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Fast Tracking the Population of Key Tags
in Large-scale Anonymous RFID Systems

Xiulong Liu Xin Xie Keqiu Li Bin Xiao Jie Wu Heng Qi Dawei Lu

Abstract—In large-scale RFID-enabled applications, we some-
times only pay attention to a small set of key tags, instead of all.
This paper studies the problem of key tag population tracking,
which aims at estimating how many key tags in a given set
exist in the current RFID system and how many of them are
absent. Previous work is slow to solve this problem due to the
serious interference replies from a large number of ordinary (i.e.,
non-key) tags. However, time-efficiency is a crucial metric to the
studied key tag tracking problem. In this paper, we propose a
singleton slot-based estimator, which is time-efficient because the
RFID reader only needs to observe the status change of expected
singleton slots corresponding to key tags instead of the whole time
frame. In practice, the ratio of key tags to all current tags is small
because “key” members are usually rare. As a result, even when
the whole time frame is long, the number of expected singleton
slots is limited and the running of our protocol is very fast. To
obtain good scalability in large-scale RFID systems, we exploit
the sampling idea in the estimation process. Rigorous theoretical
analysis shows that the proposed protocol can provide guaranteed
estimation accuracy to end users. Extensive simulation results
demonstrate that our scheme outperforms the prior protocols by
significantly reducing the time cost.

Index Terms—Key RFID Tags, Cardinality Estimation, Popu-
lation Tracking, Time-efficiency.

I. INTRODUCTION

A. Background and Problem Formulation

RADIO Frequency Identification (RFID) is a form of
wireless technology that can identify and track tags

attached to objects or even humans. Compared with traditional
bar-code technology, RFID has a variety of advantages: RFID
readers do not require a direct line of sight to probe tags; RFID
tags can be read at a relatively long distance; RFID readers can
read tags at a very fast speed of nearly 100 tags per second.
Owning to these attractive properties, RFID technology has
promising prospects in various applications such as supply
chain management [2], access control [3], localization [4], and
object tracking [5], etc.

In a large-scale RFID system containing thousands of tags,
we may only care about a small subset of tags instead of
all tags. For example, consider a multi-tenant warehouse as
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Fig. 1. Exemplifying the problem of key tag population tracking.

illustrated in Fig. 1, where each tenant possesses a set of
items, and only knows the tag IDs of his own items, but
does not know the tag IDs of other tenants [6]. Tenant A
may want to monitor the stock of his items (i.e., how many
of his items are present in the system), so as to dynamically
determine the stock replenishment. As multiple tenants share
a common RFID reader, to avoid disturbing other tenant’s
operations, each tenant just has a short time window to do
such an inventorying operation. A straightforward solution is
to use the RFID reader to perform a comprehensive and precise
tag identification operation. Clearly, identifying each tag in the
warehouse can obviously tell us how many items of tenant A
are present in the warehouse. However, the operation of precise
tag identification is critically time-consuming, because it needs
to identify each tag one by one in the large tag population.
Moreover, what tenant A wants to know is just the number of
his items that are present in (or absent from) the warehouse.
For such a purpose of stock monitoring, exact identification
is even not necessary, because the tagged objects are of the
same except for the tag IDs. Hence, for time-efficiency, tenant
A may prefer an approximate estimation protocol to a time-
consuming tag identification protocol. Tenant A refers to his
tags as key tags, and the tags belonging to other tenants as
ordinary tags, and desires to quickly estimate the number of
present key tags and the number of absent key tags. When the
estimated number of remaining key tags are below a certain
threshold, the tenant performs a stock replenishment.

This problem is formulated as follows. We use SK =
{x1, x2, ..., xk} represent the set of k key tags that belong
to a user, which is known by this user in advance. We denote
the current set of tags in the system as SC = {y1, y2, ..., yc},
which is not known in advance because it is not easy to
get particularly in dynamic RFID systems (the tagged objects
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or humans frequently move in or out). Generally, there are
three types of tags. (1) Absent key tag set SA: the tags that
belong to the tenant but are not present in the current system.
SA = SK − SC and its cardinality |SA| is denoted as a. (2)
Remaining key tag set SR: the present tags that belong to
this tenant. SR = SK ∩ SC and |SR| is denoted as r. (3)
Ordinary tag set SO: the present tags that belong to other
tenants. SO = SC −SK and |SO| is denoted as o. We use SU
to represent the universal tag set. SU = SK ∪ SC and |SU |
is denoted as u. We use a factor d called dynamic degree to
indicate the ratio of absent key tags to remaining key tags,
i.e., d = a

r . The relationship of the set sizes are as below.
k = a+ r, u = a+ r + o, and a, r, o are natural numbers.

The key tag population tracking problem is to fast report
an estimate r̂ for r and an estimate â for a. The reported
r̂ and â should satisfy P{|r̂ − r| ≤ α × r} ≥ β and
P{|â − a| ≤ α × a} ≥ β, respectively. Here, α ∈ (0, 1]
is the confidence interval and β ∈ [0, 1) is the required
reliability. (α, β) reflects the required estimation accuracy, and
is specified by the end users. For simplicity, we refer to r̂ (or
â) as an (α, β) estimate of r (or a).

Someone may think that the estimation of remaining key
tags and the estimation of absent key tags are two equivalent
problems, because we can directly get â by calculating k− r̂,
where k is known in advance. In other words, we only need to
estimate the cardinality of either r or a. However, this notion
is incorrect. The reasons are as exemplified in the following.
We first get an estimate r̂ with a relative error of α, thus its
absolute error is r × α. If we get â by directly calculating
k − r̂, obviously, the absolute error of â is also r × α. Then,
the relative error is r×α

a , which is larger than the required
value α when r > a. Therefore, these two types of estimation
problems are not equivalent, and it is not trivial to study the
estimation of r and a, respectively.

B. Prior Art and Limitation

In the following, we review the closely related work and
point out their limitations when addressing the problem of
key tag population tracking.

1) Tag Identification Protocols: A straightforward solution
is to identify all tags in SC . Once we know SC , we can get the
precise r by comparing SK and SC . A great deal of excellent
tag identification protocols [7], [8] have been proposed. How-
ever, the time cost of tag identification protocols is inherently
proportional to the number of tags. In an RFID-enabled ware-
house that contains tens of thousands of tags, the identification
time could be very long, and thus may affect the running
of other RFID protocols. Hence, we sometimes prefer a fast
probabilistic method even though it sacrifices some accuracy.
For example, in inventory management, we only need to know
the approximate number of remaining items instead of the
exact number to determine the item replenishment. Moreover,
tag identification protocols may cause the privacy concern,
because the transmitted tag IDs as plaintext in the air may be
eavesdropped by the malicious reader [9].

2) Missing Tag Identification Protocols: The existing miss-
ing tag identification schemes were proposed with a common

assumption that all the tag IDs are known in advance. How-
ever, this paper considers an RFID system that also contains
ordinary tags whose IDs are not known previously. The exist-
ing missing tag identification protocols cannot solely address
the problem concerned by this paper, because the reader will
incorrectly assert that a missing tag is present, if ordinary
tag(s) respond exactly at the moment when this missing tag
should respond. A solution is to execute the unknown tag
identification protocols to deactivate the unknown ordinary
tags before invoking the missing tag identification protocols.
However, we observed from the simulation results that this
solution is still time-consuming.

