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Abstract—Vehicular Ad Hoc Networks (VANETSs) enable
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munications that bring many benefits and conveniences to
improve the road safety and drive comfort in future trans-
portation systems. Sybil attack is considered one of the most
risky threats in VANETSs since a Sybil attacker can generate
multiple fake identities with false messages to severely impair
the normal functions of safety-related applications. In this paper,
we propose a novel Sybil attack detection method based on
Received Signal Strength Indicator (RSSI), Voiceprint, to conduct
a widely applicable, lightweight and full-distributed detection for
VANETS. To avoid the inaccurate position estimation according
to predefined radio propagation models in previous RSSI-based
detection methods, Voiceprint adopts the RSSI time series as
the vehicular speech and compares the similarity among all
received time series. Voiceprint does not rely on any predefined
radio propagation model, and conducts independent detection
without the support of the centralized infrastructure. It has
more accurate detection rate in different dynamic environments.
Extensive simulations and real-world experiments demonstrate
that the proposed Voiceprint is an effective method considering
the cost, complexity and performance.

I. INTRODUCTION

Vehicular Ad Hoc Networks (VANETSs) is a promising
technology to address the challenging issues in the intelligent
transportation system (ITS) such as accident avoidance, traffic
monitoring and transport efficiency. VANETS enable a vehicle
to directly communicate with neighboring vehicles (vehicle-
to-vehicle, V2V) as well as roadside infrastructures (vehicle-
to-infrastructure, V2I). According to a report published by
National Highway Traffic Safety Administration, VANETS
can provide a wide range of communication-based vehicle
safety and non-safety applications in ITS such as intersection
collision avoidance, cooperative collision warning, emergency
electronic brake lights, traffic flow control and enhanced route
guidance and navigation [1].

Dedicated Short Range Communications (DSRC) at 5.9
GHz is a set of protocols for VANETS issued by the Federal
Communications Commission (FCC) in 1999. There are two
kinds of communication devices defined in DSRC, namely the
On Board Unit (OBU), which is installed in the vehicle, and
the Road Side Unit (RSU), which is deployed on the roadside.
Safety-related messages are broadcasted periodically on the
Control Channel (CCH) by OBUs with the vehicles’ identity,

location, velocity, acceleration, direction and etc. Meanwhile,
some useful information such as road condition, traffic density
and accident zone are disseminated by RSUs to warn drivers
within their vicinity.

The main purpose of VANET: is to improve the road safety
as well as raise the traffic efficiency. Nevertheless, VANETS
inherit all security vulnerabilities from the wireless networks,
which becomes the major issue to apply this technology into
practice. Many types of attacks can be launched in VANETS,
but one of the most harmful is Sybil attack [2]. As aforemen-
tioned, many safety or non-safety applications in VANETS
such as cooperative collision warning and enhanced route
guidance and navigation need cooperation of other vehicles.
This requires one vehicle gets enough credible information
from legitimate vehicles. However, in Sybil attack, adversary
(malicious node) generates multiple fake identities to create
many untrusted virtual nodes (Sybil nodes) in VANETSs. This
violates the fundamental assumption in implementing those
applications [3].

Due to the severe damage when Sybil attack happens,
many detection methods are proposed by researchers. All these
techniques can be classified into three categories: resource test-
ing based, trusted certification based and position verification
based mechanisms. The resource testing based methods may
become invalid if the malicious node has more computation
or communication resources, and they bring extra overhead to
the system. Most of the trusted certification based methods
run the detection algorithms in a centralized manner which
are not suitable for the VANETs due to the fast changing
dynamic topology. In addition, the deployment of public
key infrastructure and the high complexity of cryptographic
algorithms are also uncertain issues in this type of methods.
Considering the low cost, wide availability and decentralized
nature, the physical measurement based position verification
methods are better for detecting Sybil attacks in the initial
stage of VANETS.

In this paper, we propose a novel Sybil attack detection
method based on RSSI, Voiceprint, to conduct a widely appli-
cable, lightweight and full-distributed detection for VANETS.
Unlike most of previous RSSI-based methods that compute
the absolute position or relative distance according to the
average RSSI values, or make statistic testing based on RSSI



distributions, Voiceprint uses the RSSI time series as the
vehicular speech to compares the similarity among all these
time series. This approach is based on the major observation in
our real-world experiments that the RSSI time series of Sybil
nodes have the very similar patterns. The main contribution
of this paper is three-fold:

1) Voiceprint can be widely applied to real VANETSs with-
out any predefined radio propagation model. Extensive
simulations and experiments show the applicability of
the proposed method. It has high detection rate over
90% and low false positive rate under 10% in different
dynamic environments. (model-free, widely applicable);

2) Voiceprint can make independent detection without any
help of other vehicles, thus, it does not require to
establish the credibility of neighboring nodes (trust
relationship-free, lightweight);

3) Voiceprint is a fully distributed algorithm without any
centralized control or support of RSU (infrastructure-
free, fully distributed).

The rest of this paper is organized as follows. Section II
reviews the related work of Sybil attack detection. Section
IIT reveals several important observations from the real-world
measurements that motivate our work. Section IV presents
our proposed detection method in detail. Section V conducts
simulations to evaluate our approach. Section VI carries out
further experiments in a real DSRC testbed. Finally, Section
VII draws the conclusion.

