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Abstract—Radio Frequency Identification (RFID) technology
brings a revolutionary change in warehouse management by
automatically monitoring and tracking products. For many
RFID-enabled applications, fast searching a particular group
of products is practically important in a large-scale RFID
system. Different from previous searching protocols, we propose a
physical layer tag searching (PLAT) protocol, which makes three
fundamental improvements. First, PLAT can exactly pinpoint
the search result without false positives at a small delay expense.
Second, based on the physical layer signals, PLAT can interpret
the accurate number of tags replying in a collision slot, speeding
up the execution of tag searching. Third, PLAT can take the
global view of the accurate replying information from slots
to extract each tag identifier, further improving the protocol
performance. We also implement a prototype system based on
the USRP and WISP platform. Experimental results validate the
feasibility of our protocol. The extensive simulations show PLAT
produces the performance gain by a factor of above 2 compared
with the state-of-the-art works.

I. INTRODUCTION

Radio Frequency Identification (RFID) is developing rapidly
in a range of applications such as inventory control, supply
chain logistics and object tracking [1]–[10]. Fast searching
a particular set of products in a large-scale RFID system is
of practical importance for those applications. For example
(as shown in Fig 1), the RFID-enabled warehouse has to
deal with massive products from different manufacturers every
day. The absence of products often happens due to mistake,
theft or other reasons. If one of those manufacturers wants
to make inventory of only its products, the warehouse should
provide a time efficient searching approach to give an accurate
and timely inventory result, which is called the tag searching
problem.

Many existing efforts are dedicated to solving the tag
searching problem due to its practical importance [11]–[13].
They commonly take filtering techniques as a vehicle to
compact the communication data between the reader and tags,
so that no tedious ID transmission is needed, reducing the
search time. However, these protocols expose three limitations.
The first limitation is that these protocols are probabilistic due
to the intrinsic false positives of filtering techniques. In many
RFID monitoring systems, especially when the products of the
manufacturers under monitoring are valuable, mis-searching
products may not be affordable. The second limitation is
that none of the existing protocols explores physical-layer
information of each slot to improve the efficiency. They all use
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Fig. 1. RFID tag searching problem.

busy/idle state of each slot to search the wanted tags, which
needs a great deal of extra slots to guarantee the accuracy
of searching results. The third limitation is that, in many
scenarios the warehouse would naturally store the ID list of all
the products, such as the previous example in Fig 1, current
protocols cannot efficiently utilize the knowledge of the ID
list to stabilize and benefit the searching process.

In this paper, we propose a physical layer tag searching
(PLAT) protocol to address the searching problem in an
efficient way. In PLAT, three novel design ideas are pro-
posed to make a fundamental improvement on the protocol
performance. First, with the knowledge of all tag IDs a
priori, PLAT can filter out most unwanted tags at a small
delay expense by using filtering technique. The tags left with
a small scale serve as the input of the following phases,
greatly reducing the overhead. Note that the reader has all
tag IDs, it can predict the mis-selected ones and can pick
them out from the searching result. Second, inspired by the
discovery that physical-layer signals can be used to count
the number of tags in a slot [14], we propose a heuristic
symbols clustering (HSC) algorithm which can interpret the
accurate number of tags replying in a slot rather than only
three states (empty, singleton, or collision) in the traditional
way, further improving the performance. Third, instead of
observing each slot independently, PLAT can take the global
view of the accurate replying information from multiple slots
to extract each tag identifier, further improving the protocol
performance. We comprehensively analyse PLAT, including
the efficiency of the protocol and the joint optimization for
the parameter in each phase of the protocol. By performing a
joint optimization, PLAT minimizes the combined overhead.



We also implement a prototype system and validate HSC
algorithm based on the Universal Software Radio Peripheral
(USRP) platform with the Intel Wireless Identification and
Sensing Platform (WISP) tags. When clustering the physical
layer signals to exploit the number of replying tags, the noise
tends to disrupt the algorithm and makes it difficult to detect
the cluster structure. HSC can dive into smaller scale to inves-
tigate the density of each clusters without scarifying efficiency
and accuracy. The extensive simulations show PLAT produces
the performance gain by a factor of above 2 compared with
the existing promising works.

The rest of this paper is organized as follows. In Section
II, we describe the system model and the problem definition.
In Section III, we propose the physical layer tag searching
protocol. Section IV analyzes the protocol efficiency. In Sec-
tion V, we build a prototype system with USRP-based reader
and WISP tags, and implement our protocol on it. Section VI
evaluates the efficiency of our protocol comparing with other
state-of-the-art protocols. Section VII introduces the related
work. Section VIII concludes the paper.

II. PRELIMINARY

A. System Model

We consider a large-scale RFID system with a back-end
server, multiple readers and a massive number of tags. The
back-end server connects with the readers via wired or wireless
links, and sends orders to schedule their working. The tags
attached to items are allocated at different reader coverage
regions. After communicating with the tags, the reader trans-
mits tag information to a back-end server, which provides
powerful computation ability to process such data. When
multiple readers are synchronized, we can logically treat them
as a whole, as the same with [11], [15], [16].