3) Tag Search Protocols: The literature [5], [10] exploited
lightweight Bloom filter technique to search the exact tags
in SR. Although the methods in [5], [10] have got great
improvement over the pure identification protocols, they are
still of low time-efficiency to solve the problem of key tag pop-
ulation tracking. The intuitive reason is that searching exact
tags consumes more time than just reporting tag cardinality.

4) Cardinality Estimation Protocols: The main technical
challenge to key tag population tracking is that serious inter-
ference replies from a large number of ordinary (non-key) tags
will affect the estimation of key tag cardinality. However, most
existing estimation protocols [9], [11]–[20] cannot distinguish
the key members from the ordinary members. They can only
estimate the cardinality of SC , which is the sum of the
numbers of remaining key tags and ordinary tags. The problem
formulated in literature [21], which focuses on dynamic RFID
estimation, is fundamentally the same as this paper. However,
the ZDE protocol proposed in [21] is not efficient to solve the
problem of key tag population tracking because it requires the
reader to observe the whole time frame even when the number
of key tags is small.

C. The Proposed Approach

We first propose a Basic Key tag Tracking (B-KT) protocol
based on the framed slotted aloha mechanism. The reader
queries the tags by issuing a time frame that contains f slots.
Each tag in SC randomly chooses a slot to respond with the
checksum of its ID. There are three types of slots in the frame:
empty slot, in which no tag responds; singleton slot, in which
only one tag responds; collision slot, in which two or more
tags respond. Then, we can get a vector C[0..f−1], in which 0
represents empty; 1 represents singleton; 2 represents collision.
Similarly, we can get another vector K[0..f − 1] by virtually
executing aloha protocol on the key tag set SK . We compare
these two vectors to estimate the number of remaining key
tags and the number of absent key tags. Let N10 represent the
number of slots that satisfy K[·] = 1

∧
C[·] = 0; N11 represent

the number of slots that satisfy K[·] = 1
∧

C[·] = 1 and the
received checksum is the same as that of the expected tag.
Intuitively, the more absent key tags are, the larger the value
N10 is; the more remaining key tags are, the larger the value
N11 is. This paper proposes the unbiased estimators using the
observed values N10 and N11 to track key tag population, i.e.,
estimating the number of absent key tags and the number of
remaining key tags. Then, we use the sampling idea to improve
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the scalability of B-KT, and thus propose the Sampling-based
Key tag Tracking (S-KT) protocol.

D. Main Contributions

This paper thoroughly studies the problem of key tag popu-
lation tracking and mainly makes the following contributions.
• We first propose the Basic Key tag Tracking (B-KT)

protocol. The advantage of B-KT over prior art is that the
reader only needs to observe the expected singleton slots
corresponding to key tags instead of the whole time frame. The
expected empty/collision slots are not used, and are directly
skipped for saving time. To be more scalable, we exploit the
sampling idea on B-KT to propose the Sampling-based Key
tag Tracking (S-KT) protocol.
• We theoretically investigate the accuracy of the proposed

estimators. Rigorous analysis is proposed to ensure that our
estimators can always satisfy the accuracy requirement speci-
fied by the users. The involved parameters are also optimized
to minimize the execution time required by our protocols.
• We conduct extensive simulations to evaluate the per-

formance of S-KT in a large-scale RFID system. Simulation
results show that S-KT significantly outperforms the state-of-
the art protocols in terms of time-efficiency.

The remainder of this paper is organized as follows. We
propose B-KT, S-KT, and the theoretical analysis in Section-
s II and III, respectively. In Section IV, extensive simulation
experiments are conducted to evaluate the performance of the
proposed protocol. A comprehensive review of the related
work is given in Section V. Section VI concludes the paper.

II. BASIC KEY TAG TRACKING PROTOCOL

In this section, we first present the MAC layer communica-
tion mechanism used by our B-KT protocol. Then, we propose
the novel singleton slot-based estimator r̂ to estimate the
cardinality of remaining key tags. To guarantee the required
(α, β) accuracy, we propose rigorous theoretical analysis to
configure the involved parameters. On the other hand, we also
propose the estimator â to estimate the cardinality of absent
key tags. Corresponding theoretical analysis is presented to
guarantee the accuracy of â. Finally, we analyze the time-
efficiency of our B-KT protocol. The main notations used in
this paper are summarized in Table I.

A. Overview of MAC Layer Communication

The MAC layer communication mechanism used by our
B-KT protocol is a variant of the Framed Slotted Aloha
mechanism. Because of the instability of long-frame Aloha
mechanism [8], [9], [22], the frame size is typically no more
than 512. For simplicity, f is fixed to 512 throughout this
paper. However, when a large number of tags participate in the
short frame of 512 slots, almost all slots become collisions.
Such a frame full of collisions is usually useless. To solve
this dilemma, we propose to sequentially initializes ℵ time
frames to “load” a large number of tags, where each frame
still contains f = 512 slots.

Specifically, the reader initializes an arbitrary frame with
frame counter fc ∈ [0,ℵ − 1] by broadcasting a request

TABLE I
MAIN NOTATIONS USED IN THE PAPER

Notations Descriptions
SA / SR / SO abs. key tag set / rem. key tag set / ord. tag set.
a / r / o cardinality of SA / SR / SO .

SK / SC / SU key / current / universal tag set.
k / c / u cardinality of SK / SC / SU .
umax upper bound on u.
d dynamic degree, given by a

r
.

dmax / dmin upper / lower bound on d.
r̂ / â estimate of r / a.
α / β required confidence interval / required reliability.
f size of sub-frame.
ℵ # of sub-frames.
fc frame counter.
sc slot counter.
H(·) uniform hashing function.
R random number.

E(·) / D(·) expectation / variance.
K[·] vector got by virtually executing Aloha on SK .
C[·] vector got by executing Aloha on SC .
ûi estimate of u after the ith frame.

umax i tighter upper bound on u after the ith frame.
d̂i estimate of d after the ith frame.

dmax i / dmin i tighter upper / lower bound on d after the ith frame.
Zβ percentile of β.

〈fc,ℵ, f, R〉, in which R is a random number. Each tag
calculates H(ID,R) mod ℵ to determine if it will participate
in the current frame. If H(ID,R) mod ℵ is equal to the
current frame counter fc, it will participate in the current
frame. Note that, R does not change among all the sub-frames,
and thus each tag will pseudo-randomly determine one and
only one sub-frame to participate. The tags participating in the
current frame will pick the scth slot, where sc = H(ID,R)
mod f . Each tag responds the 10-bit checksum [23] of its ID
in the picked slot. Even though ℵ short sub-frames (containing
f = 512 slots) are issued one by one, they can be logically
interpreted as a long time frame that consists of ℵf slots. And
all tags participate in such a long logical time frame.

