

α (10
−4

)

0.533 0.533

0.524

0.511

0.504

0.494
0.490

0.488

(b) Delay Time

0.22

0.225

0.23

0.235

0.24

3.5 4 4.5 5 5.5 6 6.5 7

D
is

p
e

rs
io

n

α (10
−4

)

0.227 0.227

0.230

0.232
0.233

0.237

0.239 0.239

(c) Dispersion

Figure 11: Comparison between Different α for our mechanism at Location A

already delivers such good performance.455

Now, we may be interested in the overall performance of our mechanism. A

good solution should not only achieve good energy efficiency, but also good time

efficiency. In order to compare the overall performance, we first find emin and

dmin from the results of all solutions compared for different locations. Then, we

calculate the dispersion for each solution, with results plotted in Figure. 10c.460

Note that only dispersion at Location A is shown, since dispersion at other

locations are extremely small, making it hard to display in the figure. The results

show that our mechanism exhibits the lowest dispersion across all locations, 20%

lower than the second lowest Approach CWD, and 83% lower than Approach

C.465

Performance for different α. To show how our mechanism performs under

different α, we vary α from 0.00035 to 0.0007 with steps of 0.00005. Figure. 11

plots the results of the comparison for different α at Location A. Results at

other locations do not reveal such obvious changing trend as at Location A,

therefore not shown here.470

In Figure. 11a, we notice that when α is below 0.0004, our mechanism de-

livers the highest energy efficiency, but also incurs the largest delay time, as

shown in Figure. 11b. As α increases, the energy consumption increases, while

the delay time decreases. This makes sense, because larger α leads to more

adoption of Approach CW. To evaluate the overall performance under different475

α, we show the calculated dispersion in Figure. 11c based on the same (emin,
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Figure 12: Comparison with other approach designation mechanisms

dmin). When α is below 0.0004, our mechanism achieves the lowest dispersion,

although the incurred delay time is the largest among all. Thus, to get optimized

performance, α should be smaller than 0.0004.

Comparison with other approach designation mechanisms. Finally,480

we compare our mechanism with other approach designation mechanisms. We

set α to 0.0005 during the comparison experiments. Figure. 12 depicts the

performance of all comparing solutions across all locations, except that the

dispersion comparison only shows the results at Location A.

As described in the section of simulation setups, Location B and Location C485

have very poor Wi-Fi networks, under which the local-optimal, the predictive

and our Lyapunov based dynamic mechanisms may all choose to use cellu-

lar works for most data communications. This explains why the performance

differences are so small among these three mechanisms on Location B and Lo-

cation C. However, on Location A that has much better Wi-Fi networks, we490

show that our mechanism achieves better time efficiency than the predictive,

and achieves better energy efficiency than the local-optimal. Specifically, in

Figure. 12a, we note that the predictive mechanism exhibits the best energy

efficiency, irrespectively of locations. This is not surprising, as the predictive

mechanism utilizes its knowledge of future information to make optimal deci-495

sions. On the other hand, our mechanism delivers very close performance to

predictive, which we did not expect beforehand. In Figure. 12b, the local-

optimal mechanism incurs the smallest delay time, since it strives to use the
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network with best bandwidth without delaying data transmissions. predictive

incurs higher delay time, because it may delay data transmissions to use better500

network. Obviously, the gains from using better network does not offset the

cost of extra delaying time at Location A. From Figure. 12c, we conclude that

the performance of our on-line mechanism is very close to that of the offline

predictive mechanism, only 4.5% lower. This also indicates that knowing the

future is not as helpful as what we normally think.505

Discussion. The local-optimal and predictive mechanisms are not realistic in

practice. In order to calculate the energy and time efficiency, both mechanism

must have the knowledge of the network bandwidth and data request arrivals

for the next timeslot(s). In our simulation, as traces of all time are served at

once, it is possible for these two mechanisms to calculate the metrics before510

making the selection decisions. However, in practice, it is difficult to predict

the future, which makes them inapplicable. On the other hand, our Lyapunov

based mechanism does not assume any knowledge of the future, and is highly

robust to the changes of network bandwidths and data request arrival rates. It

only uses the estimations based on previous recorded network bandwidth, and515

the data transmission queue length to make selection decisions. Yet, it achieves

very good energy and time efficiency, which makes it highly desirable in practice.