II. RELATED WORK

Sybil attack is a very critical problem in distributed peer-
to-peer systems. It was first introduced by Douceur [4] in the
distributed storage system. Extensive works are done to detect
the malicious node and Sybil nodes in these systems. The goal
of these detection methods is to ensure each physical node
is bound with a valid unique identity [5]. All these methods
can be classified into three categories: (1) resource testing
based [4][6], (2) trusted certification based [3], [7]-[12] and
(3) physical measurement based mechanisms [13]-[19].

The resource testing based methods are in vain if the
malicious node is equipped with sufficient resources and they
usually bring extra overhead to the system when in testing.
Trusted certification based methods are the most popular
techniques to establish trust relationship among all nodes.
This type of approaches usually uses the certificate authority,
public key infrastructure, digital signatures and cryptographic
algorithms to ensure the trustworthiness of each identity. They
can find Sybil nodes at the beginning of the attack. However,
this type of approaches usually requires a centralized trust
party to issue digital signatures or certificates which cannot
be easily applied in the initial stage of VANETS.

Due to the fast changing dynamic topology of VANETS
and the high complexity of cryptographic algorithms, the
lightweight and decentralized detection methods like position
verification based methods are more suitable for the vehicular
environment. These methods usually adopt some physical
measurements such as Received Signal Strength Indicator

(RSSI), Angle of Arrival (AoA) and Time Difference of
Arrival (TDoA) to estimate the positions of the neighboring
nodes. These measured values only depend on the hardware
and physical environment that cannot be easily forged or
modified by the malicious node.

Jin et. al used relative time measurements TDoA to deter-
mine the sender node’s location and compared it with claimed
coordinates of the sender node [13]. If they are different loca-
tions, the source node is judged as a Sybil node by receiver.
TDoA-based method does not require time synchronization
but it needs extra hardware (three receiving sensors mounted
on different places of a vehicle). RSSI-based techniques,
by contrast, are low-cost methods without any specialized
hardware. They are on the basis of the idea that receiver
can estimate distance from the sender according to RSSI
values using theoretical radio propagation models. Demirbas
et al. used RSSI-based localization method to detect Sybil
nodes in a static Wireless Sensor Network (WSN) [14]. They
adopted ratio of RSSIs from multiple receivers to overcome
the time varying and unreliable nature of measured RSSI
values. Wang et al. proposed a similar method by assuming a
more realistic Rayleigh fading model [15]. Lv et al. proposed
a Cooperative RSSI-based Sybil Detection (CRSD) scheme
[16]. CRSD does not compute absolute positions, but relative
distances among different nodes. Then, each node broadcasts
the suspect identities with very closer distances. Finally, each
node takes the largest intersection among all received groups
as the detected Sybil nodes.

All above RSSI-based methods are decentralized techniques
that each node runs the detection algorithm locally without
the centralized infrastructure. However, these methods detect
Sybil attack in a cooperative manner that each node needs
the information from neighboring nodes, i.e., to get RSSI
values observed by other nodes around to solve equations
or compute the intersection of suspect groups. Therefore, the
major problem in these methods is how to confirm the cred-
ibility and honesty of the neighboring nodes, since the Sybil
nodes fabricated by the malicious node might send forged
RSSI values to impede the detection. To avoid this problem,
Bouassida et al. proposed an independent detection method
based on RSSI [17]. In this scheme, the authors checked RSSI
variations measured successively if they fall into a reasonable
interval or not. The unreasonable nodes are labeled as Sybil
nodes. But the authors only verify the proposed methods
in a small scale testbed. Chen et al. proposed a centralized
approach based on RSSI [18]. In this scheme, landmark as the
trusted centralized party records all RSSI values transmitted by
sensors and conducts a statistical testing for each two RSSI
distributions. The nodes have similar RSSI distributions are
considered as Sybil nodes. Xiao and Yu [20][19] proposed a
cooperative detection method considering the trust relationship
among all neighboring nodes. In this cooperative detection
method, each vehicle first periodically broadcasts its identity
and position as a claimer. After collecting enough information
from witnesses (part of neighboring vehicles), one vehicle as a
verifier estimates the position of all neighboring nodes accord-



ing to the received RSSI values and a predefined propagation
model. To avoid some Sybil nodes provide forged location
information, they assumed each vehicle can receive a position
certification when passing through a RSU. And the witnesses
only selected from the opposite traffic flow which has the
issued position certification. According to this certification,
this cooperative method can ensure that each node in the
witness group is a trusted physical entity. However, it is not
suitable for the sparse traffic and one-way roads.

The detailed comparisons of above RSSI-based methods as
well as our proposed scheme are summarized in Table 1.