B. Estimating the Remaining Key Tag Population

1) Overview of the Protocol Design: Since we know
the key tag set SK , we could virtually execute the above
MAC layer mechanism on SK . As illustrated in Fig. 2, we
could get the slot status vector K[·] corresponding to SK .
As aforementioned, ℵ sub-frames are logically treated as a
long frame containing ℵf slots. A key tag is mapped to
the location of H(ID,R) mod ℵf whose result follows a
uniform distribution within [0,ℵf − 1], where ID is its 96-
bit ID and R is a random number. In K[·], 0 means no
key tag is mapped to this location; 1 indicates only one key
tag is mapped to this location; 2 represents two or more
key tags are mapped to this location. These three types of
slots are called expected empty slots, expected singleton slots,
and expected collision slots, respectively. On the other hand,
we use the same parameters to actually execute the MAC
layer mechanism on the current tag set SC . Thus, we could
obtain another slot status vector C[·]. Specifically, the reader
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Fig. 2. The basic principle of our singleton slot-based estimators.

sequentially observes the ℵ separate sub-frames (each contains
f slots). If the scth slot in the fcth sub-frame is an empty
(singleton or collision) slot, C[(fc − 1) × f + sc] is set to 0
(1 or 2). Because the current tag set SC is different from the
key tag set SK in reality, vector C[·] may be different from
K[·]. This paper proposes to use the status change of expected
singleton slots to track the population of remaining key tags.

2) Proposing the Estimators r̂: In our scheme, the reader
needs to observe the expected singleton slots and record the
numbers of the following two types of special slot pairs.

• N1,0 is the number of slot pairs that satisfy: K[z] = 1 ∧
C[z] = 0. Here, z is the slot index in the vector.

• N1,1 is the number of slot pairs that satisfy: K[z] = 1 ∧
C[z] = 1 ∧ the received checksum is the same as that of
the expected tag.

In the following, we theoretically present how to use the
observed N1,0 and N1,1 to obtain an unbiased estimator for
remaining key tags. First, we analyze the probabilistic prop-
erties behind the variables N1,0 and N1,1. Essentially, N1,0

is equal to the number of absent tags in SM that exclusively
occupy slots. For an arbitrary absent tag, the probability that
its picked slot is not selected by any other tags is denoted as
p1,0, which can be given as follows:

p1,0 =

(
1− 1

ℵf

)u−1
≈ e−

u
ℵf (1)

Since ℵf is normally large, the above expression can be sim-
plified to e−

u
ℵf . N1,0 follows Bernoulli(m, p1,0) distribution.

And thus, the expectation E(N1,0) and variance D(N1,0) of
N1,0 are given as follows:

E(N1,0) = a× p1,0 = ae−
u
ℵf (2)

D(N1,0) = a× p1,0 × (1− p1,0)

= ae−
u
ℵf

(
1− e−

u
ℵf

) (3)

Then, let us consider the variable N1,1. Two and only two
cases are possible to contribute to N1,1.

Case 1: If a remaining key tag exclusively occupies a slot
within the frame, N1,1 will be increased by 1. We denote the
number of this type of slot pairs as N∗1,1. For an arbitrary

remaining key tag, the probability that it exclusively occupies
a slot is denoted as p∗1,1, which can be given as follows:

p∗1,1 =

(
1− 1

ℵf

)u−1
≈ e−

u
ℵf (4)

Since N∗1,1 follows Bernoulli(r, p∗1,1) distribution, the expec-
tation E(N∗1,1) and variance D(N∗1,1) of N∗1,1 are given below:

E(N∗1,1) = r × p∗1,1 = re−
u
ℵf (5)

D(N∗1,1) = r × p∗1,1 × (1− p∗1,1)

= re−
u
ℵf

(
1− e−

u
ℵf

) (6)

Case 2: If exactly an absent key tag as well as an ordinary
tag pick a common slot, and their checksums are coincidental-
ly the same, N1,1 will be also increased by 1. And the number
of this type of slot pairs is denoted as N∗∗1,1. For an arbitrary
absent key tag, the probability that it shares a common slot
with only one ordinary tag and their 10-bit checksums are the
same is denoted as p∗∗1,1. We reasonably assume two arbitrary
tags have the same 10-bit checksum with the probability 1

210 .
Thus, p∗∗1,1 can be given as follows:

p∗∗1,1 =

(
o

1

)
× 1

ℵf
×
(

1− 1

ℵf

)u−2
× 1

210
≈ oe−

u
ℵf

210ℵf
(7)

Since N∗∗1,1 follows the distribution of Bernoulli(a, p∗∗1,1), the
expectation E(N∗∗1,1) and variance D(N∗∗1,1) are given below:

E(N∗∗1,1) = a× p∗∗1,1 =
aoe−

u
ℵf

210ℵf
(8)

D(N∗∗1,1) =a× p∗∗1,1 ×
(
1− p∗∗1,1

)
=
aoe−

u
ℵf

210ℵf

(
1− oe−

u
ℵf

210ℵf

)
(9)

Since N1,1 consists of two parts: N∗1,1 and N∗∗1,1, N1,1 =
N∗1,1 + N∗∗1,1. The variables N∗1,1 and N∗∗1,1 are considered
to be independent to each other, because ℵf is very large.
Therefore, we have E(N1,1) = E(N∗1,1) + E(N∗∗1,1); and
D(N1,1) = D(Na

1,1) + D(N∗∗1,1). Comparing E(N∗1,1) in
Eq. (5) and E(N∗∗1,1) in Eq. (8), we find that E(N∗∗1,1) is
so minor that it can be ignored. Similarly, compared with
D(N∗1,1), D(N∗∗1,1) is also be negligible. We then have:

E(N1,1) ≈ E(N∗1,1) = re−
u
ℵf (10)

D(N1,1) ≈ D(N∗1,1) = re−
u
ℵf

(
1− e−

u
ℵf

)
(11)

According to Eqs. (2) and (10), we have:

r =
k

E(N1,0)
E(N1,1)

+ 1
(12)

By substituting N1,0 for E(N1,0) and N1,1 for E(N1,1) in
Eq. (12), we get the estimator r̂ as follows:

r̂ =
k

N1,0

N1,1
+ 1

(13)

Eq. (13) infers that we can use the observed values of N1,0 and
N1,1 to approximately calculate the number of remaining tags.
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3) Investigating the Accuracy of Estimator r̂: Due to prob-
abilistic variance, the reported r̂ may differ from the actual
value r. It is not trivial to study the accuracy of our estimator.
We present the following theorem to rigorously prove that
proposed estimator r̂ is unbiased. Moreover, its variance is
formally given to measure the estimation accuracy.

Theorem 1. When the frame size ℵf is large enough, r̂ in
Eq. (13) is an unbiased estimator of r. That is, E(r̂) = r.
And the variance of the estimator r̂ is as follows:

D(r̂) =
ar

k

(
e
u
ℵf − 1

)
(14)

Proof: r̂ = k
N1,0
N1,1

+1
in Eq. (13) can be treated as a function

of N1,0 and N1,1. Thus, it is denoted as g(N1,0, N1,1). Inspired
by [9], we leverage Taylor series expansion [24] to get the
expectation and variance of r. In what follows, we present
the Taylor series expansion of function g(N1,0, N1,1) around
(θ1, θ2), where θ1 = E(N1,0), θ2 = E(N1,1).

g(N1,0, N1,1)≈g(θ1, θ2)+
[
(N1,0−θ1)

∂g

∂N1,0
+(N1,1−θ2)

∂g

∂N1,1

]
+

1

2

[
(N1,0 − θ1)2

∂2g

∂N2
1,0

+ 2(N1,0 − θ1)(N1,1 − θ2)
∂2g

∂N1,0∂N1,1

+ (N1,1 − θ2)2
∂2g

∂N2
1,1

]
Taking the expectation of both sides, we have:

E[g(N1,0, N1,1)]=g(θ1, θ2)+
1

2
[D(N1,0)

∂2g

∂N2
1,0

+D(N1,1)
∂2g

∂N2
1,1

]

In the above equation, N1,0 and N1,1 are independent to
each other when considering ℵf is large enough. Thus,
Cov(N1,0, N1,1) is simplified to 0. As required in Eq. (15),
the second-order partial derivatives of function g(N1,0, N1,1)
are as follows.