6. Related Work

6.1. Data Offloading

Recently, data offloading in smartphone-based scenarios has been an active520

research topic. Basically, the idea is to offload data transmission from cellu-

lar network to Wi-Fi for better energy efficiency [10]. Based on the Lyapunov

optimization framework, SALSA [11] utilizes channel conditions and local infor-

mation to make link selection decisions, achieving an near-optimal energy-delay

tradeoff on smartphones. BreadCrumbs [12] and Wiffler [13] strive to delay data525

transfers so as to offload more data on Wi-Fi, based on its prediction on future

Wi-Fi connectivity. Recent study [14] shows that 80% of generated data can
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be offloaded to Wi-Fi networks from cellular networks when a delay of 30 min-

utes can be tolerated. Coff [15] is a contact-duration-aware offloading scheme

for delay-tolerant networks in order to accommodate the increasingly popular530

large-size multimedia contents. Another work [16] proposes four low-overhead

schemes (Adaptive, Decision Tree-based, Hybrid and Lazy) to dynamically and

adaptively deduce an application’s delay tolerance.

Another trending topic of data offloading is device-to-device (D2D) offload-

ing in opportunistic networking. Based on Reinforcement Learning framework,535

the work [17] proposes an adaptive cellular traffic offloading approach in op-

portunistic networks, and studies the performance of two well-known learning

algorithms: Actor-Critic and Q-Learning. To provide efficient use of personal

device storage, theu authors propose algorithms that maximize the data trans-

ferred in D2D connections [18]. The work [19] proposes an adaptive and scal-540

able energy-aware data offloading algorithm for opportunistic networks, which

is shown to be robust against the distributions of node density and initial con-

tent availability. PI-SOFA [20] is a framework that integrates the awareness of

both interest and power capability of a candidate node within the forwarding

decision process.545

Our work borrows ideas from above work, but focuses on a distinctly dif-

ferent problem, i.e., how to jointly minimize the energy consumption on both

smartphones and wearable devices. The addition of wearable devices makes all

previous approaches inapplicable.

6.2. Wi-Fi Selection550

Wi-Fi AP scanning and selection have also gained much attention in the

past years. The discovery and choice of Wi-Fi APs can significantly affect the

efficiency of data transmission on Wi-Fi. WiFisense [8] is an adaptive Wi-Fi

sensing algorithm that employs user mobility information to further increase

Wi-Fi usage and improve energy efficiency. A new association metric, called555

estimated available bandwidth, is presented in [21] with which a station can

find the AP that provides the maximum achievable throughput among scanned
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APs. To improve Wi-Fi reliability, ViFi [22] opportunistically exploits base

station diversity to minimize disruptions and support interactive applications

for mobile clients. Recent work [23] estimates the strongest channel by utilizing560

channel responses extracted from off-the-shelf wireless chipsets, without probing

any additional channels. Our work can be well complemented by all these

methods on discovering and selecting Wi-Fi APs.

7. Conclusion

The widespread adoption of wearable devices as people’s daily devices is565

challenged by their short battery life. In this paper, we propose a smartphone-

assisted data communication mechanism to improve the energy efficiency on

both wearable devices and smartphones. This mechanism considers four ap-

proaches that users can actually adopt on different platforms. In order to per-

form equally well in both static and mobile environment, we propose an on-line570

approach designation mechanism to determine which approach to adopt. Our

mechanism requires only smartphones to monitor environment information and

does not assume knowledge of the future. To evaluate the performance of our

proposed mechanism, we conduct trace-driven simulations. We show that our

proposed mechanism outperforms static mechanisms and other dynamic mecha-575

nisms, and delivers very close performance to the ideal one that can foresee the

future. In our future work, we will focus on developing a thorough theoretical

analysis of our proposed algorithm, as well as implementations and real-world

evaluations.
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