
FloodDefender: Protecting Data and Control Plane
Resources under SDN-aimed DoS Attacks

GAO Shang∗, PENG Zhe∗, XIAO Bin∗, HU Aiqun†, REN Kui‡
∗Department of Computing, The Hong Kong Polytechnic University

†School of Information Science and Engineering, Southeast University
‡Department of Computer Science and Engineering, University at Buffalo, State University of New York

{cssgao, cszpeng, csbxiao}@comp.polyu.edu.hk, {aqhu}@seu.edu.cn, {kuiren}@buffalo.edu

Abstract—The separated control and data planes in software-
defined networking (SDN) with high programmability introduce
a more flexible way to manage and control network traffic.
However, SDN will experience long packet delay and high packet
loss rate when the communication link between two planes is
jammed by SDN-aimed DoS attacks with massive table-miss
packets. In this paper, we propose FloodDefender, an efficient
and protocol-independent defense framework for SDN/OpenFlow
networks to mitigate DoS attacks. It stands between the controller
platform and other controller apps, and can protect both the data
and control plane resources by leveraging three new techniques:
table-miss engineering to prevent the communication bandwidth
from being exhausted; packet filter to identify attack traffic and
save computational resources of the control plane; and flow rule
management to eliminate most of useless flow entries in the
switch flow table. All designs of FloodDefender conform to the
OpenFlow policy, requiring no additional devices. We implement
a prototype of FloodDefender and evaluate its performance in
both software and hardware environments. Experimental results
show that FloodDefender can efficiently mitigate the SDN-aimed
DoS attacks, incurring less than 0.5% CPU computation to
handle attack traffic, only 18ms packet delay and 5% packet
loss rate under attacks.

I. INTRODUCTION

Software-defined networking (SDN) is a new network

paradigm that separates the control and data planes in a

network [1]. The control plane of SDN dictates the whole

network behavior. This logical centralization introduces a

simpler and more flexible way to manage and control network

traffic by a “southbound” protocol (OpenFlow). OpenFlow

protocol allows the control plane to install flow rules on the

data plane. The data plane will follow these flow rules to

handle network flows. When a new table-miss flow comes,

it does not match any existing flow rules. The data plane

will send a packet in message to the control plane for

instructions.
The limited communication bandwidth between the control

and data planes could be a bottleneck of the whole network,

and lead to security problems. Today’s commercial OpenFlow

switches [2] only support cable connection to the controller.

The practical connection bandwidth is tested to be less than

10Mbps [3], [4]. An attacker can leverage this costly commu-

nication to launch SDN-aimed DoS attacks (data-to-control

plane saturation attacks) [3], [5]. Specifically, the attacker

can first generate table-miss packets by randomly forging

some or all fields, making them hard to match any existing

flow rules on a victim switch. Then, he can launch SDN-

aimed DoS attacks to flood the network by sending a large

amount of table-miss packets. These table-miss packets will

trigger massive packet in messages from the switch to the

controller, and consume their communication bandwidth, CPU

computation, and memory in both control and data planes.

To protect OpenFlow networks against the SDN-aimed DoS

attacks, we face the following two challenges:

• How to efficiently handle table-miss packets while main-

taining short packet delay, low packet loss rate and

normal packet forwarding operation?

• How to precisely distinguish attack traffic from benign

traffic without straining computational resources?

These two challenges are not easy to solve. For the first

challenge to mitigate attack traffic, we cannot simply drop

table-miss packets because all new flows from benign hosts

will be dropped as well. We should find a way to let the

control plane receive these packet in messages without

consuming much bandwidth between the controller and victim

switch. Since some table-miss packets are generated by benign

hosts, we have the second challenge to precisely identify

attack traffic and filter out them accordingly. To deal with

these two challenges, AvantGuard [3] introduces a connection

migration module on the data plane to identify attack traffic

by verifying the TCP handshake of each new flow. To handle

other flow traffic, e.g., UDP and ICMP traffic, FloodGuard [4]

adopts proactive flow rules to forward table-miss packets to

the data plane cache. However, both approaches need to use

additional devices to accommodate table-miss traffic, which

are not compatible to the OpenFlow protocol.

In this paper, we propose FloodDefender, a scalable and

protocol-independent defense system to protect OpenFlow

networks against SDN-aimed DoS attacks. FloodDefender

stands between the controller platform and other controller

apps, and is protocol-independent against different types of

attack traffic (e.g. TCP-based attacks or UDP-based attack-

s). All designs conform to the OpenFlow policy and need

no additional devices, which makes FloodDefender scalable.

When attacks occur, FloodDefender detours table-miss packets

to neighbor switches with wildcard flow rules to protect the

communication link from being jammed, filters out attack

packets from the received packet in messages to save the

computational resources, and constructs a robust flow table

in the data plane by separating the flow table into “flow

table region” and “cache region” to save the Ternary Content

Addressable Memory (TCAM) of OpenFlow switches.
To defend against SDN-aimed DoS attacks, our main tech-

nical contributions are as follows:

• Novel Techniques. We propose three new techniques:

table-miss engineering, packet filter, and flow rule man-

agement. These techniques designed in SDN can mitigate

the bandwidth jamming, reduce computational resource

consumption, and save the memory space of OpenFlow

switches.

• Framework Design. Based on the mentioned novel tech-

niques, we design FloodDefender to protect OpenFlow

networks against variant attack traffic. FloodDefender has

four modules: attack detection, table-miss engineering,

packet filter, and flow rule management. All modules con-

form to the OpenFlow policy and no additional specific

devices are needed.