∂2g(N1,0, N1,1)

∂N2
1,0

|N1,0=θ1
N1,1=θ2

=
2kθ2

(θ1 + θ2)3

∂2g(N1,0, N1,1)

∂N2
1,1

|N1,0=θ1
N1,1=θ2

=
−2kθ1

(θ1 + θ2)3

Putting the above values into Eq. (15), and replacing θ1 by
E(N1,0), θ2 by E(N1,1), we then have:

E [g(N1,0, N1,1)]

=g[E(N1,0), E(N1,1)]+N

[
E(N1,1)D(N1,0)−E(N1,0)D(N1,1)

[E(N1,0) + E(N1, 1)]3

]
Combining the expectations and variances of N1,0 and N1,1
in Eqs. (2), (3), (10), (11) into the above equation, we have:

E(r̂)=E[g(N1,0, N1,1)]=g[E(N1,0), E(N1,1)]=
k

E(N1,0)

E(N1,1)
+1

=r

The above equation indicates that r̂ is an unbiased estimator
of r. The variance D(r̂) of r̂ is calculated as follows:

D(r̂) = E[r̂ − E(r̂)]2 = E[g(N1,0, N1,1)− r]2 (15)

We use the first-order Taylor series expansion of g(N1,0, N1,1)
to substitute it in Eq. (15). Thus, we have:

D(r̂) =D(N1,0)

(
∂g

∂N1,0

)2

+D(N1,1)

(
∂g

∂N1,1

)2

(16)

As required in Eq. (16), the first-order partial derivatives of
function g(N1,0, N1,1) are calculated as follows.

∂g(N1,0, N1,1)

∂N1,0
|N1,0=θ1
N1,1=θ2

=
−kθ2

(θ1 + θ2)2

∂g(N1,0, N1,1)

∂N1,1
|N1,0=θ1
N1,1=θ2

=
kθ1

(θ1 + θ2)2

Putting the above values into Eq. (16) and replacing θ1 by
E(N1,0), θ2 by E(N1,1), we then have:

D(r̂) =
k2
[
E2(N1,1)D(N1,0) + E2(N1,0)D(N1,1)

]
[E(N1,0) + E(N1,1)]4

(17)

Combining the expectations and variances of N1,0 and N1,1

into Eq. (17), we get the equation in Eq. (14).
For large-scale RFID systems, the proposed estimator and

its variance obviously hold on. To verify the correctness of
the proposed estimator and its variance in small-scale RFID
systems, two new sets of simulations are conducted. The
simulation results in Fig. 3 show that the theoretical values
of the proposed estimator and its variance coincide well with
their simulation values with various parameters. Hence, the
theoretical analysis proposed above still holds on for small-
scale RFID systems.

After investigating the expectation and variance of the
proposed estimator r̂, one may ask: How many sub-frames
are adequate to ensure that B-KT meets the required (α, β)
accuracy when estimating the remaining key tag population?.
We propose the following theorem to give the answer.

Theorem 2. If the number ℵ of sub-frames is not less
than u/[f ln( kα

2

dZ2
β

+ 1)], the estimation result r̂ will meet the
predefined accuracy (α, β), that is, P{|r̂ − r| ≤ α · r} ≥ β.

Proof: According to the central limit theorem [25],
we have that W = r̂−E(r̂)√

D(r̂)
satisfies the standard normal

distribution. We can find a percentile Zβ of β such that
P{−Zβ ≤ W ≤ Zβ} ≥ β. For example, if β = 95% then
Zβ = 1.96. The required estimation accuracy can be rewritten
as follows:

P {|r̂ − r| ≤ α · r} = P {(1− α)r ≤ r̂ ≤ (1 + α)r}

=P

{
(1− α)r − E(r̂)√

D(r̂)
≤ r̂ − E(r̂)√

D(r̂)
≤ (1 + α)r − E(r̂)√

D(r̂)

}
(18)

According to Eq. (18), if the following inequalities are simul-
taneously satisfied:

(1− α)r − E(r̂)√
D(r̂)

≤ −Zβ

(1 + α)r − E(r̂)√
D(r̂)

≥ Zβ ,

we can guarantee P{|r̂ − r| ≤ α · r} ≥ β [16]. Substituting
E(r̂) = r and D(r̂) = ar

k (e
u
ℵf −1) into the above inequalities

and solving them, we have ℵ ≥ u/[f ln( kα
2

dZ2
β

+ 1)].
In Theorem 2, we have presented how to set ℵ thereby

providing an (α, β) estimator r̂. However, u and d is not
known in prior. We observe that the frame number ℵ shown in
Theorem 2 is a monotonically increasing function with respect
to u and d. Therefore, we could use u = umax and d = dmax
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to calculate ℵr such that the (α, β) accuracy can be always
satisfied for any actual u and d. Here, umax, dmax, and dmin
represent the extreme values of u and d. The extreme values
of u and d can be set according to the users’ experience. For
example, an inventory manager usually knows the approximate
popularity of a set of items. Accordingly, he can predict how
many items can be sold at most, i.e., the maximum value of
a. Then, the max value of d, i.e., dmax, can be set to amax

k−amax .

C. Estimating the Absent Key Tag Population

In the above section, we have presented how to estimate
the remaining key tag population r. Using the knowledge of
k = a+ r, it is easy deduce the estimator â for absent key tag
population as follows.

â = k − r̂ =
k

N1,1

N1,0
+ 1

(19)

However, as elaborated by the example in Section I, even if the
estimator r̂ satisfies the (α, β) accuracy, the deduced estimator
â may not meet the (α, β) accuracy. Hence, it is not trivial to
investigate how to configure the involved parameters to make
the estimator â satisfy (α, β) accuracy. In the following, we
first study the probabilistic properties of â. In the following
theorem, we give the expectation and variance of the absent
key tag estimator â.

Theorem 3. When the frame size ℵf is large enough, â in
Eq. (19) is approximately an unbiased estimator of a. That is,
E(â) = a. And the variance of the estimator a is as follows:

D(â) =
ar

k

(
e
u
ℵf − 1

)
(20)

Proof: Since â = k− r̂, we have E(â) = E(k− r̂) = k−
E(r̂) and D(â) = D(k − r̂) = D(r̂). In Theorem 1, we have
proved that E(r̂) = r and D(r̂) = ar

k (e
u
ℵf − 1). Therefore,

we have E(â) = k − r = a and D(â) = ar
k (e

u
ℵf − 1).

Again, we should also investigate how to configure the
number of sub-frames ℵ to guarantee the required (α, β)
accuracy of the new estimator â for absent key tag population.

Theorem 4. If the number ℵ of sub-frames is not less than
u/[f ln(kdα

2

Z2
β

+ 1)], the estimation result â will satisfy the
required accuracy (α, β), that is, P{|â− a| ≤ α · a} ≥ β.