The communications between the readers and tags follow
the Reader-Talk-First protocol. Namely, the tag talks only if
receiving the reader’s commands. A reader initializes each
round by sending a request. On receiving the order, each tag
randomly chooses a slot. Thus, the reader receives either no
tag responds (idle slot) or at least one tag responds (busy
slot). Because each tag takes one of the two states by either
reflecting or absorbing radio waves from the reader, the exact
number of concurrent tag responses in a slot can be detected
[14]. Therefore, the reader can distinguish no more than 3
tags through 8 bits, which are 0, 1, 2 and 3+ respectively.
According to the Philips I-Code system [17], a short-response
slot allows the transmission of one bit information, which is
denoted as ts. A tag slot allows the transmission of the tag ID,
which is denoted as tID. Since our protocol will use 8 bits to
distinguish no more than 3 tags, we denote the long-response
slot as tl. Clearly, ts < tl < tID.

B. Problem Definition

Consider a set of tags IDs N = {t1, ..., tn} that are stored
in the system database, where n is the number of entire
tags. Because, the absence of products often happens due to
mistake, theft or other reasons, N would be outdated. Let Y be

the set of tags within the coverage area of the system, where
y is the number of tags present in the system. Therefore, each
tags in N−Y are absent in the system. We take X to represent
the wanted tags, where x is the number of wanted tags. The set
X may contain tags on a specified type of items or products
under the surveillance by a manufacturer. The target of the
search problem for RFID tags is to quickly identify which
tags in X are present in the system, with the prior knowledge
of the set of all tag IDs (i.e., N). Namely, X∩Y. To meet the
requirements, the protocol should reduce the transmitted bits
and efficiently utilize the information from each bit.

III. PHYSICAL-LAYER TAG SEARCHING PROTOCOL

A. Basic Idea

The idea follows three guidelines to achieve high time
efficiency. First, with N a priori, PLAT can filter out most
unwanted tags by using filtration technique. Some tags in N−X
may also be selected to participate following phases. Because
the reader has the entire tag IDs, it can predict the mis-selected
ones and can pick them out from the searching result. Second,
PLAT formulates the linear system of equations to take a
global view of multiple slots in multiple frames. Solving the
equations can easily obtain the searching result. We reduce
the computation overhead by dividing the tags into multiple
groups with partition technique. Third, PLAT can dig up more
accurate number information in each slot rather than only three
states, further improving the performance. By performing a
joint optimization to minimize the combined overhead of those
phases, the end result is a protocol that is far superior than the
promising protocols.

PLAT consists of three phases, which are a filtration phase,
a partition phase and a search phase. The filtration phase
tells tags whether to participate in the following phases. The
partition phase divides the tags into several parts to facilitate
the searching process. And the search phase finds out whether
the tags in the searching set are absence or not.

B. Phase I: Filtration

In the filtration phase, the reader runs multiple rounds to
broadcast a filter that silences the irrelevant tags. Only the tags
passing this filter will participate the following phases. This
phase roughly filters the most of tags in N−X by leveraging
a filtering vector which is denoted as VF .

In a round, the reader first constructs a filtering vector VF

by hashing the ID of each tag in X to an f -bit vector. Here, the
optimal f is set with respect to |X|, which will be discussed
in the following section. If only the tags from N − X select
the bit, the reader sets the bit to ’1’. Otherwise, the reader sets
the bit to ’0’. After constructing VF , the reader broadcasts a
request with parameters ⟨f, rf ⟩, where rf is a random seed,
and then VF . If VF is too long, the reader can split it into
96-bit segments and transmit each of them in a time slot of
length tid [18]. On receiving VF , each tag in N hashes its
own ID to a position in the f -bit filter as H(id, rf ) mod f .
Each tag from both N−X and X checks its representative bit
in VF . If the corresponding bit equals ’1’, the tag will keep



silent and not participate the following phases. Therefore, the
tags from N− X can be roughly filtered in multiple rounds.

The total number of the rounds in filtration phase will be
determined by the parameters |X| and |N − X| which are
available to the reader. We delegate the detailed derivation
on optimal number of rounds in Section IV. After the pre-
calculated number of rounds, the reader roughly filters tags in
N−X. We denote the set of those tags as Γ, which is X ⊆ Γ.
Then the reader heads to the partition phase.

C. Phase II: Partition

In the partition phase, the reader divides the tags in Γ
into multiple partitions, which could dramatically reduce the
computation overhead of solving the constructed linear system
in the search phase. Each tag will be assigned a partition index,
which the tag takes to enroll the search phase.

Consider a round, the reader first broadcasts a request with
parameters ⟨p, rp⟩, where p is the total number of partitions
and rp is a random seed. Note that the number of partitions p
can be calculated as p = ⌈ γ

w ⌉, where γ is the cardinality of the
set Γ and w is the number of tags in each partition. Thus the
tags are divided into p partitions by mod operation. Note w
is determined by the computation ability of the server. In this
paper, we set w = 100. Upon receiving this request, each tag
picks a partition whose index is H(id, rp) mod p+1. The tag
records the partition index which will be used in the search
phase. We denote the set of tags which select the i-th partition
as Pi. Since the partition depends on the random selection of
each tag, |Pi| fluctuates around w.