• Theoretical Analysis. We use an average queueing delay

model to analyze how many neighbor switches should

be involved in the table-miss engineering. The analytical

result shows that FloodDefender can keep the average

delay of each link within 0.3s with 3 neighbor switches.

• Performance Evaluation. We evaluate the performance

of FloodDefender in both software and hardware envi-

ronments. Experimental results show that FloodDefender

can save more than 70% software bandwidth and 20%

hardware bandwidth, and consume only 0.5% CPU com-

putation to handle attack traffic. Meanwhile, it precisely

identifies more than 96% attack traffic, and incurs only

18ms delay and 5% packet loss rate for normal traffic

under attacks.

The rest of the paper is organized as follows. Section

II introduces some background knowledge and the security

problem of SDN-aimed DoS attacks in OpenFlow networks. In

Section III, we present the detailed designs of FloodDefender

system. Section IV analyzes how many neighbor switches

should be involved theoretically. The implementation and ex-

perimental evaluation of FloodDefender are shown in Section

V. We summarize the related work in Section VI. Finally, we

conclude this paper in Section VII.

II. PROBLEM STATEMENT

A. SDN Workflow
In OpenFlow networks, the controller in the control plane

dictates the behaviors of the whole network by installing flow

rules on the data plane. After receiving incoming packets, an

OpenFlow switch processes them based on the flow rules in

its flow table. When a table-miss occurs, the OpenFlow switch

sends a packet in message which contains the packet

header to the controller. The controller then decides how to

process the new packet and responses with action and flow

rule(s). This reactive flow installation approach enables a more

flexible way to manage and control network traffic, and has

been widely used in most OpenFlow applications.

Controller

OpenFlow Switch

Benign User Attacker

flow rules
packet_in messages

attack traffic
(table-miss packets)

normal traffic

(Consume computational resources)

(Exhaust bandwidth)

(Overload flow table and memory)

actions

Fig. 1. SDN-aimed DoS attacks in OpenFlow networks.

0 100 200 300 400 500
Attack Rate (PPS)

0

0.5

1

1.5

2

B
an

dw
id

th
 (G

bp
s)

(a) Victim switch available bandwidth.

0 1 2 3 4
Time (s)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

(b) Control plane CPU utilization.

Fig. 2. Bandwidth and computational resource consumption under SDN-aimed
DoS attacks. The data are collected from our experiments.

B. Adversary Model

The reactive flow installation approach of OpenFlow net-

works could be leveraged by an adversary. An attacker first

randomly forges some or all fields of each packet, making it

hard to match any existing flow rules in a switch. Then, the

attacker sends massive table-miss traffic mixed with normal

traffic to the OpenFlow switch and launches SDN-aimed DoS

attacks. To process each table-miss packet, the victim switch

has to buffer it and send out packet in message with its

header, as depicted in Fig. 1. Even worse, the OpenFlow

Specification v1.4 requires that the packet in message

should contain the whole packet when the memory of a switch

is full. This feature could be further exploited by the attacker

to flood the network with less resources.

The DoS attacks can jam the bandwidth between the con-

troller and a switch by generating massive table-miss packets,

overload a switch’s flow table by installing useless rules, and

consume computational resources by processing packet in
messages, as depicted in Fig. 2. The result is much worse

when the memory of the switch is full. The throughput of both

packet forwarding and packet processing will be significantly

degraded.

C. Problem and Challenge

The problem studied in this paper is how to mitigate the

SDN-aimed DoS attacks in OpenFlow networks. To protect the

communication bandwidth between the controller and victim

switch, a good solution should be able to handle table-miss

packets efficiently and maintain the functionality of forwarding

benign traffic. Meanwhile, it should distinguish attack traffic

from benign traffic both efficiently and precisely to save

computational resources of the control plane.

In the design of a defense system, we also face two

challenges. First, we should be able to handle all kinds of

attack traffic (e.g. TCP-based attacks and UDP-based attacks).

Second, the defense system should be scalable and conform

to the OpenFlow policy without additional devices.

III. SYSTEM DESIGN

A. FloodDefender Architecture

FloodDefender strands between the controller platform and

other controller apps, as depicted in Fig. 3. It consists of four

functional modules: attack detection, table-miss engineering,

packet filter, and flow rule management. When no attacks are

detected, FloodDefender forwards the packet in messages,

actions, and flow rules between the controller platform and

controller apps. When attacks occur, FloodDefender filters

packet in messages and forwards them to the apps through

the packet filter module, and manages the flow rule installation

through the flow rule management module.

Initially, the attack detection module monitors the status of

the network, and other modules remain idle. When DoS attacks

are detected, the other three modules are activated for attack

mitigation in the following six steps:

1) The attack detection module identifies victim’s neighbor

switches that directly connect to the controller. The flow

rule management module logically separates the flow

table into flow table region and cache region;

2) The table-miss engineering module installs protecting

rules to detour some table-miss packets to the neighbor

switches. When these neighbor switches receive the

detoured table-miss packets, they will send packet in
messages to the controller;

3) When the controller receives packet in messages, the

packet filter stores and roughly filters out attack traffic

from these messages. The filtered traffic will then be

delivered to the apps;

4) The apps process these packets and decide actions and

flow rules. Actions will be sent to the switches directly,

but the flow rules will be intercepted by the flow rule

management module;

5) The flow rule management module decides the moni-

toring rules based on intercepted processing rules. In-

tercepted processing rules will be installed on the cache

region, and monitoring rules on the flow table region;

6) The packet filter module uses the traffic information

of these intercepted and monitoring rules to precisely

identify normal traffic. If one processing flow entry is

regarded legal, it will be moved to the flow table region.

Monitoring rules and cache region will then be flushed

to save the space of flow table.