TABLE I: Comparisons of RSSI-based detection methods

5.9GHz antenna "",

GPS module

Methods RPM C/D| C/1 | Sol | Mobility
Demirbas [14] Free space D C No | Static
Wang [15] Rayleigh fading | D C No Statfc IWCU OBU4.2
Lv [16] Two-ray D C No Static
ground
Bouassida [17] Friis free space | D I No Low
Mobility
Chen [18] Shadowing C - Yes | Static Fie. 1: M t . t
Xiao [20] Shadowing D | C | Yes | High 1g. 1- Measurement equipments
Mobility
Yu [19] Shadowing D | C | Yes IP\I/Iigl};‘l' TABLE II: Details of measurement equipments
obility
Voiceprint Model-free D I No | High Equipment Details
Mobility Processor Atheros AR7130 300MHz (MIPS 32bit)
Note: RPM: Radio Propagation Model; C/D: Centralized/Decentralized; DSRC radio IEEE 802.11p, RX sensitivity: -95 dBm
C/1: Cooperative/Independent; Sol: Support of Infrastructure. Antenna 5.0GHz, 7dBi Omni
50 channels, A-GPS support, sensitivity: -160 dBm,
III. MEASUREMENTS AND OBSERVATIONS GPS module accuracy of time-pulse signal: 30ns (RMS),
. horizontal iti 1 <25 t ,
As most of RSSI-based methods heavily rely on the as- ;;ézlfsé’zssl)mn aceutacy m (autonomous)
sumec.l radio propagation mgdels, we shogld first assess the Ethernet 10/100 Mbps (RJ43) port, full-duplex
effec.tlvenesls of such models in the real vehicular en@ronment. TX Power Max 32dBm (EIRP)
In this Section, we conduct several real-world experiments us- Channel width | 10MHz20MHz
ing multiple vehicles equipped with DSRC radios in different Standards IEEE 802.11p-2010, IEEE 1609.2-v2-d9 3-2011-09,
scenarios. compliance IEEE 1609.3-2010, IEEE 1609.4-2010

A. Measurement Equipments

The experiment includes four vehicles that each one is
equipped with an IEEE 802.11p compliant radio, namely the
IWCU OBU4.2 produced by ITRI. The onboard equipments
for each vehicle are composed of an IWCU OBU4.2 unit, a
5.9GHz antenna, a GPS module and a laptop which are shown
in Figure 1.

IWCU OBU4.2 is a WAVE/DSRC communication device
mounted in a vehicle. It is an embedded Linux machine
(kernel 2.6.32) based on a 32 bits MIPS processor (Atheros
AR7130) working at 300MHz. It has two Ethernet interfaces,
a GPS connector and a DSRC radio based on the standard
IEEE 802.11p-2010 [21]. IWCU OBU4.2 is connected to the
5.9GHz omni-directional antenna with a gain of 7dBi. The
antenna is mounted on the roof of the vehicle. There is also
a rooftop GPS receiver placed by the side of the antenna to
log the vehicle’s position. The IWCU OBU4.2 also connects
to the laptop via an Ethernet interface, thus, the laptop can
record the RSSI value of each successfully received packet.
The details of measurement equipments are listed in Table II.

B. Measurement Scenarios

To assess the effectiveness of RSSI-based Sybil attack detec-
tion methods in VANETSs, we conduct several experiments in
different scenarios. Each vehicle adopts WAVE Short Message
Protocol (WSMP) provided by IWCU OBU4.2 SDK software
toolkit to send single-hop broadcast with its identity, GPS
coordinates, direction and velocity. At receiver, the connected
laptop records all received RSSI values via Ethernet. The basic
communication parameter settings are shown in Table III.

TABLE III: Basic parameter settings

Value
20dBm (EIRP)
5.890MHz (CH 178 Control Channel)

Parameter

Transmission power

Center carrier frequency

Channel width 10MHz
Data rate 3Mbps
Packet size 500Bytes
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Fig. 3: Scenario 2 (Two vehicles communicate in different environments)
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Fig. 2: Scenario 1 (Two vehicles communicate in the campus)

Scenario 1: Two vehicles communicate in the campus.
This measurement is carried out in the campus. The scenario
is shown in Figure 2a. Two vehicles keep stationary with each
other at a distance about 140m. The sender broadcasts its
information 10 packets per second, and the receiver records
RSSI values from the sender. We conduct this experiment two
times at different time periods, each one lasts 10mins. Another
measurement is also carried out in the campus, but vehicles
move around the schoolyard as shown in Figure 2b. The speed
of vehicle approximately is 10-15 km/h.

Scenario 2: Two vehicles communicate in different en-
vironments. In this case, we collect data from different areas
including campus, rural area and urban area to illustrate the
impact of the environment to the propagation models. Figure
3 gives snapshots of different environments.

)
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Fig. 4: Scenario 3 (Four vehicles simulate the Sybil attack)

Scenario 3: Four vehicles simulate the Sybil attack. In
this scenario, we simulate the Sybil attack with four vehicles
as shown in Figure 4. There are three normal nodes (marked in
blue) and one malicious node (marked in yellow) with motion
at the same direction. The malicious node generates two fake
identities i.e. Sybil nodes (marked in red) at false locations.
During the experiment, the normal node 1 and 3 are ahead of
and behind the malicious node respectively. The normal node
2 keeps moving with the malicious node side by side. The
normal node 1 and 3 record all RSSI time series from the
malicious node, the fabricated Sybil nodes 1 and 2 and the
normal node 2.