D. Phase III: Search

In the search phase, the reader manages to search the IDs in
the target set X upon the reception of each slots. The search
phase consists of multiple rounds, each of which has 4 steps.
First, the reader construsts the indicating vector VI to resolve
the searching set. Second, the tags reply according to the
indicate vector VI . Then, the reader silences the identified
tags in the set Γ. Finally, the server formulates the system of
linear equations based on the status of each slot. The solution
to the system reveals the state (absence or presence) of each
tag in the set Γ (X ∈ Γ), i.e. X.

1) Broadcast Step: In the broadcast step, the reader con-
structs an indicating vector VI according to the search state
of each partition set Pi (i ∈ [1, p]). The length of the vector
equals the number of partitions (i.e. p). Consider a round, if
all the tags in Pi have been identified, the reader sets the i-th
bit of VI to ’0’ (Vi = 0). On the contrary, the reader sets
Vi = 1 to collect more information of Pi to identify the set.

After constructing VI , the reader first broadcasts a request
with parameter ⟨l, rs⟩, where l is the length coefficient and rs
is a random seed which is different in each round. Note that
the parameter ⟨l, rs⟩ is used for selecting slot by each tag. The
reader then broadcasts the indicating vector VI .

2) Reply Step: Upon receiving the reader requests, each tag
selects a slot to reply. Since the tags have the knowledge of
the partition index they belong to, checking the corresponding
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Fig. 2. Illustration of the search phase.

bit of the indicating vector VI from the reader makes the tag
silent or replying. If the i-th bit of VI equals ’0’, the tags
from Pi keep silent in the following steps. On the contrary, if
the i-th bit of VI equals ’1’, the tags from Pi are still needed
to participate the following steps.

Consider a round, the tags from the set Pi count the total
number of ’1’ bits before the i-th bit in the indicating vector
VI , which is denoted as κ. If the Vi = 0, the tag keeps silence.
On the contrary, the tag calculates the corresponding slot index
as l×κ+(H(id, r) mod l). After selecting the slots, the tags
transmit its responses to the reader in those slots. Obviously,
the slots that the tags from the set Pi select are bounded at
the range [l × κ, l × κ+ l − 1].

3) Acknowledgement Step: In the acknowledgement step,
the reader sends acknowledgement (ACK or NAK) to e-
liminate the identified tags. When receiving a response, the
reader chooses to reply an ACK to acknowledge that tag
and prevents it from participating the following steps until
the next execution of PLAT, or to reply a NAK to keep the
tags active. Consider a round, the reader broadcasts requests
as described in the broadcast step. After receiving the query,
the tags select their slots and transmit their response to the
reader in the selected slots as described in the reply step. We
denote the number of tags are supposed to reply in i-th slot
as Si and the number of tags actually reply in i-th slot as
ωi (ωi = 0, 1, 2, 3+). The reader eliminates identified tags as
follows:

• If ωi = 0, the reader replies an ACK.
• If ωi ≤ 3 and ωi = |Si|, the reader replies an ACK.
• If ωi ̸= 0 and ωi ̸= |Si|, the reader replies a NAK.

Fig 2 illustrates how the reader in the acknowledgement step
works. For presentation clarity, we suppose only one partition
in our example. Fig 2(a) illustrates the first round execution
of search phase. In the first slot, only t2 replies, which means
ω1 = |S1| = 1. The reader replies an ACK to eliminate t2.
The same replies are for the third and fourth slot. In the second
slot, t1, t5 and t9 are supposed to reply, which means |S2| = 3.
But the reader receives only ω2 = 1 replies. The reader replies
a NAK. The same replies are for the fifth slot. In Fig 2(b), the
reader receives ω1 = 0 reply and then replies an ACK.

4) Computation Step: In this step, sever searches the set
Γ. First, the server infers the absence or presence of tags
in Γ through two kinds of slots. Then the server leverages
the system of linear equations to fully utilize the information,



accelerating the search process. Until all the tags from Γ have
been identified, the reader finishes the execution of PLAT. Due
to X ⊆ Γ, all the tags from the target set X also have been
completely identified.

As described in previous step, the reader sends ACK in two
kinds of slot: 1) ωi = 0; 2) ωi ≤ 3 and ωi = |Si|. For the
first kind of slot, the server can easily identify that tags in
Si are all absent. In Fig 2(b), both t4 and t5 are supposed
to reply in the first slot based on database. Since the reader
receives ω1 = 0, it infers that both t4 and t5 are absent in the
coverage of the reader. For the second kind of slot, the server
can easily identify that tags in Si are all present. In Fig 2(a),
both t3 and t7 are supposed to reply in the third slot based on
the database. Since the reader receives ω3 = 2, it infers that
both t3 and t7 are present in the coverage of the reader.

Through the simple inferences above, the reader can search
the set Γ in multiple rounds. But it wastes some slots which
can accelerate the search process. After two rounds in Fig
2, the reader infers the set Γ except for t1 and t8. Thus the
reader should run another round to identifies t1 and t8. Here,
we leverage the system of linear equations to accelerate the
search of the set Γ. By this approach, the reader can finish
search in only the two rounds of Fig 2.