B. Attack Detection Module

The attack detection module continues monitoring the net-

work status (packet in message rate, memory, and CPU)

for attack detection, as discussed in [4]. When attacks occur,

packet filter flow rule
management

attack
detection

table-miss
engineering

APP APP APP

Controller Platform (e.g. NOX, POX, RYU)

OpenFlow Switches Data Plane

Control Plane

Data-control plane
communication link(s)

Fl
oo

dD
ef

en
de

r APP

Fig. 3. The architecture of FloodDefender.

it triggers other modules into the active state. The attack

detection module also provides important information to dy-

namically adjust protecting rules for evenly splitting table-miss

traffic to neighbor switches. When attacks are detected to be

over, the attack detection module stops other modules.

C. Table-miss Engineering Module

The table-miss engineering module works when the SDN-

aimed DoS attacks are detected. In SDN-aimed DoS attacks,

massive table-miss packets will be triggered to exhaust the

available bandwidth between the controller and a victim

switch. Therefore, the table-miss engineering module offloads

some table-miss packets to neighbor switches to save the

bandwidth of the victim switch. Specifically, the table-miss

engineering module issues protecting rules to forward some

table-miss traffic to neighbor switches.

Protecting rules are wildcard flow entries with the lowest

priority to split the table-miss traffic into several parts to

different neighbor switches. The match fields of protecting

rules are adjusted dynamically by a traffic balancer to ensure

the load balance of each neighbor switch. When neighbor

switches are flooded by attack traffic, table-miss engineering

will use more protecting rules to involve more neighbor

switches. The maximum number of protecting rules depends

on the number of neighbor switches that directly connect to

the controller, which is obtained from the network topology

at the first place. Protecting rules will not use much TCAM

space in an OpenFlow switch. Normally, the bandwidth can be

saved with less than 5 protecting rules (5 neighbor switches).

When two victims offload their traffic to one neighbor

switch, additional information should be added to identify

each victim before the neighbor switch sends packet in
to the controller. Hence, in our design we only consider that

each neighbor switch is only responsible for one victim. Each

victim switch maintains a different set of neighbor switches.

There are two challenges in the design of protecting rules:

INPORT loss, and packet bouncing problems.

INPORT loss problem: In OpenFlow specification, IN-

PORT information indicates the controller’s input port, and

is contained in a packet in message. Therefore, the

packet in message generated by a neighbor switch will

replace the original INPORT information with its own. In

the design of protecting rules, we should ensure the original

Controller

Victim Switch

S2S1

AttackerBenign User

normal traffic

attack traffic

table-miss traffic

protecting
rules

packet_in messages

Match Action
MAC lowest 2 bits = 00 & ToS encoded
MAC lowest 2 bits = 01 & ToS encoded

Encode ToS, To S1
Encode ToS, To S2

Protecting Rules

action

processing &
monitoring rules

action

Fig. 4. Detouring table-miss traffic to neighbor switches when attacks occur.

INPORT information not to be lost. To solve this problem, we

utilize some reserved fields in packet header (e.g. ToS field) to

preserve the original INPORT information and denote detoured

traffic. Specifically, we encode the ToS field with the INPORT

information, and set “modify ToS field” in the protecting rules,

as depicted in Fig. 4. Furthermore, the encoded ToS field also

allows us to distinguish normal packets with detoured packets.

The identified detoured packets will be associated with the

datapath of the victim switch to install flow rules.

Packet bouncing problem: Since the neighbor switch may

have some flow rules to process the detoured table-miss traffic,

some table-miss packet could bounce between the neighbor

and victim switches. For instance, the victim switch in Fig.

4 regards packet A as a table-miss, and forwards it to S1

based on the protecting rule. S1 accidentally has a flow rule

to process packet A, and the action is “to Victim Switch”.

Therefore, packet A will bounce between the two switches.

To avoid this problem, we only apply the protecting rules on

non-detoured traffic. Therefore, these packets will bounce only

once between the neighbor and victim switches. Specifically,

the table-miss engineering adds “ToS is not encoded” into

the match field of the protecting rule, as depicted in Fig. 4.

When the victim switch receives the bounced-back packets,

it delivers them to the controller since these packets do not

match the protecting rules.

D. Packet Filter Module

Packet filter module can identify attack traffic and filter them

out to save the computational resources of the control plane.

It works as a low-level app between the controller and other

apps to preprocess the packet in messages. It contains

two components, packet in buffer to store packet in
messages, and two-phase filter to identify attack traffic.

1) packet in buffer: packet in buffer classifies de-

toured packet in messages based on protocols, and uses

a B+ tree to efficiently store and index the packet in
messages of each protocol. The key of each node is the flow

entry, and value of a leaf node is the packet in message and

frequency of this flow. For transport layer protocols (TCP and

UDP), the key is the combination of source and destination

MAC, IP and port; for network layer protocols (e.g. ICMP),

Frequency-based filter

packet_in buffer

TCP tree (key: flow: frequency):

UDP tree:
OpenFlow Switch

Flow table

tcp 5: traff 5
tcp 6: traff 6

tcp 5 mon: traff 5m
tcp 6 mon: traff 6m

Traffic-based filter

TCP tree, UDP tree, ...

tcp 5 tcp 6

traff 5, traff 5m
traff 6, traff 6m

tcp 6

Two-phase filter

R

App tcp 5 rule
tcp 6 rule

1: tcp 1: 1 2: tcp 2: 1 3: tcp 3: 1 4: tcp 4: 1
5: tcp 5: 3 6: tcp 6: 5 7: tcp 7: 1 8: tcp 8: 1

Flow rule management

tcp 5 mon rule, tcp 5 rule
tcp 6 mon rule, tcp 6 rule

Fig. 5. Two-phase filtering design in the two-phase filter component.

the key is the combination of source and destination MAC and

IP addresses; and for other protocols (e.g. ARP and RARP),

the key is the combination of source and destination MAC

addresses. Though SDN apps could use different fields in

packet header to define a flow, the most significant ones are

those mentioned source and destination fields.

packet in buffer stores packet in messages in a time

period, and flushes all B+ trees after the two-phase filtering

to save space. We allow users to set the time of collecting

packet in messages based on their demands. Generally

speaking, a longer period will save more computational re-

sources, but will cause longer delay for new benign flows,

and will cost more memory of the controller. We also give a

suggested time of 5 seconds.