Proof: The proof is similar with Theorem 2.

Theorem 4 presents how to configure ℵ to produce an
(α, β) estimate of a. Again, we still need the values of u and
d to calculate the minimum frame number, which however
are not known in prior. We find that the minimum ℵ for
estimating r is a monotonically increasing function against u
while a decreasing function against d. Therefore, we initially
use u = umax and d = dmin to calculate ℵ such that the (α, β)
accuracy can be always satisfied for any actual u and d.

D. Filtering out the Expected Empty/Collision Slots

It is easy to find that both of our two estimators, i.e., r̂
in Eq. (13) and â in Eq. (19), only require the reader to
monitor the status of expected singleton slots. And thus, the
expected empty slots as well as the expected collision slots are
not used at all, and their execution wastes a large amount of
time. Exploiting the methods used in [26] [27], the expected
empty slots and collision slots can be directly filtered without
execution. The reader construct a lightweight bitmap whose
length is equal to the sub-frame size. In the bitmap, 1 indicates
the expected singleton slots that need to be executed and
0 represents the expected empty/collision slots. The reader
broadcasts the constructed bitmap to all tags. Each tag checks
whether the picked bit in the received bitmap is 1 or not. If
the picked bit is 1, it will respond according to the order of
1 in the bitmap. For example, a tag will respond in the 5th

slot if it chooses the 5th 1 in the bitmap. In contrary, a tag
will keep silent if it finds the picked bit in the bitmap is 0. As
a result, only the expected singleton slots, which account for
just a small ratio in the long time frame, are executed.

E. Execution Time of B-KT

In this section, we will investigate the execution time of the
proposed B-KT. Generally, the estimation process of B-KT
includes three phases: (1) Transmission of Initial Parameters.
For an arbitrary sub-frame, a tag slot ttag , which can support
the transmission of a 96-bit ID, is adequate to broadcast the
initialization parameters 〈fc,ℵ, f, R〉; (2) Transmission of f -
bit Bitmap. The bitmap is divided into 96-bit segments to
to be transmitted in d f96e tag slots; (3) Execution of the
Expected Singleton Slots. An arbitrary slot in a sub-frame has
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the following probability to be an expected singleton slot.

p1,∗ =

(
k

1

)
× 1

ℵ
× 1

f
×
(

1− 1

ℵ
× 1

f

)k−1
≈ ke−

k
ℵf

ℵf
(21)

And then, the number of expected singleton slots that need to
be executed in this sub-frame is f×p1,∗ = k

ℵe
− k

ℵf . Combining
the above three parts of time, the time cost of this sub-frame is
ttag + d f96ettag + k

ℵe
− k

ℵf tlong . Here, tlong is the length of the
slot that supports the transmission of a 10-bit ID checksum.
For ℵ sub-frames in total, the whole execution time of B-KT
protocol denoted as TB is given as follows:

TB = ℵ ×
(
ttag +

⌈
f

96

⌉
ttag +

k

ℵ
e−

k
ℵf tlong

)
(22)

III. SAMPLING-BASED KEY TAG TRACKING PROTOCOL

In this section, we first point out that the scalability of
our B-KT protocol is not good enough. The limitation of
B-KT motivates us to use the sampling idea [28] [29] to
propose an enhanced protocol, named Sampling-based Key
tag Tracking (S-KT). We then propose theoretical analysis to
guarantee the (α, β) accuracy of our S-KT. The numerical
results demonstrate that S-KT performs much better than
B-KT. However, time-efficiency of S-KT still has a large room
to be improved. Finally, we propose an effective method to
bridge the gap between the actual performance of S-KT and
its ideal case.

A. Motivation of Using Sampling

One of the most important requirements of a tag estimation
scheme is scalability, i.e., the estimation time needs to be
scalable to large population sizes [9]. However, the numerical
results in Fig. 4 reveal that the execution time of B-KT
increases sharply with the increase of umax. The underlying
reason is that we have to guarantee the ratio of slot pairs
〈1, 0〉 and 〈1, 1〉 in a frame at a certain level to guarantee the
estimators meeting (α, β) accuracy. Therefore, the sub-frame
number should be significantly large when the universal tag
set SU contains a large number of tags. To achieve a better
scalability, we introduce the sampling idea [28] [29] and let
the tags participate in the estimation process with a probability
p. Then, we can execute our B-KT protocol on small sample
tag sets S′K and S′C . A tiny sampling method suitable for the
RFID devices can be found in [28].

B. Estimating the Remaining Key Tag Population
1) Sampling-based Estimator r̂′: We still use the obser-

vations of N1,0 and N1,1 to estimate the remaining key tag
population. To differentiate the new analytical procedures from
those in the last section, we introduce two new notations but
with the same physical meaning as the original ones, N ′1,0 and
N ′1,1. Similar to the analysis in Section II, the expectations and
variances of N ′1,0 and N ′1,1 are given as follows:

E(N ′1,0)=mpe
− upℵf and D(N ′1,0)=m(pe

− upℵf )(1−pe−
up
ℵf )

E(N ′1,1)=rpe
− upℵf and D(N ′1,1)=r(pe

− upℵf )(1−pe−
up
ℵf )

(23)

According to Eq. (23), the sampling-based estimator for re-
maining key tag population can be given as follows:

r̂′ =
k

N ′
1,0

N ′
1,1

+ 1
(24)

2) Investigating the Accuracy of Estimator r̂′: It is not
trivial to investigate the probabilistic property of the new
sampling-based estimator. Therefore, we propose Theorem 5
to give the expectation and variance of the new estimator r̂′.

Theorem 5. When the frame size ℵf is large enough, r̂′ is an
unbiased estimator of r. That is, E(r̂′) = r. And the variance
of the estimator r̂′ is as follows:

D(r̂′) =
ar

k

(
1

p
e
up
ℵf − 1

)
(25)

Proof: Using equations in Eqs. (23) and (24), this theorem
can be similarly deduced from proof of Theorem 1.

Then, we propose the following Theorem to investigate how
many sub-frames are adequate to ensure that S-KT can meet
the required (α, β) accuracy when estimating the remaining
key tag population.

Theorem 6. With a fixed sampling probability p ∈
(

Z2
βd

kα2+Z2
βd
, 1], if the number ℵ of sub-frames is not less than

up/{f ln[( kα
2

Z2
βd

+ 1)p]}, the estimation result r̂′ will meet the
predefined accuracy (α, β), that is, P{|r̂′ − r| ≤ α · r} ≥ β.

Proof: This can be deduced from proof of Theorem 2.
Please note that, not all p ∈ (0, 1] can be used. If p is too small,
the denominator f ln[( kα

2

Z2
βd

+ 1)p] will become negative. By

solving ln[( kα
2

Z2
βd

+1)p] > 0, we get the ranges of the sampling

probability p as (
Z2
βd

kα2+Z2
βd
, 1].

Clearly, the expression of ℵ proposed in Theorem 6 is still
an increasing function against u and d. Thus, ℵ should be
calculated by u = umax and d = dmax so as to accommodate
any actual u and d.

C. Estimating the Absent Key Tag Population

1) Sampling-based Estimator â′: In Section III-B1, we
have given the sampling-based estimator for remaining key
tag population. Again, using the knowledge of k = a+ r, we
get the sampling-based estimator for absent key tag popula-
tion below.