We introduce ai to represent the existence of ti in the
system. If ti is absent in the system, let ai = 0. On the
contrary, let ai = 1. Therefore, we can construct the system
of linear equations to formulate the information of each slot.
On gaining the slot information, the equations exist as:

∑
j∈Si

aj = bi (bi = 0, 1, 2),

or
∑
j∈Si

aj ≥ 3 (bi = 3+).
(1)

To solve the system efficiently, we deprive the inequations
and only utilize the equations to construct the linear system.
Note the reader can distinguish no more than 3 tags through
8 bits, which are 0, 1, 2 and 3+ respectively. For each slot,
we can add the equations to the system as:

∑
j∈Si

aj = bi (bi = 0, 1, 2),

or
∑
j∈Si

aj = 3 (|Si| = 3, bi = 3+).
(2)

Take Fig 2 for an example, the initial candidate tag set is
Γ = {t1, t2, ..., t9}. The target of the search is to identify
whether the tag in Γ is absent or present. Therefore, the server
introduces ai to represent the existence of ti. After two rounds,
it constructs the system of linear equations as shown in the
left part of Eqn (3).



a2 = 1

a1 + a5 + a9 = 1

a3 + a7 = 2

a6 = 1

a4 + a8 = 1

a4 + a5 = 0

a9 = 1

a1 + a8 = 1

⇒



a2 = 1

a1 + a5 + a9 = 1

a3 = 1

a7 = 1

a6 = 1

a4 + a8 = 1

a4 = 0

a5 = 0

a9 = 1

a1 + a8 = 1

(3)

Because the value of ai is 0 or 1, we can easily break
an equation to multiple equations to increase more rank for
the system of equations in the two cases (|Sj | ̸= 0) as: (1)∑

j∈Si
aj = 0 ⇒ ∀j ∈ Si, aj = 0; (2)

∑
j∈Si

aj = |Si| ⇒
∀j ∈ Si, aj = 1. We can re-construct the system of linear
equations as shown in the right part of Eqn (3). Here, we
denote the number of equations as ν.

We then convert the system of linear equation to matrix
form as Ax = b, where A is an ν × γ coefficient matrix, x
is a 1 × γ row vector, and b is a 1 × ν row vector. We can
convert the system as shown in the right part of Eqn (3) to
the matrix form as follows:

0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0





a1
a2
a3
a4
a5
a6
a7
a8
a9


=



1
1
1
1
1
1
0
0
1
1


(4)

To solve the matrix equation, we can easily obtain the result
xT = [0 1 1 0 0 1 1 1 1]. The reader infers that three tags (t1,
t4 and t5) in Γ are absent. If we take the tag IDs which have
been already identified by the simple inferences to simplify
the linear matrix. We can get the matrix as: 1 0

0 1
1 1

[
a1
a8

]
=

 0
1
1

 . (5)

By solving it, we can also easily obtain the search result, which
also decreases the computation overhead.

IV. PROTOCOL ANALYSIS

In this section, we first analyse the setting of optimal pa-
rameters for each phases. Then we give the joint optimization
to minimize the total execution time of three phases.

A. The Optimal Parameter for the Filtration Phase

The target of the filtration phase is to eliminate irrelevant
tags from the set N−X with a defined accuracy. In a round, let
ξ be the expected number of the tags, which are eliminated to
keep silent in the following phases. And let τf be the execution
time of a round in the filtration phase. Thus the expected
number of eliminated tags per unit time (denoted as φ) can



be represented as φ = ξ
τf

. We take the following lemmas to
analyze ξ, τf and φ.

Lemma 1. In a round, the expected number of the eliminated
tags in N−X (ξ) is ξ = |N−X|e−|X|/f , where |N−X| is the
cardinality of N− X, and |X| is the cardinality of X.

Proof. In a round, a tag from the set N−X can be eliminated
when it selects a bit in the filtering vector VF to which no
tag from the set X is mapped. Here we denote the probability
of that a tag from the set N − X can be eliminated in this
round as Pr(A). We then can get Pr(A) = (1 − 1

f )
|X| ≈

e−|X|/f . Given the fact that f is normally very large, Pr(A)
can be simplified to e−|X|/f , where e is the natural constant.
We know the total number of the set N−X is |N−X|. Each of
them is expected to be eliminated with the probability Pr(A).
Therefore, the expected number of the eliminated tags in N−X
is |N− X|Pr(A) = |N− X|e−|X|/f .

Lemma 2. When the parameter of the vector size is set to f ,
the expected execution time in a round is τf = ftID/96.

Proof. The reader first broadcasts the parameters ⟨f, rf ⟩ in
a tag slot time tID. Then the reader broadcasts the filtering
vector VF , which is divided into multiple segments of 96-bit to
be transmitted in multiple slot time. The time for transmitting
VF is ⌈ f

96⌉tID. Due to the large value of f , combining the
execution times yields tID + ⌈ f

96⌉tID ≈ ftID
96 .

Thus, upon taking Lemma 1 and 2, the expected number of
eliminated tags per unit time (denoted as φ) can be rewritten
as φ = 96|N−X|

ftID
e−

|X|
f The derivative of φ is given as:

∂φ

∂f
=

96|N− X|e−
|X|
f

f3tID
(|X| − f). (6)

To get the maximum efficiency of φ, we let ∂φ
∂f = 0. Therefore,

φ achieves the maximum when f is set to |X|.
We then analyse the total number of rounds the filtration

phase needs. In the filtration phase, the reader sets the accuracy
of tag elimination as α|X|

|N−X| , where α is the coefficient ranges
from 0 to 1. Here we denote the number of the round that the
eliminating process is repeated for as ζ. We take the following
lemmas to analyze ζ.