C. Observations

We plot the RSSI distributions of Scenario 1 in Figure
5. Figure 5a and 5b show the RSSI values recorded when
two vehicles keep stationary in two different periods. Each
distribution contains 6000 samples. The mean and standard
deviation of two distributions are (-76.8600 dBm, 2.3266 dB-
m) and (-72.5390 dBm, 0.7654 dBm) respectively. According
to Free Space Path Loss (FSPL) model and Two-Ray Ground
Propagation (TRGP) model assumed in [14] and [16], the
average distances between two vehicles are estimated to be
281.5m (FSPL in the first period) and 171.2m (FSPL in the
second period), 263.9m (TRGP in the first period) and 205.8m
(TRGP in the second period), respectively. Comparing to the
real distance 140m, the estimated values are quite inaccurate.

Figure 5c gives four RSSI distributions of different segments
randomly selected from Scenario 1 that two vehicles move
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around the campus. Each segment has 1 min long, thus,
contains 600 RSSI samples. In some RSSI-based position ver-
ification methods [18][20][19], they assume the RSSI values
follow the normal distribution according to the shadowing
model. Actually, the RSSI values barely show the normal
distribution in VANETS, especially when the vehicle keeps
moving constantly.

From the results obtained by Scenario 1, we get the first
observation.

Observation 1: Temporal variation of the channel in
VANETs. The channel quality changes over time in VANETs.
Therefore, a predefined propagation model might lead to
significant errors in position estimation or make false statistic
testing based on the wrong assumption of RSSI distribution.

The empirical dual-slope piecewise linear model is widely
used in VANETS [22] as shown in Equation 1.

P(d(,) - 10’)/110'910 (d/do) + Xgl, do S d S dc
P(do) — 1071loglo (dc/do) — 10’)/210g10 (d/dc)
+Xso0,d > d,

ey

where P(d,) is the known signal strength which is calculated
using the free space path loss model at the reference distance
do. 71 and 7, are the path loss exponents. d. is the critical
distance. X,; and X,o are zero-mean, normally distributed
random variables with standard deviation o; and oy respec-
tively.

Three data sets measured from Scenario 2 in the campus,
rural area and urban area are regression-fitted using least
square method to obtain parameters of the model. We list fit
parameters of the campus, the rural area and the urban area
in Table IV.

Due to the sparsely distributed vehicles in campus and rural
area, there is a dominant Line-Of-Sight (LOS) path between
receiver and sender. Their breakpoint distances (d.) are much
longer than the value in the urban area since more densely
distributed obstacles like vehicles and pedestrians on the road
cause severe signal distortion at receivers in Non-Line-Of-
Sight (NLOS) conditions. In addition, the signal attenuation in
the campus environment seems much better than the rural area

Pr(d) =

TABLE IV: Fit parameters of the empirical model

Parameter Value
Campus | Rural area | Urban area
do Im Im Im
de 218m 182m 102m
Y1 1.66 1.89 2.56
Y2 5.53 5.86 6.34
Xo1 2.8dB 3.1dB 3.9dB
Xo2 3.2dB 3.6dB 5.2dB

because the effects of reflection and shadowing are probably
more serious by those high and dense wayside trees (shown
in Figure 3a and 3b).

Then, we have the second observation.

Observation 2: Spatial variation of the channel in
VANETS. The channel conditions are not the same in different
areas considering complex reflection, refraction, diffraction
and multi-path effects caused by buildings, trees and other ob-
stacles. For a predefined propagation model, it requires to set
different parameters for different environments. However, it is
very hard for a vehicle to sense the environment dynamically,
and then to determine optimal parameters.
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Fig. 6: RSSI time series recorded by the normal node 1

The Figure 6 and Figure 7 give the RSSI time series
recorded by the normal node 1 and 3. Then, we have a



significant and interesting observation.

Observation 3: Similar patterns of RSSI time series.
The RSSI time series of the malicious node and the Sybil
nodes have very similar patterns. The series of the malicious
node and the normal node 2 are similar, but still have some
differences even if they always keep very close distance (2.75-
3.25m) during the motion.
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Fig. 7: RSSI time series recorded by the normal node 3

With this observation, we propose the Voiceprint method to
transfer the Sybil attack detection into comparing the similarity
between two time series which are like to recognize and
differentiate the vehicular speech.

IV. THE PROPOSED SCHEME VOICEPRINT

In this section, we first describe the attack model and
assumptions. Then, we introduce the similarity measures for
time series. Finally, we give the detailed Sybil attack detection
algorithm based on vehicular voiceprint.

A. Attack Model and Assumptions

In this paper, we focus on the simultaneous Sybil attack
that each Sybil attacker concurrently creates multiple fake
identities to disrupt normal functionalities of VANETS. Figure
8 shows a typical Sybil attack scenario in the highway envi-
ronment. From this figure, the legitimate vehicle bounded with
unique valid identity is referring to the normal node (marked
in blue). The physical vehicle uses multiple forged identities
is called malicious node (marked in yellow), and the claimed
virtual identities are Sybil nodes (marked in red).

m Normal node

WW) Malicious node

@ Sybil node
Fig. 8: An example of Sybil attack scenario in VANETS)

Assumption 1: We assume there may be several Sybil
attackers in VANETSs, but those malicious nodes do not
collude to launch Sybil attacks. The attacker only creates new
identities rather than stealing other vehicle’s identity.