â′ = k − r̂′ =
k

N ′
1,1

N ′
1,0

+ 1
(26)
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2) Investigating the Accuracy of Estimator â′: In the fol-
lowing, we propose Theorem 7 to prove that our sampling-
based estimator â′ is still unbiased. Moreover, we give the
estimator variance to quantify the accuracy of â′.

Theorem 7. When the frame size ℵf is large enough, â′ is an
unbiased estimator of a. That is, E(â′) = a. And the variances
of the estimator â′ is as follows:

D(â′) =
ar

k

(
1

p
e
up
ℵf − 1

)
(27)

Proof: Based on Eqs. (23) and (27), this theorem can be
similarly deduced from proof of Theorem 1.

It is also not trivial to study how many frames are adequate
to generate an accurate estimator for absent key tag population
that satisfies (α, β) accuracy.

Theorem 8. With a fixed sampling probability p ∈
(

Z2
β

kdα2+Z2
β
, 1], if the number ℵ of sub-frames is not less than

up/{f ln[(kdα
2

Z2
β

+ 1)p]}, the estimation result â′ will meet the
predefined accuracy (α, β), that is, P{|â′ − a| ≤ α · a} ≥ β.

Proof: This proof is similar with that of Theorem 6.
Theorem 8 indicates that the minimum sub-frame number

ℵ is an increasing function with respect to u but a decreasing
function against d. Hence, ℵ should be calculated by u =
umax and d = dmin so as to accommodate any actual u and d.

D. Execution Time of S-KT

Similar with the analysis in Section II-E, the whole execu-
tion time of S-KT, denoted as TS , is given as follows:

TS = ℵttag + ℵ
⌈
f

96

⌉
ttag + kpe−

kp
ℵf tlong (28)

As illustrated in Fig. 5, the configuration of sampling probabil-
ity significantly affects the performance of S-KT when either
estimating the remaining key tag population or estimating the
absent key tag population. We can use an exhaustive searching
method to find the optimal sampling probability p, which
occurs offline before the running of our S-KT protocol.

E. Bridging the Gap between Actual Situation and Ideal One

1) Motivation: Recall that we have to use the extreme
values (i.e., umax, dmax or dmin) of them to calculate the
minimum sub-frame number ℵ because the actual u and d are
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not known in prior. However, the numerical results illustrated
in Figs. 6 and 7 reveal that there is a huge performance gap
between the actual execution time and the ideal execution
time. The ideal execution time is to calculate the frame number
by using the actual u and d. An interesting question is: How
to make the performance of S-KT approach its ideal case
(i.e., assuming u and d are known in prior)? To answer this
question, this section proposes an early termination tactic to
bridge the performance gap.

At the very beginning, we configure the parameters p and
ℵ based on umax and dmax when estimating r (or umax
and dmin when estimating a). After an arbitrary sub-frame
i ∈ [0,ℵ − 1], we leverage the observation of the first i + 1
sub-frames that have already been executed to give tighter
bounds umax i on u and dmax i (or dmin i) on d. Based
on new umax i and dmax i (or dmin i), the backend server
determines if the current estimation result of r (or a) has
already met the required (α, β) accuracy. If so, the reader
will terminate the execution right now, otherwise, the next
sub-frame will be executed.

2) Giving the Tighter Bounds on u and d: According to
Eq. (23), we first leverage the observed N ′i1,0 and N ′i1,1 after
the ith sub-frame to approximate u and d as follows.

ûi = −ℵf
p

ln

(
N ′i1,0 +N ′i1,1

kpi

)
and d̂i =

N ′i1,0
N ′i1,1

, (29)

where the actual sampling probability pi is equal to (i+1)p
ℵ .

Similar with Section II-B3, we get the expectation and vari-
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ance of ûi and d̂i as follows, respectively.

E(ûi) = u and D(ûi) =
ℵ2f2

kp2

(
e
up
ℵf

pi
− 1

)

E(d̂i) = d and D(d̂i) =
d(d+ 1)2

k
×

(
e
up
ℵf

pi
− 1

) (30)

The three-sigma rule [30] indicates that: if a variable V
follows the normal distribution, then it can differ from its
expectation E(V ) by a quantity exceeding 3

√
D(V ) with a

probability no more than 0.3%. The simulation results in Fig. 8
reveal that both ûi and d̂i approximately follow the normal
distribution. Hence, we have the following inequalities.

P [E(ûi)−3
√
D(ûi)<ûi<E(ûi)+3

√
D(ûi)]>99.7%

P [E(d̂i)−3

√
D(d̂i)<d̂i<E(di)+3

√
D(d̂i)]>99.7%

(31)

Then, we can get the new bounds on u and d as follows.

umax i = ûi +
3ℵf
p

√√√√1

k

(
e
ûip

ℵf

pi
− 1

)

dmax i = d̂i + 3(d̂i + 1)

√√√√ d̂i
k

(
e
ûip

ℵf

pi
− 1

)

dmin i = d̂i − 3(d̂i + 1)

√√√√ d̂i
t

(
e
ûip

kf

pi
− 1

)
,

(32)

where ûi and d̂i are the estimation results got from Eq. (29).
3) Termination Condition When Estimating r: When esti-

mating the remaining key tag population, it is easy to deduce
from Theorem 6 that: if the following two conditions are
satisfied simultaneously, the estimate r̂ can satisfy the required
(α, β) accuracy. Then, the estimation process terminates.

pi >
Z2
βdmax i

kα2 + Z2
βdmax i

(i+ 1) ≥ umax ipi/

{
f ln

[(
kα2

Z2
βdmax i

+ 1

)
pi

]} (33)

4) Termination Condition When Estimating a: Similarly,
when estimating the absent key tag population, we can deduce
from Theorem 8 that: if the following two conditions are
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satisfied simultaneously, the estimate â can satisfy the required
(α, β) accuracy. Then, the estimation process terminates.

pi >
Z2
β

kdmin iα2 + Z2
β

(i+ 1) ≥ umax ipi/

{
f ln

[(
kdmin iα

2

Z2
β

+ 1

)
pi

]} (34)

The simulation results in Figs. 9 and 10 reveal that the pro-
posed early termination tactic can well bridge the performance
gap discussed above, and thus makes the performance of S-KT
very close to the ideal case.

5) Discussion on the Early Termination Method: Since
the actual values of u and d are unknown in advance, we
have to use their extreme values (umax, dmin, and dmax) to
calculate the required number of frames. After several frames,
we could obtain tighter bounds on these variables by using
3-sigma rule. For example, umax = û + 3

√
V ar(û) and

dmin = d̂ − 3

√
V ar(d̂). Fig. 11(a) infers that, the variances

of both d̂ and û decrease as the number of executed frames
increases. Then, the calculated upper/lower bounds on d and
u will be closer to their actual values. As a result, the number
of frames calculated by the upper/lower bounds on û and
d̂ approaches the ideal frame number, which is shown in
Fig. 11(b). When the calculated number of frames is larger
than the number of executed frames, the estimation process
will be terminated. We use ideal frame number to represent
the number of frames that is calculated by the actual values
of u and d. Fig. 11(b) reveals that the calculated number of
frames is always larger than the ideal frame number because of
using the 3-sigma method. Even though the early termination
cannot completely bridge the gap between the calculated frame
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number and the ideal frame number, this type of gap has been
significantly reduced.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