2) Two-phase filter: Two-phase filter applies two filtering

functions to efficiently and precisely identify attack traffic. It

first roughly filters out attack traffic based on the frequency in

packet in buffer, and then precisely filters them based on

the monitored traffic information, as depicted in Fig. 5.

The frequency of new flows is the most significant feature

of SDN-aimed DoS attacks. Since the packets belonging to

existing flows will not trigger packet in messages in most

cases, packets of the same flow will downgrade the perfor-

mance of SDN-aimed DoS attacks. Therefore, the attacker tries

to generate massive new flows to flood the network, and the

frequency of attack flows will be very low.

At the first phase, frequency-based filter utilizes the frequen-

cy feature to efficiently filter out attack traffic. It will search

the leaf nodes of each protocol’s tree, and get the flow records

whose frequency is higher than a threshold. This threshold

changes dynamically, and is initially set to 1. A bigger

threshold will filter out more messages, but may sacrifice some

normal traffic. The threshold will be updated based on the

result of traffic-based filter. To reduce the false-positives, we

adopt a smaller threshold which only filters out a portion of

attack traffic (the threshold ensures the recall rate bigger than

60%, and is normally set to 1 or 2 in our experiment), the

accuracy will be improved by the traffic-based filtering. For

instance, in Fig. 5, the packet filter component searches tcp
1 to tcp 8 in packet in buffer with threshold = 1, and

gets tcp 5 and tcp 6. These two messages will be forwarded

to apps to generate processing rules. Other TCP flows will be

regarded as attack traffic.

At the second phase, traffic-based filter needs to precisely

identify normal flows from the filtered flows. It monitors

the traffic of each flow with processing rules and extracts

features for classification. To precisely identify attack packets

even considering that attackers are smart enough to resend

these packets to increase the frequency of each flow, we use

traffic rate asymmetry features in the classification. Asym-

metry features can be extracted by monitoring the traffic of

“reverse flows” (response packets of one flow). For example,

in Fig. 5, a layer 2 learning switch has a processing flow

entry “eth dst=00:00:00:00:00:01, action=outport:01” for

tcp 5, that forwards packets from port 01 when its destination

MAC is 00:00:00:00:00:01. The reverse flow is the packets

with source MAC 00:00:00:00:00:01 and input port 01. If

this flow entry is installed maliciously by an attacker with

forged source MAC address, there will not be much reverse

traffic for tcp 5, since no one can establish a connection with

00:00:00:00:00:01 on port 01. By adopting the asymmetry

features (traff 5m), the traffic-based filter can precisely classify

tcp 5 as attack traffic. We use monitoring flow rules to monitor

reverse traffic. In this case, the match field of the monitoring

rule is “eth src=00:00:00:00:00:01 && in port=01”.

Though asymmetric features can be applied to most flows,

they can also lead to incorrect results in some cases, and cause

the asymmetric feature problem:

Asymmetric feature problem: Asymmetric features can

lead to incorrect classification results for some flow entries

with the “drop” action, since these flows do not have reverse

traffic. For instance, a firewall app blocks all packets with

source IP 0.0.0.2 and destination IP 0.0.0.1 (“ipv4 src=0.0.0.2

&& ipv4 dst=0.0.0.1, action=[]”). The monitoring flow

rule of the blocked packets is “ipv4 src=0.0.0.1 &&

ipv4 dst=0.0.0.2”. Since the connection is not established,

there will not be reverse traffic for this flow. Using asym-

metric features for these drop-action flow rules could lead to

incorrect classification. To solve this problem, we will not use

asymmetric features for the classification of drop-action flows.

Specifically, we use the following features for traffic-based

filtering classification:

1) Packet Count (P): describe the total number of packets

of one flow entry in an interval;

2) Byte Count (B): describe the total number of bytes of

one flow entry in an interval;

3) Asymmetric Packet Count (AP): describe the total num-

ber of packets of one reverse flow entry in an interval;

4) Asymmetric Byte Count (AB): describe the total number

of bytes of one reverse flow entry in an interval.

After extracting the features above, we employ Support

Vector Machine (SVM) [6], a supervised learning model as

our classifier. This classification algorithm is robust even

with noisy training data. The detailed implementation can be

referred to [6], and we skip this part due to space constraints.

E. Flow Table Management Module

The flow table management module installs monitoring rules

on the victim switch’s flow table, and manages the flow rule

Table
0

Table
k-1

Table
k

Table
n-1

Flow table region Cache region

Table
n

Flow table region

Processing & monitoring
flow entries

Processing flow entries Protecting
flow entries

Group tableMeter table

Flow table

OpenFlow Switch

Fig. 6. The flow table is logically separated into flow table region and cache
region by the flow table management module.

installing on the victim switch. Monitoring rules are generated

to monitor the traffic of “reverse flows” to extract asymmetric

features. Since monitoring rules and useless rules (i.e. flow

rules triggered by attack traffic) cost space in the flow table,

the flow table management module introduces a dynamic way

to manage flow rules.