Assumption 2: In VANETS, every vehicle is equipped with
only one DSRC radio and one 5.9GHz antenna that is able to
broadcast its own information on CCH periodically. The OBUs
may have heterogeneous configurations, but their broadcast
frequency is constant (10Hz) according to the DSRC protocol.
That means the malicious node will simulate and broadcast all
Sybil nodes’ information with the same frequency on CCH.

Assumption 3: Unlike most previous works considering
the same transmission power for each node, we relax this
assumption and allow different transmission power settings.
The normal nodes may have different default TX Power
settings or different antenna gains (heterogeneous OBUs). The
malicious node may increase or decrease initial TX Power for
each fabricated Sybil node. However, the TX Power remains
constant during the transmission.

B. Similarity Measures for Time Series

A time series is a sequence of data points successively
collected over time. With the Observation 3 obtained from
the real-world experiments, we find that the RSSI time series
of Sybil nodes have very similar patterns. Therefore, we
detect Sybil attack by measuring the similarity between two
RSSI time series based on this important observation. Here,
similarity is an absolute value computed by comparing or
matching the resemblances between two series. Commonly,
a distance function D(X,Y") is defined to represent the simi-
larity between time series X and Y.

Since time series similarity measures have been a major
topic in data mining research for decades, many distance
functions have been proposed in this domain. The classical
form to compute the similarity is L, norm as follows:

N P
Drp (X, Y) =D (@i — ;)" ()
1
where p is a positive integer, N is the length of two time
series, x; and y; are the it" element of time series of X and
Y, respectively. When p equals to 2, it is the well-known
Euclidean distance.

Another commonly used distance is called Dynamic Time
Warping (DTW). DTW adopts dynamic programming tech-
nique to determine the best matching between two time series
by warping the series in the temporal domain. Given two time
series with different length N and M, Xy (z1, 22, ...T;, ...TN)
and Yar(y1,92,---Yj, ---yamr), DTW first establishes an N-by-
M cost matrix C' containing distance c; ; between each pair of
points x; and y;. The cost ¢; ; usually uses Euclidean distance
as:

cij=(x; — yj)2 3)

Then, DTW computes the minimum accumulated cost D; ;
for each pairwise matching (i, ) between two series recur-
sively by:



Dj j=ci; +min{D;_1;,D;; 1,Di_1,;-1} )

where Dg o is set to be O initially and other value in the
accumulated cost matrix D are initialized to oo.

After that, DTW constructs a optimal warp path W =
w1, Wa, W, ...wg (wp = (i,7) means the 7*" element of
X is matched to the j** element of Y) with the minimum
total accumulated cost. The optimal warp path W must start
from w; = (1,1) to wxg = (N, M) to ensure all points of
both series are matched. In addition, the warp path should
also satisfy the monotonicity constraint which is defined as:

IF wk:(i7j)7wk+1:<i/’j/>; (5)
THENiSi/§i+1,j§j/§j+1

Finally, the DTW distance is measured as the total accumu-
lated cost:

Dprw (X,Y)=Dn,m (6)

Here we give a simple example to illustrate how to compute
the DTW distance as shown in Figure 9. The two time series
are X = {1,1,4,1,1} and Y = {2,2,2,4,2,2} with total
length of N =5 and M = 6 respectively. The DTW distance
is measured as 9 in this case.

Wang et al. make an extensive comparison for 13 different
similarity measures using 38 data sets from various application
domains [23]. The main conclusion drawn by the study is that
the DTW distance is superior to the other newly proposed
methods considering the accuracy in the vast majority of
cases, and the well-established Euclidean distance is also
a robust, simple, generic and efficient way to measure the
similarity of time series. From above introduction of these
two distances, we find that the Euclidean distance matches in

min(Du,,,D[,IJ-,D[,IJ,/):6 Cij D,-J- Dnum
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Fig. 9: A simple example of computing DTW distance

the point-to-point way, which requires two time series having
the same length. DTW distance overcomes this limitation that
can tolerate the shifting, scaling and warping of series in the
temporal domain, which is widely used in speech recognition
to cope with different speeking speeds. Considering that packet
loss often occurs in VANETSs, we cannot always get two
RSSI series with exactly the same length. Therefore, we use
DTW distance to measure the similarity of RSSI time series
like vehicular voiceprint recognition. However, despite the
accuracy of DTW scheme, it has O(N?) time complexity in
general since it should fill all cells in the NM cost matrix.
So, we adopt FastDTW [24] in this paper. FastDTW speeds
up DTW distance measure by adding constraints and data
abstraction to limit the cost cell evaluation. Then, it achieves
O(N) time complexity while has only 1% loss of accuracy,
which can meet requirements of the Sybil attack detection.

C. Proposed Detection Methodology

In this subsection, we present our Sybil attack detection
method, Voiceprint, based on similarity measuring of RSSI
time series. Voiceprint does not rely on any predefined radio
propagation model, and it also does not require the support
of centralized infrastructures (RSUs or base stations). Each
vehicle conducts independent detection locally without estab-
lishing trust relationship among neighboring vehicles.

There are three phases in Voiceprint, collection, comparison
and confirmation.