The simulators were implemented via MATLAB. We first
evaluate the time-efficiency of our S-KT scheme by comparing
with the state-of-the-art protocol, i.e., ZDE [21], which is a
dedicated protocol that aims at estimating the remaining/absent
key tags. Besides that, we also compare with two tag search
protocols, CATS [5], ITSP [10], and two tag identification
protocols, EDFSA [31], Tree Hopping (TH) [8]. Note that,
CATS, ITSP, EDFSA, and TH can tell which exactly tags
are remaining or absent. It seems not fair to compare S-KT
with them. But for a comprehensive comparison with prior
schemes, we still use them as the benchmark protocols. In the
multi-reader scenarios, the adjacent readers may conflict with
each other due to the reader-reader collision [32]. Without
loss of generality, like many excellent RFID literature [5],
[10], [21], [22], this paper also focuses on the single-reader
scenario. The transmission rate between the reader and tags is
asymmetric. The uplink rate is 53Kb/s (i.e., it takes 18.8us
to transmit 1-bit data from a tag to a reader), while the
downlink rate is 26.5Kb/s (i.e., it takes 37.7us to transmit 1-
bit data from a reader to a tag). Between any two consecutive
data transmissions, there is a waiting time τw = 302us [9].
The ambient interferences, e.g., metal, water, white noise,
multipath, do affect the RF communication. But due to space
limitation, like many high level journal/conference literature
[8], [9], [33], [34], we did not discuss the issue of ambient
interferences in this paper. And we will pay more attention
to these practical issues in our future work. We conduct
experiments to evaluate the actual estimation reliability of S-
KT. Each simulation is independently repeated 500 times and
we report the average results.

B. Performance When Estimating the Remaining Key Tags

In this section, we conduct simulations to investigate the
impact of various parameters, including c, k, d, α, β, on the
time-efficiency and actual reliability of S-KT when estimating
the number of remaining key tags.
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Fig. 12. Impact of c when estimating the number of remaining key tags. (a)
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1) Impact of the Number of Current Tag Number c:
S-KT is consistently faster than all existing protocols and can
satisfy the required reliability with varying number of current
tags c. Fig. 12(a)(b) are plotted using k = 20, 000, d = 1,
umax = 100, 000, dmin = 1/8, dmax = 8, α = 5%, β = 95%,
c varies from 10, 000 to 50, 000. We observed from Fig. 12(a)
that S-KT has the good scalability against the number of
current tags. The underlying reason is presented below. S-KT
only needs to execute the singleton slots of key tags, hence,
the number of slots that need to be executed in a frame has
nothing to do with the number of current tags. However, the
ordinary tags indeed interfere with the estimation process of
S-KT, which will increase the number of required frames for
achieving a certain estimation accuracy (α, β). Hence, the time
cost of S-KT slightly increases as the number of current tags
increases. The time cost of two tag identification protocols, i.e.,
EDFSA and TH, increases linearly with respect to c because
they inherently need to identify each current tag. The time cost
of ZDE also increases significantly against c because it needs
to observe not only the slots of key tags but also a huge number
of slots of ordinary tags. All in all, S-KT is consistently faster
than the other protocols. For example, when c = 10, 000, the
time cost of EDFSA, TH, ITSP, CATS, and ZDE is 108s, 35s,
28.8s, 55.7s, and 5.4s, respectively. While the time cost of
our S-KT is just 2.3s, which is 15.2x faster than the fastest
tag identification protocol (i.e., TH), 12.5x faster than the
fastest tag search protocol (i.e., ITSP), and 2.3x faster than
the state-of-the-art ZDE protocol. Note that, the speedup of
S-KT over ZDE will be more significant when the number of
current tags c increases. Compared with the tag identification
protocols, even though our S-KT protocol sacrifices some
accuracy due to the probabilistic nature, it achieves nearly 15x
speedup. In some scenarios, e.g., inventory management, we
may only need to know the approximate number of remaining
items to determine the item replenishment. In this case, our
probabilistic method is preferred due to its time-efficiency.

Moreover, the results in Fig. 12(b) demonstrate that S-KT
can satisfy the required reliability with varying c.

2) Impact of the Number of Key Tag Number k: S-KT
is consistently faster than all existing protocols and can
satisfy the required reliability with varying number of key
tags k. Fig. 13(a)(b) are plotted using c = 20, 000, d = 1,
dmin = 1/8, dmax = 8, α = 5%, β = 95%, k varies from
varies from 4, 000 to 20, 000. We made several observations
from Fig. 13(a), which are presented as below. The execution
time of ITSP and CATS increases linearly with respect to the
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number of key tags, because they require the bloom filter
length to be proportional to the number of key tags for a
certain filtering accuracy. The time cost of EDFSA and TH
keeps stable with varying number of key tags, because they
need to identify each tag in the system, regardless of the
number of key tags. Unlike these protocols, the time cost of
S-KT and ZDE decreases as the number of key tags increases.
The underlying reason is as follows. According to Theorem 6,
the number of frames required by S-KT is a monotonically
decreasing function of k. The results in Fig. 13(a) reveal
that the performance of the tag search protocols (i.e., ITSP
and CATS) is close or even better than our S-KT when
the number of key tags is quite small (e.g., 4, 000). On the
contrary, when the number of key tags is large, our S-KT will
significantly outperform all the other protocols. For example,
when k = 20, 000, S-KT runs 30x faster than the fastest tag
identification protocol (i.e., TH), 16.4x faster than the fastest
tag search protocol (i.e., ITSP), 3.7x faster than the state-
of-the-art ZDE protocol. Another important observation from
Fig. 13(b) is that S-KT always satisfies the required reliability
regardless of the setting of k.

3) Impact of the Dynamic Degree d: S-KT is consistently
faster than all existing protocols and can satisfy the required
reliability with varying dynamic degree d. Fig. 14(a)(b) are
plotted using k = 20, 000, c = 20, 000, dmax = 8,
dmin = 1/8, umax = 10, 0000, d varies from 1/5 to 5.
We observed from Fig. 14(a) that the execution time of S-KT
slightly increases as the value of d increases. The underlying
reason is that, according to Theorem 6, the number of frames
required by S-KT is a monotonically increasing function of d.
The time cost of EDFSA and TH is stable because they still
need to identify each tag in current tag set SC , regardless
of the dynamic degree d. Generally, S-KT is consistently
faster than the other protocols with varying setting of d. For
example, when d = 1, S-KT is 30x faster than the fastest
tag identification protocol (i.e., TH), 16.4x faster than the
fastest tag search protocol (i.e., ITSP), 3.7x faster than the
state-of-the-art ZDE protocol. Again, we observed that our S-
KT always satisfies the required reliability regardless of the
setting of d.