Lemma 3. After ζ rounds, the probability that a tag from
N−X can be eliminated at least once (denoted as Pr(B)) is

as Pr(B) = 1− (1− 1

e
)ζ .

Proof. The length of the filtering vector VF is set to |X|
as described in Subsection IV-A. The probability (denoted as
Pr(C)) that a tag from N−X can be eliminated in a round is
Pr(C) = (1 − 1

|X| )
|X| ≈ e−1. After ζ rounds, the probability

that a tag from N−X can be eliminated at least once can be
calculated as Pr(B) = 1− (1−Pr(C))ζ = 1− (1− 1

e )
ζ

Due to the target of the filtration phase is to eliminate the
tags from N−X with an accuracy α|X|

|N−X| . Thus the probability
that a tag from N − X can be eliminated at least once is no
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less than 1− α|X|
|N−X| . Then we can get Pr(B) = 1−(1− 1

e )
ζ ≥

1− α|X|
|N−X| . With respect to ζ, we can have:

ζ ≥
ln( α|X|

|N−X| )

ln(1− e−1)
. (7)

The filtration phase should repeat for ⌈
ln(

α|X|
|N−X| )

ln(1−e−1)⌉ rounds to
eliminate the tags from N− X with a given accuracy.

B. The Optimal Parameter for the Search Phase

In the search phase, tags from each partition Pi will only
select the slot ranges from [l × κ, l × κ + l − 1]. Actually,
each partition has its optimal value of li. But we only set
l = max(l1, l2, ..., lp) for the parameter. Here, we focus on one
partition to investigate the optimal li. As a result, it is easy to
get the maximum l among these partitions. Our problem can
be defined as given γ, we want to pick the smallest li for the
search phase. Since the scanning time is proportional to the
length coefficient li, our problem is formulated as to minimize
li with the constrain of γ > 0.

Lemma 4. Given li, the probability (denoted as Pr(C)) of
the effective slot which can be used to construct the linear
equations is Pr(C) =

∑3
k=1

(
γ
k

)
( 1
li
)k(1− 1

li
)γ−k.

Proof. We know the length of the vector is li, thus the
probability for each tag select a slot to reply is 1

li
. If the

reader wants to identify tags through the current slot, there
must be no more than 3 tags. Let N represent the number
of tags select the slots to reply. When N = 1, we have
Pr(N = 1) =

(
γ
1

)
1
li
(1 − 1

li
)γ−1. Therefore, the probability

of the effective slot which can be used to construct the linear
equations in a round is Pr(C) =

∑3
k=1 Pr(N = k) =∑3

k=1

(
γ
k

)
( 1
li
)k(1− 1

li
)γ−k.

From Lemma 4, we know Pr(C) is a function of li. Fig 3(a)
shows the value of Pr(C) with respect to li when γ = 10, 000.
To find the maximum of Pr(C), we let ∂Pr(C)

∂li
= 0. Solving

it numerically, we get the optimal li. For example, the optimal
length of the vector in Fig 3(a) is 5,503.

C. Joint Optimization

To search for a wanted set |X|, the reader must execute three
phases, which are filtration phase, partition phase and search



phase. Therefore, we can consider the three individual parts
as a whole to make the joint optimization. Here we denote the
total time of the three phases as Ttotal = T1+T2+T3, where
T1, T2 and T3 represent the execution time of each phases.

For the first phase, the reader uses an f -bit vector to filter
the irrelevant tags in ζ rounds. Then the execution time of the
filtration phase is T1 = ζτf . From Lemma 2, we can easily
know when the parameter of the vector size is set to f , the
expected execution time in a round is τf = ftID

96 . And to get
the maximum efficiency, f must be set to |X|. Therefore, we

have τf = |X|tID
96 . From Eqn 7, we know ζ = ⌈

ln(
α|X|
|N−X| )

ln(1−e−1)⌉. To
re-write the execution time of the first phase, we get:

T1 = ⌈
ln( α|X|

|N−X| )

ln(1− e−1)
⌉ |X|tID

96
. (8)

For the second phase, the reader broadcasts a request with
parameter ⟨p, rp⟩ to split the tags into p groups. Then the
execution time of the partition phase is T2 = ptID/96.

For the third phase, the reader computes the indicating
vector and broadcasts the parameter and the vector to search
the wanted set. Due to the complexity of the analysis of the
linear system, we make an approximation to the total execution
time of the search phase through the simulation results, which
are shown in Section VI. Then the execution time of the third
phase is approximately T3 = (1 + α)|X|tl.

Therefore, the total execution time of the three phases is:

Ttotal = T1 + T2 + T3

= ⌈
ln(1− α|X|

|N−X| )

ln(1− e−1)
⌉ |X|tID

96
+

ptID
96

+ (1 + α)|X|tl

≈
ln(1− α|X|

|N−X| )

ln(1− e−1)

|X|tID
96

+ (1 + α)|X|tl
(9)

In Eqn 9, we know Ttotal is a function of α. Fig 3(b) shows
the value of Ttotal with respect to α, when |X| = 2, 000 and
|N| = 50, 000. To compute the minimum value of Ttotal, we
let the first derivative of Ttotal be zero ∂Ttotal

∂α = 0. Solving the
equation, numerically, we can find the optimal α minimizes
Ttotal. For example, the optimal α in Fig 3(b) is 0.136.