1) Collection: According to Assumption 2, each vehicle
mounts a DSRC compliant OBU to broadcast its basic infor-
mation periodically on CCH. Generally, the basic information
includes vehicle’s identity, location, velocity, acceleration,
direction and etc. Vehicles exchange the information from each
other for safety-related applications. All neighboring nodes
could receive these messages and measure the RSSI value for
each successfully received packet. In the collection phase, one
vehicle monitors the CCH and records all the latest messages
within a constant interval (this interval is called observation
time in this paper). Actually, for each packet, Voiceprint only
needs to store a 2-tuple < ID, RSSI >, and then generates
RSSI time series for each received IDs. Here, RSSI time series
of vehicle ¢ is denoted by RSS;.

2) Comparison: After a sufficient observation time for
collection, each vehicle has enough data to make comparison
between every pair wise RSSI time series. As aforementioned,
we use DTW distance to measure the similarity of RSSI time
series. However, based on Assumption 3, if the malicious
node deliberately increase or decrease the initial TX Power for
different Sybil nodes, the similarity of RSSI time series among
malicious node and Sybil nodes can be simply broken, because
the relative distance between aligned points is enlarged. To
solve this problem, we conduct a data preprocessing before
the comparison which normalizes every RSSI time series by
an enhanced Z-score normalization:

r_
RSSI| = =1

)



where 1 and o are the mean and standard deviation of RSSI;
respectively. This normalization makes 99.7% values fall into
the range of (-1, 1). In this normalization, the whole shape
and structure of RSSI time series cannot be changed, but the
relative distances among Sybil nodes’ RSSI series by spoofed
transmission power are perfectly eliminated.

After data preprocessing, we compare every pairwise RSSI
time series and measure the DTW distance. Then, we conduct
a postprocessing for obtained DTW distances to normalize all
values into the range of [0, 1] using min-max normalization:

®)

,  Dprwij — Dprw min
DTWi,j =

Dprw max — DDTW min

where Dprw min and Dprw max are the minimum and
maximum values of all DTW distances respectively.

3) Confirmation: In the comparison process, each vehicle
can get a group of DTW distances for all neighboring vehicles.
Based on Observation 3, DTW distances among all Sybil
nodes should be very small that are closer to 0, while DTW
distances between Sybil nodes and normal nodes or among all
normal nodes should be much larger. However, from extensive
simulations in Section V, we find that DTW distances are
easily distinguishable in the low vehicle density, but have
a small overlap when the density increases. There are two
reasons for this phenomenon. First, when the traffic gets
jammed, the average space between two vehicles is shorten,
thus, the RSSI time series of malicious node and some
normal nodes nearby are also very similar. Second, with the
increasing traffic density, the number of nodes in VANETS is
also increased. This leads to severe channel collisions that
cause a lot of packet losses in the whole network. Thus,
the similarity of RSSI time series among all Sybil nodes
is decreased. The DTW distance overlap will reduce the
detection rate and increase the false positive rate when the
traffic density increases if we set a constant threshold. To
deal with this problem, we just think of the threshold as a
function of density. And the determination of the threshold
can be transformed into a binary classification problem that
finds the optimal decision boundary (actually a line in the two-
dimensional condition) in the density-DTW distance plane.
There are many methods such as perceptrons algorithm, linear
classifier, logistic regression and support vector machines
proposed to do classification in machine learning. In this
paper, we use the Linear Discriminant Analysis (LDA) to
determine the threshold. For an estimated density den and a
measured DTW distance Dprw; ; between node ¢ and node
7, if Dprwi; < k-den + b is satisfied, the nodes 7 and j
are detected as the Sybil nodes. Here k£ and b is the slope
and intercept of the decision boundary respectively. These
parameters can be obtained by training based on our simulation
or experiment data. Each vehicle can estimate traffic density
by:
2]‘\gmlf)rmal (9)

1Stmax

where N,ormai 18 the number of normal nodes it can hear
within the density estimation period (one vehicle can only

den =

use the total number of received nodes in the first estimation
since it cannot recognize the legitimate ones at the beginning).
Distyq, 1s the maximum transmission range.

The procedure of Voiceprint is presented in Algorithm 1.

Algorithm 1 Voiceprint

Input:
RSSI,: RSSI time series
1D,,: Corresponding IDs
den: Estimated traffic density
k: Slope of the decision boundary
b: Intercept of the decision boundary
Output:
Sybill Ds: Suspect IDs of Sybil nodes
: for i =1tondo
RSSI; < Z-score-normalization(RSS1;)
end for
fori=1ton—1do
for i = 2 to n do
if i< then
DDTW'L',j < FastDTW(RSSI;, RSSI])
end if
end for
10: end for
11: Dprw <+ Min-max-normalization(D p7y)
12: fori=1ton —1 do
13:  fori=2ton do

VRN

14: if i<j then

15: if DDTWi,j < k - den + b then
16: Sybill Ds = AddingIDs(i, 7)
17: end if

18: end if

19:  end for

20: end for

21: return Sybill Ds

V. SIMULATION EVALUATION

In this section, we evaluate the performance of the proposed
Voiceprint by NS2 simulations.