Monitoring rules are generated based on the logic of pro-

cessing rules, as we discussed in Section III-D. They monitor

reverse traffic and help the packet filter module to generate

asymmetric features.

The management of flow table stems from the multiple flow

tables in OpenFlow Specification v1.3. Specifically, the flow

table management uses the first k tables (table 0 to k−1) and

the last table (table n) as “flow table region”, and other tables

(table k to n − 1) as “cache region”. Notice that OpenFlow

Specification v1.3 indicates that a flow entry can only direct

a packet to a flow table with a bigger flow table number.

Therefore, we install processing and monitoring flow rules

(flow entries to process normal traffic and monitor reverse

traffic) in the first k tables of the flow table region, intercepted

processing rules in the cache region (newly generated flow

rules to process table-miss traffic), and protecting rules in the

last table of the flow table region, as depicted in Fig. 6. The

larger size of cache region (larger k) can improve the efficiency

of traffic-based filtering, but will use more space of the flow

table. The flow table management module sets the value of

k based on the free space of the flow table and adjusts it

dynamically. Processing flow rules in the cache region and

all monitoring flow rules will be flushed after traffic-based

filtering to save the space of the flow table.

The flow table management module ensures the timely

responses of old benign flows when attacks occur. Since a

packet can only be directed to a flow table with a bigger flow

table number, old flows will not index cache region, and will

be processed efficiently. To activate protecting rules in the last

flow table, the default table-miss instructions of all but the last

flow table should be set to “Goto Table n”.

Though OpenFlow Specification v1.3 encourages multiple

flow tables, an OpenFlow switch with a single flow table

is also allowed. In this scenario, the flow table will not be

separated into two regions, and all rules are mixed together in

0 50 100 150 200 250 300
Distributed attack rate (PPS)

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 q
ue

ue
in

g
de

la
y

(s
)

(a) Average queueing delay of a switch
under different attack rates.

.5 .5 .5
Number of neighbor switches

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 q
ue

ue
in

g
de

la
y

(s
)

(b) Number of neighbor switches in-
volved in the table-miss engineering.2

Fig. 7. Average queueing delay of switches.

one flow table. Though the efficiency of indexing is affected,

flow table management module can still protect the flow table

by removing attack flow entries. Processing flow rules which

are regarded as normal flows will be kept in the flow table

without flushing.

IV. NEIGHBOR SWITCH ANALYSIS

The number of neighbor switches will greatly affect the per-

formance of FloodDefender. We first use an average queueing

delay model to analyze how to distribute attack traffic, and

then analyze how many neighbor switches should be involved

in the table-miss engineering.

A. Traffic Distribution

We consider a set of switches S = {s1, s2, ..., sn} involved

in the table-miss engineering, and a set of attack traffic rates

A = {a1, a2, ..., an} distributed to each switch (
∑n

i=1 ai = a).

For each si, let asi be its maximum ability to process attack

messages without buffering them. Let Lh be the payload of

a header information, and Lp be the average payload of an

attack packet. For each link between si and the controller,

let Ri be its maximum bandwidth, and R̃i be the allocated

bandwidth to process other packets.

We use average queueing delay (Di) to evaluate the perfor-

mance on each link. It is not easy to get the formula of Di,

since the calculation is related to the distribution of incoming

packets, which is determined by the attacker. Therefore, we use

an empirical formula [7] to roughly describe the relationship

between Di and the utilization of this link (ρi):

Di =
1

2μ
× ρi

1− ρi
. (1)

In Equation (1), μ is a coefficient of delay, and ρi describes

link utilization (ρi = Total Payload
Transmission Ability , and 0 � ρi < 1). The

calculation of ρi could be separated into two scenarios: when

the incoming packets rate is within the processing ability of si
(ai � asi), si only sends the header of each attack packet to

the controller; otherwise, the buffer of si will be overloaded

eventually, and si needs to send the whole packet. Therefore,

ρi can be calculated as follows:

ρi =

{
˜Ri+ai×Lh

Ri
, ai � asi

˜Ri+asi
×Lh+(ai−asi

)×Lp

Ri
, else

. (2)

Fig. 7-a shows that the average queueing delay goes up

quickly when the distributed attack rate increases. The config-

uration adopts 20PPS (packet per second) asi , 750bit Lh, 5Kb

Lp, 2Mbps Ri, and 0 R̃i when μ = 1. In this scenario, we

could maintain the average queueing delay within 0.3s with

less than 168.5PPS distributed attack rate.

We further analyze the scenario with multiple switches. The

traffic balancer will distribute attack traffic to each switch. The

optimal distributing strategy can be obtained by minimizing

the average queueing delays of all packets (D) based on

Equation (2):

D =

∑n
i=1(Di × ai)

a
=

1

2μa
×

n∑
i=1

ρi
1− ρi

ai. (3)

In Equation (3), ρi and ai could be roughly regard as a linear

relationship (ρi = uai + v), since the table-miss engineering

adopts ai > asi for most cases. Suppose each switch has

the same processing ability (asi = as), maximum bandwidth

(Ri = R), and allocated bandwidth (R̃i = Ri), Equation (3)

could be further simplified as follows:

D = k ×
n∑

i=1

ρi(ρi + t)

1− ρi
. (4)

In Equation (4), the positive real number k represents

the coefficient of the system, and t describes the constant

of the linear relationship between ρi and ai. Considering

two switches sp and sq , ρq can be calculated based on ρp
(ρq = C − ∑n

i=1,i �=q ρi, where C is the normalized attack

traffic). When i �= p and i �= q, ∂ρi

∂ρp
= 0. Since Equation (4)

is a convex function, the minimized D can be obtained by

solving the differentiation of Equation (4):

∂D

∂ρp
= k(

2ρp − ρ2p + t

(1− ρp)2
+

2ρq − ρ2q + t

(1− ρq)2
× ∂ρq

∂ρp
) = 0

k(
2ρp − ρ2p + t

(1− ρp)2
− 2ρq − ρ2q + t

(1− ρq)2
) = 0. (5)

The minimized D will be obtained when ρp = ρq . There-

fore, the best strategy to minimize D for the whole system is to

evenly distribute the attack traffic (ρ1 = ρ2 = ... = ρn = ρ).