V. IMPLEMENTATION

A. Setup

In this section, we propose a heuristic symbol clustering
(HSC) algorithm to detect the number of tags replying in a
slot. To explore the efficiency of HSC in actual environment,
we setup a testbed with USRP software-defined platform and
programmable WISP tags. Our test environment is shown in
Fig 4(a). USRP1 in the prototype has two complete RFX900
daughterboards which are designed for operation in the 900
MHz band. The RFID tag is implemented with the WISP
programmable device based on the DL-WISP4.1 firmware.
The WISP tag generally comprises two parts: the first part is
the MSP430F2132 microcontroller which can work in ultra-
low power, the second part is an antenna circuitry which can
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Fig. 4. An example of HSC algorithm: (a) Experiment environment with an
USRP1 platform and WISP tags. (b) Gathered symbols from 2 tags in a slot.
(c) Clusters in the first round of the filtration phase. (d) Clusters in the second
round of the filtration phase.

gather and backscatter signals. In the firmware of both USRP
and WISP, most of operations (e.g., QUERY, ACK) specified
in the EPCglobal Gen-2 standard have been implemented.
Therefore, we can easily modify the source code of the
firmware to support our protocol.

B. heuristic symbol clustering Algorithm

HSC aims at identifying the number of efficient clusters,
based on the idea of defining cluster as connected dense
components. Since areas of low-point density can be arbitrarily
shaped in the data space, we first roughly filter the noise of
the physical layer symbols. After the filtration, we cluster the
signals to detect each slot state. HSC needs to cluster the
physical layer signals in at most a slot with 10 bits.

Our algorithm HSC consists of three phases, which are the
pre-processing phase, the filtration phase and the calculation
phase respectfully. In the pre-processing phase, the reader
captures the physical layer signals that tags concurrently
transmit in a slot. Since the symbols are represented in decimal
format, we make discretization for the physical layer symbols
to speed up computation. We first measure the range of both
in-phase and quadrature components over all the data points
in a slot. Thus the server can concentrate on the signal data
without irrelevant parts. We then map the coordinate of each
points to 1, 000× 1, 000 matrix. If the physical layer symbols
locate in the corresponding position of the matrix, we set the
element to ’1’. On the contrary, if no physical layer symbols
is in the position, we set the element to ’0’. After mapping all
the signal data, we can easily obtain the symbol matrix M .

In the filtration phase, we filter the noise of the physical
layer symbols in two rounds. Since the size of the symbol
matrix M is 1, 000×1, 000, we divide it into 100 sub-matrices
Mi (i ∈ [1, 100]) with 100 × 100 size in the first round.
Then by counting the number of ’1’s in each sub-matrix, we
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Fig. 5. Efficiency investigation of HSC. (a) The impact of the threshold on
the accuracy. (b) The HSC accuracy with different channel errors.

can calculate the density of each sub-matrix as ρ = k
10,000 .

With a threshold r, some sub-matrices with low density can
be filtered. The sub-matrices with high density can be used to
facilitate the computation of the number of clusters. We denote
the set of the sub-matrices with high density as Υ. Therefore,
we fast zoom into the interested parts among sub-matrices. Fig
4(c) shows the first round of filtration. The most of the sub-
matrices have been filtered. In the second round, we divide
each sub-matrices from the set Υ into 25 sub-matrices with
20 × 20 size. By counting the number of ’1’s in each sub-
matrix, we can also calculate the density of the sub-matrix as
ρ = k

400 . With the same threshold r, the sub-matrices with
high density can be selected, which denoted as Φ (Fig 4(d)).

In the calculation phase, we extract the number of clusters
from the set Φ. If the vertexes of two sub-matrices in Φ are
connected, we put the sub-matrices into the same clusters. On
checking for all the sub-matrices in Φ, we can get multiple
clusters. In Fig 4(d), the server obtains five clusters. But note
that a cluster contains only one 20 × 20 sub-matrix. We can
set the threshold to filter this kind of clusters. We can count
the number of sub-matrices in each clusters, which is denoted
as u. The number of the cluster is denoted as v. Then we only
count the number of sub-matrices above 0.1u

v . As discussed
above, we know if n tags collide in a slot, 2n clusters will
formed. When we get the number of clusters C, the number
of tags from a slot can be calculated as ⌈log2 C⌉.

C. HSC Evaluation

We then study the impact of the threshold in the filtration
process. Note the problem of finding suitable density thresh-
olds is also a challenging issue. Due to the focus of the paper
is on designing the fast searching protocol, as the same in [14],
we only give empirical thresholds based on the gathered data.
We test the efficiency of our protocol based on 200 slots, then
average the results which are shown in Fig 5(a). As the change
of the threshold, the accuracy of the identification may vary.
The density between 0.009 and 0.015 is moderate for the case
which can achieve the accuracy above 0.92. When clustering
the physical layer signals to exploit the number of replying
tags, the noise tends to disrupt the algorithm and makes it
difficult to detect the cluster structure. Due to the two rounds
filtration in the second phase, HSC can dive into smaller scale
to investigate the density of each clusters without scarifying
efficiency and accuracy.