A. Simulation Setup

We conduct our simulation in the NS-2.34 simulator and use
the empirical propagation model given in equation (1) [22].
To prove that Voiceprint does not depend on any predefined
propagation model, we set a timer in NS2 and modify the
parameters of the propagation model periodically. The simu-
lation scenario is a 2km bi-directional highway with 2 lanes
in each direction as shown in Figure 10 (Lane width is 3.6m).
Vehicles re-enter the highway at the beginning of the other
direction when they arrive at the end of one direction. For
an individual simulation run, we randomly set 5% vehicles
as malicious nodes, and each one generates 3-6 Sybil nodes.
All nodes broadcast 10 packets per second on CCH, but the
malicious node should send 10n packets if it fabricates n
fake identities. The initial transmission power can be randomly
selected from 17-23dBm for each node, but remains constant
during the simulation.

We adopt a continuous-time stochastic mobility model to
simulate vehicle motion. In this model, each vehicle’s move-
ment is divided into a sequence of random time intervals
called mobility epochs. The epoch lengths are identically, in-
dependently distributed (i.i.d.) exponentially with mean 1/\,.



TABLE V: Default parameter settings

Parameter Value
Highway length 2km
Lanes 4

Lane width 3.6m
Density 10-100 vhls/km
Density estimate period 10s
Vehicle number 20-200
Model change period 30s
Frequency 5.9GHz
Bandwidth 10MHz
Transmission Power 17-23dBm
Date rate 3Mbps
Packet size 500Bytes
Packet generation rate 10Hz
Slot time 13us
SIFS 32us
Mobility epoch rate (Ae) 0.2s7 1T
Average speed (fiy) 25m/s
Standard deviation of the speed (o,) | Sm/s
Observation time 20s
Detection period 20s
Simulation time 100s

During each epoch, the vehicle moves at a constant speed
which is an i.i.d. normal distributed random variable with
mean /i, and the standard deviation o,,. The default parameters
are given in Table V.

B. Metrics and Threshold

1) Metrics: We consider two main metrics to evaluate
our scheme, i.e., detection rate (DR) and false positive rate
(FPR). For a single normal node and one detection period,
detection rate is the proportion of detected suspect nodes to the
total number of illegitimate nodes within all its neighboring
vehicles. False positive rate is the percent of normal nodes that
are incorrectly detected as forged ones. For a single normal
node ¢, it receives multiple packets from N, different nodes
during the observation time. Assume that in the k*" detection
period, there are Ni’fk legitimate nodes, Ni’j}C malicious nodes
and N7 Sybil nodes generated by the 4t malicious node. If it
correctly detects N7, fabricated nodes and wrongly identifies
Np . normal nodes, then, the detection rate and false positive
rate for node i in the k*" detection period are defined as
follows:

DR = ——F—— (10)

Y

Assume we have totally N,, normal nodes and each normal
node detects K times during the simulation. Then, the average
detection rate and average false positive rate can be calculated
as follows:
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In the simulation, we use the average detection rate and
average false positive rate to evaluate the performance of
Voiceprint.

2) Threshold: In this paper, we leverage LDA to find
the decision boundary. Each node can tune the threshold
according to the estimated traffic density. We first conduct
several simulations for different traffic densities (5 simulation
runs at each density) and record all measured DTW distances.
Then, we use these DTW distances as the training data to
compute the optimal decision boundary, i.e. to determine the
slope k and intercept b for the divider line. The results are
shown in Figure 10. The blue cycle denotes the DTW distance
between the Sybil node and the normal node or between two
normal nodes. The red dot is the DTW distance between two
Sybil nodes forged by the same malicious node. After training,
the parameters of k and b are set to be 0.00054 and 0.0483
respectively.

C. Comparison and Results Analysis

In our simulations, we compare the Voiceprint to the Co-
operative Position Verification based Sybil Attack Detection
(CPVSAD) scheme proposed in [19]. The observation time of
CPVSAD is 10s, and the standard deviation of the predefined
shadowing model is 3.9dB. The significant level is set to be
0.05.

Figure 11a shows the detection rate and false positive rate of
two methods without propagation model change. The standard
deviation o; and oy are both set to be 3.9dB during the
simulation. From Figure 12a, we see that both Voiceprint and
CPVSAD can achieve to 90% level detection rate and low
false positive rate under 10%. The performance of CPVSAD
improved with the increasing vehicle density, while Voiceprint
has the opposite trend. This is because CPVSAD is the coop-
erative detection method. One vehicle conducts Sybil attack
detection which not only uses the RSSI values observed by its
own, but also adopts information received from neighboring



vehicles. With the increasing traffic density, each vehicle could
collect more information from other vehicles nearby. However,
to ensure all information to be correct, CPVSAD requires sup-
port of RSUs to establish trust relationship among neighboring
nodes. Since Voiceprint is the independent detection scheme,
one vehicle only uses RSSI time series observed locally.
Therefore, with the increasing traffic density, the severe packet
losses lead to less information obtained by each vehicle, thus,
reduce the detection rate. Moreover, the dense traffic means the
shorter average space among vehicles. Vehicles cannot easily
distinguish malicious nodes from the normal nodes nearby that
results in the increasing false positive rate.
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Figure 11b gives the results with propagation model change.
The model parameters are modified periodically during the
simulation. We can observe that the performance of CPVSAD
drops rapidly, while Voiceprint is almost immune to the
change. This is because CPVSAD should conduct the statis-
tical testing according to the predefined model parameters. It
is hardly to get accurate results if the predefined parameter
changes. However, Voiceprint does not rely on any propagation
models. Thus, it is widely applicable for different environ-
ments and complex conditions.
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VI. FIELD TEST

In this section, we evaluate the performance of the proposed
Voiceprint in the real-world field test.