4) Impact of Confidence Interval α and Reliablity β: S-KT
significantly outperforms the other protocols when the required
estimation accuracy is not very strict, and can always satisfy
the required reliability regardless of the settings of α and β.
Fig. 15(a)(b) are plotted using k = 20, 000, c = 20, 000,
d = 1, umax = 10, 000, dmin = 1/8, dmax = 8, β = 95%,
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α varies from 10% to 1%. The time cost of tag identification
protocols (i.e., EDFSA and TH) keeps stable regardless of
the required accuracy, because they need to identify each tag
and have 100% accuracy. Except for EDFSA and TH, the
time cost of the other protocols increases as the required
confidence interval α decreases. The results in Fig. 15(a) reveal
that S-KT is sensitive to the required confidence interval α.
The underlying reason is that α lies in the ln() part in the
denominator of the number of required sub-frames. When
α is very small (e.g., 1%), the execution time of estimation
protocols will be very large. Note that, we sometimes do not
need such accurate estimation result in practice. The parameter
settings of Fig. 16(a)(b) are the same as that of Fig. 15(a)(b)
except for that α = 5% and β varies from 90% to 99%. The
execution time of EDFSA and TH is still stable. The time cost
of the two tag identification protocols (i.e., ITSP and CATS) is
also stable against the required reliability β, because they did
not consider the concept of reliability and can only ensure the
confidence interval on expectation. The time cost of the two
estimation protocols (i.e., S-KT and ZDE) increases slightly as
the required reliability β increases. An interesting observation
is that the estimation protocols are not quite sensitive to the
required reliability β. The underlying reason is as follows.
When β varies from 90% to 99%, Zβ (i.e., the percentile
of β) just varies from 1.64 to 2.58. Relatively, Zβ does not
vary as drastically as α. The number of required frame size
Θ{ 1

ln(α2/Z2
β)
} will be more sensitive to α than β. The results

shown in Fig. 15(b) and Fig. 16(b) demonstrate that S-KT can
satisfy any required confidence interval α and reliability β.

5) Variance in Execution Time: We conducted a set of
simulations to investigate the variance in the execution time
of the proposed S-KT protocol. The PDF and CDF curves
in Fig. 17 show that the execution time of S-KT varies from
2.15s to 2.46s with an average value of 2.32s. It approximately
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follows the normal distribution Norm(2.32, 0.0033), which
has a quite small standard variance of

√
0.0033 = 0.0574.

C. Performance When Estimating the Absent Key Tags

In this section, we conduct simulations to evaluate the
performance of our S-KT when estimating the absent key tag
population a. Except for the parameter d, the impact of the oth-
er parameters on S-KT when estimating the number of absent
key tags is similar with that when estimating the number of
remaining key tags. Hence, we can refer to the results shown
in Figs. 12(a), Fig. 13(a), Fig. 15(a), and Fig. 16(a) when
considering the impact of c, k, α, β on the protocols’ time-
efficiency, respectively. Fig. 18(a) shows the impact of d on
the protocols. Different from Fig. 14(a), the time cost of S-
KT decreases as the dynamic degree d increases. The reason is
that, according to Theorem 8, the number of required frames
is a monotonically decreasing function of d. Here, we also
compare with CU [35]+SFMTI [36]. We observed that S-KT
is consistently faster than all the other protocols with various
settings of d. The results in Figs. 18(b)∼(f) demonstrate that S-
KT can satisfy the required reliability with various parameter
settings when estimating the number of absent tags.

V. RELATED WORK

In RFID-enabled applications, one of the most fundamental
tasks is tag identification that aims at identifying all the
IDs of tags within the interrogation ranges of a reader.
The identification protocols are generally classified into two
categories: Aloha-based protocols [7], [31], [37] and Tree-
based protocols [8], [38]–[40]. In ALOHA-based identifica-
tion protocols, the reader queries the tags and periodically
broadcasts synchronization signals to create a slotted time
frame. Upon receiving such a request, each tag randomly
picks a slot in the frame to relay its ID information. If a
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tag exclusively occupies a slot, its ID can be received by
the reader. In contrary, if it shares a common slot with other
tags, then its ID cannot be received by the reader due to the
signal collision, and therefore retransmission is required [9].
The tree-based identification protocol is a recursive depth-first
searching algorithm performed by the reader. Specifically, the
reader organizes all IDs in a binary tree whose height is equal
to the length of a tag ID. The left (right) branches of the tree
is marked by ‘0s’ (‘1s’). Clearly, each leaf corresponds to a
potential tag ID. The reader queries the tags by broadcasting a
prefix starting from the root of the binary tree. The tags whose
IDs match the queried prefix will respond their ID information.
If two or more tags respond simultaneously, signal collision
will occur, the reader then generates two new query prefixes
by appending a ‘0’ and a ‘1’ to the previous query prefix. The
tags will be queried by these two new prefixes successively.
On the other hand, if exactly one (or none) tag responds
its ID information, the reader will successfully receive the
corresponding ID (or receive nothing). Then, the new nearby
prefix will be queried in the next time. This process continues
until all the tags have been identified [41].

Besides the exact identification, the problem of estimat-
ing the cardinality of tags has also attracted great atten-
tion from the research community. The first literature about
tag estimation was proposed by Kodialam et al. in [13].
The proposed Unified Simple Estimator (USE) and Unified
Probabilistic Estimator (UPE) perform estimation based on
the number of empty slots or that of collision slots in a
frame, respectively. Qian et al. [15] exploited the hashing



13

with geometric distribution to estimate the cardinality of tags
and thus proposed the Lottery Frame (LoF) scheme. Zheng et
al. proposed Probabilistic Estimation Tree (PET) to provide a
estimation method for the RFID systems which work based
on tree-walking algorithms [17]. Shahzad et al. proposed the
Average Run based Tag estimation (ART) by observing the
average length of sequences of consecutive non-empty slots
[9]. Li et al. proposed an estimation scheme called Maximum
Likelihood Estimator (MLE) which takes the energy-efficiency
into consideration [14]. These estimation schemes concentrate
on approximating the cardinality of tags in a static RFID
system. However, in practice, the RFID systems are usually
dynamic—the tagged items or humans may frequently move
in and out. The above estimation schemes can only tell you,
for example, there are 10, 000 tags in the system at time
T1 and 15, 000 tags at time T2. However, they cannot tell
you how many tags are moved out and how many new ones
are moved in during this period. Liu et al. studied the tag
cardinality estimation for multi-category RFID systems [12].
For privacy reason, Liu et al. also studied the RFID estimation
problem with the presence of blocker tag [20]. Xiao et al.
studied the problem of tag estimation focusing on dynamic
RFID systems [21]. ZDE scheme needs the reader to observe
all slots in a time frame, which triggers its low time-efficiency.
Gong et al. proposed INformative Counting (INC) to estimate
the number of counterfeit tags [22].

VI. CONCLUSION

This paper studies how to efficiently track the key tag pop-
ulation, i.e., estimating the cardinality of remaining key tags
and the cardinality of absent key tags. The estimation results
are of practical importance in many application scenarios such
as tracking the popularity of a set of items or their inventory
to formulate a good replenishment plan. The main challenge
is how to subtract the interference replies from a large number
of ordinary tags. To address this problem, we first propose a
Basic Key tag Tracking (B-KT) protocol, whose advantage is
that the reader only needs to observe the expected singleton
slots instead of the whole long time frame. To save time, B-KT
skips the expected empty/collision slots. Based on B-KT, we
exploit the sampling idea and early termination tactic to further
propose the Sampling-based Key tag Tracking (S-KT) protocol,
which possesses better time-efficiency and scalability. This
paper also theoretically investigates the parameter settings
to guarantee the estimation accuracy arbitrarily set by the
users. Extensive simulation experiments have been conducted
to evaluate the performance of the proposed S-KT protocol.
The results demonstrate that our protocol outperforms related
protocols by significantly reducing the execution time.
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