B. Number of Neighbor Switches

Suppose the traffic balancer could precisely follow the best

strategy and distribute attack traffic to each switch evenly. In

this scenario, similar to Equation (2), the calculation of R is

also separated into two scenarios:

ρ =

{
˜R+a×Lh

nR , a � nas
˜R+nas×Lh+(a−nas)×Lp

nR , else
. (6)

We could find out how many neighbor switches (n − 1)

should be involved based on Equation (1) and Equation (6).

The result is depicted in Fig. 7-b. The configuration adopts

20PPS as, 750bit Lh, 5Kb Lp, 2Mbps R, 500PPS a, and

2When n = 1 (0 neighbor switch), the victim switch is overloaded, and
ρ > 1. The average queueing delay will be infinite.

Control Plane
(RYU Controller +

FloodDefender)

Data Plane
(OpenFlow
switches)

Sender

Receiver

Attacker

Fig. 8. Test network topology.

0 R̃ when μ = 1. With 2 neighbor switches (n = 3), D
can be less than 0.3s and ρ = 0.38. D nearly decreases to

0.1s with 4 neighbor switches (ρ = 0.22). Generally speaking,

FloodDefender can preserve the major functionality with 4 or

less neighbor switches.

V. EXPERIMENT

A. Implementation

We implement FloodDefender system, including the attack

detection, table-miss engineering, packet filter, and flow rule

management modules. All of them are implemented as applica-

tions on RYU controller [8] in Python. Meanwhile, we install

RYU controller on a computer equipped with i7 CPU and

8GB memory. In the software environment, we use Mininet

[9] to create virtual OpenFlow switches, and in the hardware
environment, we use commercial OpenFlow switches, Polaris

xSwitch X10-24S2Q [2], to build the test environment. Each

hardware switch can store 2000 flow entries, and has 8MB

buffer memory. We employ three hosts (sender, receiver, and

attacker) in our test environment. The test network topology

is depicted in Fig. 8.

To compare FloodDefender with previous work, we launch

the SDN-aimed attacks in three scenarios: (i) an OpenFlow

network without protecting system, (ii) an OpenFlow network

with FloodGuard [4], and (iii) an OpenFlow network with our

FloodDefender.

B. Setup

First, we place the sender under the victim switch and test

the available bandwidth rate in both software environment

(with 4 neighbor switches) and hardware environment (with

1 neighbor switch). We install a layer 2 learning switch app

(l2 learning) on the network, which can discover the network

topology and provide basic forwarding service. The attacker

will use scapy to keep flooding UDP packets with randomly

forged fields under different rates. We use iperf to measure

the available bandwidth between the sender and receiver, and

set the bandwidth threshold to 30% (ρ = 0.7) to ensure less

than 1.2s average queueing delay.

Second, we place the sender under the each neighbor

switch and measure the available bandwidth rate in software

environment. We test FloodDefender system under a fully

connected network with 5 switches, and FloodDefender will

detour attack traffic to 1 to 4 neighbor switches. The UDP

attack rate will be 500PPS.

Third, we measure the CPU utilization of the controller

under UDP-based attacks to the computational resource con-

sumption of the control plane.

0 50 100 150 200 250 300 350 400 450 500
Attack Rate (PPS)

0

20

40

60

80

100

B
an

dw
id

th
 R

at
e

(%
)

FloodDefender
OpenFlow
Threshold

(a) Software environment.

0 50 100 150 200 250 300 350 400 450 500
Attack Rate (PPS)

20

40

60

80

100

 A
va

ila
bl

e
R

at
e

(%
) FloodDefender

OpenFlow
Threshold

(b) Hardware environment.

Fig. 9. Available bandwidth rate of the victim switch.

Fourth, we compare the flow table utilization of the victim

switch under OpenFlow, FloodGuard [4], and FloodDefender.

We also use l2 learning as the app in the experiment. The

attacker generates TCP packets with randomly forged sender

IP to flood the network and overload the flow table.

Fifth, we evaluate the performance of attack identification.

We use recall rate (Identified Attack Packets
Total Attack Packets) and false-positive rate

(Normal Packets Regarded as Attack Packets
Total Normal Packets) to measure the performance

of two-phase filter under different attack rates.

Sixth, we measure the time delay of normal traffic under

OpenFlow, FloodGuard [4], and FloodDefender. Here we

measure the delay of all kinds of protocols under UDP-based

DoS attacks, and the attack rate is 500PPS. The maximum

time delay usually occurs when the first packet in each flow

arrives.

Finally, we compare the packet loss rate of new TCP flows

in OpenFlow, FloodGuard [4], and FloodDefender under TCP-

based DoS attacks. To generate new flows efficiently, we

modify l2 learning app, and use eth src && tcp src instead

of eth src as the match field to generate flow rules. The first

handshake packet of a new TCP connection is regarded as

a new flow (table-miss), and triggers packet in message.

The packet loss rate shows the effectiveness of each system

in processing new flows.