TABLE I
PERFORMANCE COMPARISON OF TAG SEARCH PROTOCOLS.

|Y| = 50, 000, PREQ = 10−3 AND RINTS = 0.2

|X| PLAT E-STEP ITSP CATS
RS=1.1 1.5 1.9

2, 000 2.8 2.9 2.8 8.4 14.1 21.9
6, 000 8.0 8.2 8.1 22.2 36.4 60.4
10, 000 12.9 13.3 13.3 34.3 57.1 95.9
14, 000 17.7 18.3 18.3 45.4 75.3 129.5
18, 000 22.6 22.9 23.2 55.8 92.2 162.2
22, 000 27.3 27.9 28.1 66.1 110.5 195.2
26, 000 31.8 32.5 33.3 76.0 125.3 226.5
30, 000 36.0 37.0 38.0 84.6 141.1 258.5

D. Channel Error

In an actual environment, wireless communications is error-
prone. Channel error may corrupt the data exchanged between
the reader and tags. For example, if the preamble from a tag
disturbed by the channel noise, the accuracy of HSC algorithm
will decrease. We evaluate the impact of the channel error on
the accuracy of the HSC algorithm. Fig 5(b) plots the average
accuracy of the HSC algorithm through the different signal to
noise ratio (SNR). As shown in the figure, the higher SNR, the
more accurate identification result. When the SNR is between
20 and 30, HSC algorithm can keep in a high accuracy (80%
above) for 1, 2 and 3+ cases.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

We implement a simulator with Python to evaluate the
performance of our protocol in large-scale systems. Our pro-
tocol is compared with the state-of-the-art protocols, including
CATS [11], ITSP [12] and E-STEP [13]. Based on the speci-
fication of the Philips I-Code system [17], we set ts = 0.4ms,
tl = 0.8ms and tID = 2.4ms. Since the protocols CATS,
ITSP and E-STEP are designed to search the tags with a
guaranteed false rate, we define the required false positives
ratio as PREQ = |W∗−X∩Y|

|X−X∩Y| , where W ∗ is the set of tags in the
search result. Then we set PREQ = 10−3 as the same in [13].
Each simulation experiment was conducted for 100 times and
then we report the averaged results of the independent trials.

B. Performance Comparison

We evaluate the performance of PLAT, comparing with the
state-of-the-art searching protocols E-STEP, ITSP and CATS.
In Table I, we set |Y| = 50, 000, RINT = 0.2 (RINT =
|X∩Y|
|X| ), and vary |X| from 2, 000 to 30, 000. In Table II, we

set |X| = 10, 000, RINT = 0.2, and vary |Y| from 40, 000 to
100, 000. Since the execution time of our protocol is related
to |N|, we define the ratio Rs =

|N|
|Y| and let Rs = 1.1, 1.5, 1.9.

Generally, both tables show that PLAT performs much
better than E-STEP, ITSP and CATS. In Table I, when |X|
becomes large, the execution time of PLAT, E-STEP, ITSP
and CATS increase. For example, when |X| = 6, 000 and
Rs = 1.5, PLAT finishes searching in 8.2s. In the meantime,



TABLE II
PERFORMANCE COMPARISON OF TAG SEARCH PROTOCOLS.

|X| = 10, 000, PREQ = 10−3 AND RINTS = 0.2

|Y| PLAT E-STEP ITSP CATS
RS=1.1 1.5 1.9

40, 000 12.9 13.0 13.2 40.2 66.9 93.6
50, 000 13.0 13.2 13.2 41.0 68.4 95.4
60, 000 13.1 13.4 13.5 41.9 70.8 96.2
70, 000 13.3 13.4 13.5 43.1 71.3 97.9
80, 000 13.2 13.5 13.7 43.4 72.3 99.5
90, 000 13.4 13.5 13.6 43.8 73.7 99.7
100, 000 13.4 13.6 13.7 44.9 74.6 101.1

The number of rounds
1 2 3 4

R
an

k

0

20

40

60

80

100

RAB = 0.01

RAB = 0.1

RAB = 0.5

RAB = 0.9

(a)

Total rounds
0.1 0.3 0.5 0.7 0.9

0

1

2

3

4

5

(b)

Absence Ratio
0 0.2 0.4 0.6 0.8 1

T
ot

al
 F

ra
m

e 
S

iz
e

0

20

40

60

80

100

120

(c)

Absence Ratio
0 0.2 0.4 0.6 0.8 1

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(s

)

5

10

15

20

(d)

Fig. 6. The efficiency of solving linear system. (a) The average rank of the
linear system in the first round. (b) The total execution rounds. (c) The total
frame size. (d) The total execution time.

E-STEP has the execution time with 22.2s. As |X| increases
to 18, 000, PLAT and E-STEP finish searching in 27.9s and
66.1s respectively. In Table II, when |Y| becomes large, the
execution time of E-STEP, ITSP and CATS also increase, but
PLAT is not affected. This is because the execution time of
PLAT is mainly related to |N|. We observe when Rs = |N|

|Y|
grows, PLAT has an increase in execution time. Since the joint
optimization ensures the high efficiency of searching process,
the impact of the change of Rs is small. From Table I and II,
we know PLAT always outperforms E-STEP, ITSP and CATS.
In addition, PLAT can identify completely the tags from X∩Y.
But E-STEP, ITSP and CATS has the false positives in the
search results.