A. Experiment Setup

In this field test, we use four vehicles equipped with DSRC
radios and embedded with the Voiceprint application. We
conduct a series of experiments under campus, rural area,
urban area and highway environments shown in Figure 12.
There are one malicious node (ID = 1) and three normal nodes
(IDs = 2, 3 and 4), and the malicious node generates two Sybil
nodes with two fake identities (IDs = 101 and 102). The setup
is same to Figure 4 given in Section III-B Scenario 3. Normal
node 2 moves as close as possible to the malicious node during
the test. The initial transmitted powers of all physical nodes
(nodes 1-4) are 20dBm. The initial transmitted powers of Sybil
node 101 and 102 are 23dBm and 17dBm respectively. The
observation time is 20s and detection period is 1min. Since
there are only four vehicles in the network, we just set the
constant threshold to be £ = 0.05046 at the traffic density of
4vhls/km.

B. Results and Analysis

The durations of tests in different areas are 13min2ls,
22min 40s, 34min46s and 11minl2s respectively. Thus, the
detections are conducted 14, 23, 35 and 11 times in campus,
rural area, urban area and highway correspondingly. We store
all measured DTW distances compared with the threshold.
Figure 13 plots the results recorded by the normal node 3.
Here, DTW(a, b) means the measured DTW distance of RSSI
time series received from node a and b.

From Figure 13, we can find that the detection rate is 100%
in all scenarios and the false positive rate is 0.95%, only one
time that the normal node 2 is incorrectly detected as the Sybil
node. In order to find out the cause of this false detection, we
check the GPS trace and further analyze statuses, distances
and speeds of all vehicles.

According to GPS traces of malicious node 1, normal node 2
and 3, we notice that all these nodes remain stationary without
mobility at this detection period. Based on the locations of
nodes on the map shown in Figure 14, we find that the false
detection occurs at an intersection. The reasonable explanation
is that all vehicles stop at the intersection waiting for a red
light. The measured distances between each pair of nodes are
3.8m (node 1 and 2), 198.9m (node 1 and 3) and 195.2m
(node 2 and 3) respectively. Therefore, the normal node 3
cannot distinguish two RSSI time series from malicious node
1 and normal node 2 since all nodes remain stationary in this
detection period, which leads to very similar signal patterns
between node 1 and 2 (Notice that node 3 is very far away
from these two nodes, most of RSSI values are -95dBm which
reaches the RX Sensitivity of our radio).

We also estimate the computational complexity of
Voiceprint. The observation time is 20s and the transmission
frequency is 10HZ. Hence, there are at most 200 RSSI values
for each time series. The measured average time of comparing
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two RSSI time series is 0.1995ms. If there are 80 neighboring making a final determination of the Sybil node after several

vehicles (suppose an extreme case in which traffic density detection periods so as to reduce the false positive rate.

is 200vhls/km and the transmission range is up to 400m),

the total computing time is only about 630ms. This time VII. CONCLUSION

complexity is affordable for our Sybil attack detection scheme. In this paper, we proposed a RSSI-based detection method,
From the real-world experiments, we show that the proposed ~ Voiceprint, against Sybil attacks in VANETSs. The motivation

Voiceprint is suitable for different areas, especially in the rural of implementing the Voiceprint is based on our observation

and highway environments where vehicles can keep moving that the RSSI time series have very similar patterns among

without long time stopping. Although, when vehicles stay Sybil nodes and malicious attacker node. Voiceprint does

stationary during the detection period, it may result in false not depend on any radio propagation model that makes it

alarms (some complex conditions in the urban area such as red widely suitable for various environments (model-free, widely

light and traffic jam), Voiceprint is still an effective method applicable). In addition, it conducts independent detection that

considering the cost, complexity and performance. We suggest  does not require establishing the trust relationship of neighbor-
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Fig. 14: Analysis of the false detection

ing nodes (trust relationship-free, lightweight). Furthermore,
Voiceprint does not need the support of the centralized n-
odes such as base stations or RSUs (infrastructure-free, full-
distributed). The simulation and field test results illustrate the
effectiveness of Voiceprint.

We will continue our work on several directions to extend
Voiceprint. First, comparing to some cooperative detection
methods, Voiceprint needs longer observation time to collect
more RSSI values since it only uses the local information. As
the maximum safety message rate defined in DSRC on CCH
is 10Hz, each vehicle can only receive at most 10 packets, i.e.,
10 RSSI values per second from one neighboring vehicle. In
future work, we will take the Service Channel (SCH) into
account. Since there is no strict restriction of beacon rate
for SCH, we can increase the beacon rate and broadcast the
samples from SCH much quicker. Second, as same as all
RSSI-based methods, Voiceprint cannot identify the malicious
node if it adopts power control. We will conduct more real-
world experiments to extract other features or other measurable
parameters to prevent smart attacks with power control.
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