C. Experimental Result

Victim switch bandwidth. The results in software and hard-

ware environments are depicted in Fig. 9-a and Fig. 9-b. In this

test, we do not show the result from FloodGuard [4], because

it takes a designated extra link to a specific device, the data

plane cache. The maximum bandwidth is 1.92Gbps in software

environment, and 9.3Mbps in hardware environment. On one

hand, the bandwidth in OpenFlow network without protect-

ing systems is almost exhausted, only 3% left in software

environment and 24% left in hardware environment. On the

other hand, FloodDefender maintains the major functionality

of the network, and saves 70% software bandwidth and nearly

20% hardware bandwidth (the performance can be improved

by involving more neighbor switches).

Neighbor switch bandwidth. The attack traffic will affect

the bandwidths of neighbor switches in FloodDefender, as

depicted in Fig. 10. When only one neighbor switch is

involved, the available bandwidth rate is within 30% (Flood-

Defender will avoid this scenario by involving more switches,

but we block this function in this experiment). The network

becomes functional with more neighbor switches. Specifically,

1 2 3 4
Number of Neighbor Switches

0

10

20

30

40

50

60

70

80

A
va

ila
bl

e
R

at
e

(%
) Switch 1

Switch 2
Switch 3
Switch 4
Threshold

Fig. 10. Available bandwidth rates of neighbor switches.

Fig. 11. CPU utilization under UDP-based attacks.

TABLE I. Flow Table Utilization under TCP-based Attacks

OpenFlow FloodGuard FloodDefender

No attack 4% 4% 4%
Under attacks 100% 34% 6% ∼ 19%

the SDN-aimed DoS attacks can hardly affect the network

when 4 neighbor switches are involved. Besides, the result

also shows that the traffic balancer component can efficiently

balance the traffic among neighbor switches.

Computational resource consumption. We can get the

computational resource protection performance of FloodDe-

fender in Fig. 11. When attacks occur, the CPU utilization

quickly reaches a peak (around 14%) in less than 1.5s. Then

it goes down slowly because the table-miss engineering and

packet in buffer start to detour and store attack traf-

fic. After about 1.5s, the CPU utilization remains steady.

At this stage, the packet in buffer efficiently stores the

packet in messages, and only consumes about 0.5% CPU

utilization. In about 8s, there is a little spur: the CPU utilization

reaches about 3%, and quickly goes down in 1s. This is caused

by the two-phase filtering in packet filter. The result shows

that FloodDefender can efficiently save the computational

resources of the control plane, and the overhead of the packet

filter is very little.

Flow table utilization. The flow table utilization rate in

depicted in Table I. We can find that both FloodGuard [4]

and FloodDefender will not incur overload into the network

when there is no attack. Though FloodGuard uses rate control

to protect the victim switch when attacks occur, the attack

traffic still consumes about 30% flow table space. The flow

table utilization rate fluctuates in FloodDefender, since the

flow table management module will flush monitoring rules and

cache region periodically. FloodDefender consumes less than

15% flow table space. Its performance is much better than

FloodGuard.

Attack identification. The attack detection performance of

TABLE II. Time Delay of Normal Flows under UDP-based Attacks

OpenFlow FloodGuard FloodDefender

Max Delay timeout timeout 4891ms
Min Delay 10.7ms 0.4ms 0.3ms
Average Delay 2038ms 29.2ms 18.7ms

80

85

90

95

100

 rate

50 100 150 200 350 400 450 500250 300
Attack Rate (PPS)

0

5

10

15

20

FalseFalse-positive

Pe
rc

en
ta

ge
 (%

)

Fig. 12. Attack detection performance: recall rate and false-positive rate.

the two-phase filter is depicted in Fig. 12. We can find that

the false-positive rate goes up with attack rate. It is because

in a time interval, the frequency of the same flow will be

higher with higher attack rate. Therefore, the frequency-based

filtering will use a bigger threshold to filter out attack traffic,

and sacrifice some benign traffic. Though more attack packets

are classified as normal flow when attack rate increases, the

percentage of these packets remains the same, and the recall

rate is more stable. Generally speaking, the two-phase filtering

can precisely identify more than 96% attack traffic with less

than 5% false-positive rate.

Time delay. The time delays of normal flows are depicted

in Table II. Since FloodGuard [4] utilizes rate control to

save the computational resources, the delay of normal flows

increases with the attack rate. When the attack rate is set to

500PPS, the maximum time delays in both FloodGuard and

OpenFlow become infinite (timeout), which is different from

the results presented in [4]. Besides the attack rate, another

reason is that [4] only measures the delay of TCP packets

under UDP-based DoS attacks. In our experiment, we also

measure the delay of UDP packets, and find out many of

them are lost in FloodGuard. Though these UDP packets in

FloodDefender suffer from long time delay, they are processed

and received eventually. Both FloodGuard and FloodDefender

are superior to OpenFlow in average and minimum time

delays, and the performance of FloodDefender is better than

that of FloodGuard when attack rate is high.

Packet loss rate. Finally, we compare the packet loss rate

of new TCP flows under TCP-based DoS attacks. The result

is depicted in Fig. 13. In this scenario, both FloodGuard

and OpenFlow do not filter out attack traffic, and inevitably

sacrifice benign TCP packets. We can find that FloodGuard

is even worse than OpenFlow. It is because the round-robin

scheduling in the data plane cache treats each protocol evenly,

and only picks the header packet of each protocol. Therefore,

it has a very low probability to pick the benign TCP packet

(even lower than that of OpenFlow, which treats each packet

evenly). The performance of FloodDefender is much better,

0 50 100 150 200 250 300 350 400 450 500
Attack Rate (PPS)

0

10

20

30

40

50

60

70

80

90

100

Pa
ck

et
 L

os
s R

at
e

(%
)

FloodDefender
FloodGuard
OpenFlow

Fig. 13. Packet loss rate of new TCP flows under TCP-based DoS attacks.

the packet filter component can filter out attack traffic both

efficiently and precisely, and the packet loss rate of new TCP

flows remains within 5%.