C. Performance of Solving Linear System

1) Efficiency Investigation: We first evaluate the efficiency
of search phase with fixed tag number γ (|X| ≤ γ). Since in
the partition phase, the reader divides γ tags into p groups,
the system constructs p linear systems to search Γ. For the
simplicity of description, we only focus on the i-th group Si

where 100 tags are in the set Si (i.e., |Si| = 100). We define
the absence ratio (RAB) to represent the percentage of the
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Fig. 7. Evaluating the impact of HSC accuracy. (a) The impact of HSC
accuracy on the total execution time. (b) The impact of HSC accuracy on the
total search accuracy.

absent tag number in Si. For example, if RAB = 0.1 and
|Si| = 100, it means 10 tags in Si are absent.

Fig 6(a) plots the average rank of the linear system in
the first four rounds, when we fix |Si| = 100 and vary
RAB = 0.01, 0.1, 0.5, 0.9. We observe in all the cases, PLAT
can achieve the rank with 100 in only four rounds. When a
little number of tags are absent, PLAT has a reduction in the
number of execution round. For example, if RAB = 0.01, in
only 3 rounds, the rank of the linear system nearly approaches
100. But if RAB = 0.1, PLAT must execute about 4 rounds
to obtain 100 rank.

Fig 6(b) plots the total execution rounds which the reader
needs to finish searching in Si, when we fix |Si| = 100 and
vary RAB = 0.1, 0.3, 0.5, 0.7, 0.9. From the figure, we observe
in the most cases, PLAT finishes in searching in no more than
3 rounds. When the more number of tags are absent or present
in the set Si, the less rounds PLAT needs to finish searching.
For example, if RAB = 0.9, on average, the reader can identify
the set Si in 3 rounds.

Fig 6(c) plots the total number of slots, in which the reader
needs to complete the searching of Si, when we fix |Si| = 100
and vary RAB = 0.1, 0.3, 0.5, 0.7, 0.9. Fig 6(d) plots the total
execution time, in which we fix |N| = 75, 000 and |X| =
10, 000 to evaluate and vary RAB = 0.1, 0.3, 0.5, 0.7, 0.9.
Since in the acknowledgement step of the search phase, the
reader sends acknowledgement (ACK or NAK) to eliminate
the identified tags. When RAB approaches 0.5, the more time
the reader needs to finish searching.

2) Impact of HSC Accuracy: We then evaluate the impact
of HSC accuracy on the total search process. If HSC gets
wrong slot type, the system of linear equations possibly has no
solutions. Thus, the reader simply infers the presence of tags
through two kinds of slots (Section III). The reader obtains
the number of tag replying in one of three kinds of slots (1,
2, 3+). Fig 7(a) plots the accuracy of tag searching when
HSC identification error exists, where we fix |X| = 5, 000,
|Y| = 40, 000, |N| = 50, 000, and varying the HSC accuracy
among 0, 0.05, 0.1, 0.2. If the HSC identification error exists,
the search results suffer from biases.

Fig 7(b) plots the impact of HSC accuracy on the total
execution time, with fixing |N| = 50, 000, and varying the
HSC accuracy among 0, 0.05, 0.1, 0.2, |X| from 1, 000 to
8, 000. In practice, the HSC accuracy can vary due to various



factors, such as the channel error, the tag position or the
transmission power of the reader. In the ideal situation, there
would be no HSC identification error, which means a perfect
searching result. But if the HSC identification error exists, the
reader will take more time to finish searching. As shown in
Fig 7(b), PLAT with HSC accuracy 1.0 and |X| = 5, 000 takes
6.7s. In the meantime, PLAT with HSC accuracy 0.90 takes
10.4s.

VII. RELATED WORK

Existing tag identification protocols fall into two categories:
Tree-based protocols [19]–[22] and Aloha-based protocols
[23]–[26]. In Tree-based protocols, the reader sends an initial-
ization request and transmits one bit of ID at a time. If there
exists collisions, the reader divides the another two groups.
Tags with matching bits will reply. Only until at least one of
groups contains one tag, the reader can identify the tag. In
Aloha-based identification protocols, the reader broadcasts an
initialization command the tags use to reply in a random slot.
When receiving the query request, each tag transmits its ID in
the corresponding slot.

There are also some work on the tag searching problem.
In CATS [11], it first addresses the tag searching problem,
which proposes an efficient compact approximation-based tag
searching protocol, by employing Bloom filters to compact
the information. In ITSP [12], it introduces a filtering vec-
tor technique which is a compact one-dimension bit array
constructed from tag IDs. The filtering vector improves the
accuracy and reduces the execution time. In E-STEP [13],
it designs a testing slot technique which tests the presence
of wanted tags without tag ID transmissions. Therefore, the
reader can finish tag searching with high time efficiency and
accuracy.

VIII. CONCLUSION

This paper studies the tag searching problem in large RFID
systems. For many RFID-enabled applications, fast searching a
particular set of RFID tags is practically important. To address
the problem, we propose PLAT, a physical layer tag searching
protocol, which can make a fundamental improvement on the
searching performance. We also propose a heuristic symbol
clustering (HSC) algorithm to fast identify the number of
replying tags in a slot. We implement a prototype system and
validate the feasibility of HSC algorithm based on USRP and
WISP platform. Extensive simulations show PLAT has a great
improvement compared with the existing promising works.
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