VI. RELATED WORK

The security of SDN has become a hot research area ever

since it was proposed. On one hand, the attributes of central-

ized control and programmability in SDN can be exploited

to enhance network security with a highly reactive security

system [10], [11], [12], [13]. On the other hand, the same

centralized structure is considered vulnerable, which can cause

severe network security problems [3], [4], [5], [14], [15], [16].

SDN-supported security: SDN-supported security uses

new techniques in SDN to solve traditional network security

challenges. Hu et al. combine SDN with inference techniques

to derive a hybrid network monitoring scheme, which can

strike a balance between measurement overhead and accuracy.

Xu et al. introduce new DDoS detection methods based on the

flow monitoring capability [11]. These methods can balance

the coverage and granularity, and quickly locate potential

victims and attackers. Taylor et al. introduce a contextual

and flow-based access control to improve enterprise security

with flow-based monitoring [12]. It provides both detailed

host-based context and fine-grained control of network flows

by shifting the SDN agent functionality from the network

infrastructures into the end-hosts.

SDN-self security: SDN-self security aims to identify new

attacks against SDN and enhance the security of SDN-enabled

devices. The SDN-aimed DoS attacks utilize the reactions

of table-miss packets in SDN to exhaust control-data plane

bandwidth [3], [5]. To mitigate the DoS attacks, AvantGuard

introduces an SYN proxy based module to verify the legality

of each flow based on TCP handshake [3]. Another approach,

FloodGuard, mitigates the DoS attacks by installing proactive

flow rules and sending table-miss packets to a specific data

plane cache module [4]. FloodGuard breaks the protocol limi-

tation in AvantGuard, but may suffer from long delay and high

packet loss rate for some flows. Another attack is poisoning the

network visibility of the control plane by unauthorized LLDP

packets [14]. TopoGuard uses the incoming port information

to verify LLDP packets against network topology poisoning

attacks [14]. To avoid malicious apps on the control plane,

SDNShield expresses and enforces the minimum required

privileges to individual apps [15].

VII. CONCLUSION

SDN-aimed DoS attacks can paralyze OpenFlow networks

by exhausting the bandwidth, computational resources, and

flow table space. We propose FloodDefender, a scalable and

protocol-independent system to protect OpenFlow networks

against SDN-aimed DoS attacks based on three novel tech-

niques: table-miss engineering, packet filter, and flow table

management. FloodDefender can efficiently process table-miss

packets, as well as precisely identify attack traffic. We use a

queueing delay model to analyze how many neighbor switches

should be used in the table-miss engineering, and implement

a prototype to evaluate the performance of FloodDefender

in both software and hardware environments. Compared with

previous work, FloodDefender significantly improves the flow

table utilization, time delay, and packet loss rate, and is more

scalable and easier to deploy without introducing additional

devices.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” in ACM SIGCOMM Computer Communication
Review, vol. 38, pp. 69–74, 2008.

[2] Polaris networks Co. ltd., “Polaris xSwitch.” http://www.polarisdn.com/
en/product/html/?80.html.

[3] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-Defined
Networks,” in Proc. of the ACM Conference on Computer & Commu-
nications Security (CCS), 2013.

[4] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS Attack Prevention
Extension in Software-Defined Networks,” in Proc. of the IEEE/IFIP
Dependable Systems and Networks (DSN), 2015.

[5] S. Song, S. Hong, X. Guan, B.-Y. Choi, and C. Choi, “NEOD: Network
Embedded On-line Disaster Management Framework for Software De-
fined Networking,” in Proc. of the IFIP/IEEE International Symposium
on Integrated Network Management (IM), 2013.

[6] V. N. Vapnik and V. Vapnik, “Statistical Learning Theory,” vol. 1, 1998.
[7] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a

Fair Queueing Algorithm,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 19, pp. 1–12, 1989.

[8] RYU SDN Framework Community, “RYU Controller.” https://osrg.
github.io/ryu/.

[9] Mininet Team, “Mininet.” http://mininet.org/.
[10] Z. Hu and J. Luo, “Cracking Network Monitoring in DCNs with

SDN,” in Proc. of the IEEE International Conference on Computer
Communications (INFOCOM), 2015.

[11] Y. Xu and Y. Liu, “DDoS Attack Detection Under SDN Context,” in
Proc. of the IEEE International Conference on Computer Communica-
tions (INFOCOM), 2016.

[12] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue,
“Contextual, Flow-Based Access Control with Scalable Host-Based SDN
Techniques,” in Proc. of the IEEE International Conference on Computer
Communications (INFOCOM), 2016.

[13] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Enabling Practical
Software-defined Networking Security Applications with OFX,” in Proc.
of the Network and Distributed System Security (NDSS), 2016.

[14] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility
in Software-Defined Networks: New Attacks and Countermeasures,” in
Proc. of the Network and Distributed System Security (NDSS), 2015.

[15] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen,
“SDNShield: Reconciliating Configurable Application Permissions for
SDN App Markets,” in Proc. of the IEEE/IFIP Dependable Systems
and Networks (DSN), 2016.

[16] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is Every
Flow on The Right Track?: Inspect SDN Forwarding with RuleScope,”
in Proc. of the IEEE International Conference on Computer Communi-
cations (INFOCOM), 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

