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Abstract—The benefit of offloading applications from smart-
phones to cloud servers is undermined by the significant energy
consumption in data transmission. Most previous approaches
attempt to improve the energy efficiency only by choosing a more
energy efficient network. However, we find that for computer
vision applications, pre-processing the data before offloading
can also substantially lower the energy consumption in data
transmission at the cost of lower result accuracy. In this paper, we
propose a novel online decision making approach to determining
the pre-processing level for either higher result accuracy or
better energy efficiency in a mobile environment. Different from
previous work that maximizes the energy efficiency, our work
takes the energy consumption as a constraint. Since people
usually charge their smartphones daily, it is unnecessary to
extend the battery life to last more than a day. Under both the
energy and time constraints, we attempt to solve the problem of
maximizing the result accuracy in an online way. Our real-world
evaluation shows that the implemented prototype of our approach
achieves a near-optimal accuracy for application execution results
(nearly 99% correct detection rate for face detection), and
sufficiently satisfies the energy constraint.

I. INTRODUCTION

The vision to link together the real and virtual worlds
has seen great potentials to come true in the near future
due to the increasingly powerful and popular smartphones.
A great number of computer vision applications have been
developed for smartphones. For example, a British start-up
CrowdEmotion [1] develops a technology that can capture
people’s facial expressions to read their emotions through
cameras on smartphones.

One common property of all these computer vision applica-
tions is the large amount of energy cost incurred by the inten-
sive computations. Running these applications is prohibitively
expensive on battery-limited smartphones. To ameliorate the
situation, much work has been done, mostly focused on
offloading compute intensive applications to remote cloud
servers [2][3]. However, for some applications that involve
bulk data transfer, application offloading may not be as energy
efficient as expected, as the extra data transmission cost may
offset the gains from computation shifting. As a result, how to
effectively reduce the data transmission cost becomes a critical
yet unsolved issue.

Applications like image processing can provide useful in-
formation and one nice property of image processing is that it
is not always necessary to input full resolution images so as
to yield desirable results. For example, in face detection appli-
cations, faces can still be recognized, even though the images

go through downscaling or compression before being detected
[4]. As the image file size normally drops significantly after
being downscaled or compressed, the corresponding overhead
of data transfer also decreases substantially. However, correct
detection rate for face detection may be adversely affected,
since downscaled or compressed images provide less infor-
mation than the original. This insight provides us with a new
way to approach the energy issue.

In this paper, we consider computer vision application
offloading in a mobile environment, with focus on the tradeoff
between image processing accuracy and energy consump-
tion on smartphones. As the image pre-processing level is
correlated with the image process accuracy, we formulate
this problem as how to determine the image pre-processing
level in order to maximize the image processing accuracy,
given specific energy and time constraints. Taking the energy
consumption as a constraint is justified by the fact that
people normally charge their smartphones daily and thus it
is unnecessary to extend the battery life to last more than a
day.

However, we are faced with two major challenges in order
to solve the problem. First, it is unclear how different image
pre-processing levels, i.e. downscaling factor and compression
ratio, would impact the ultimate image processing accuracy
and energy consumption. We need to determine the right
pre-processing level and finish such pre-processing task even
before the offloading starts. Second, the proposed approach
must not rely on a priori knowledge of future network condi-
tions and incoming workloads in a mobile environment. Any
prediction-based techniques should also be avoided, since they
cause extra overheads and are highly inaccurate.

To address the first challenge, we conduct real face detection
experiments using images fetched from the Internet. Experi-
ment results show that as the downscaling factor drops below
0.3, the correct detection rate drops significantly. We also
find that for images compressed in JPEG format, the image
file size is almost linearly correlated to the corresponding
downscaling factor. In other words, the energy consumption
of image uploading is closely related to the downscale factor,
as larger images take more time to complete uploading, thus
consuming more energy.

Inspired by the Lyapunov optimization framework [5], we
propose a decision making approach that utilizes only cur-
rent network condition and remaining task execution time to
tackle the second challenge. Basically, the approach makes
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(a) The correct detection rate
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(b) The false positive rate
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Figure 1: Downscaling experiments against downscaling factor ranging from 0.1 to 1 with step of 0.1.

two decisions that would affect energy efficiency and result
accuracy. First, it decides when the condition check should
start based on remaining task execution time, since which it
performs condition check periodically by comparing current
network condition with a pre-defined value in order to decide
whether to start uploading images. Second, it decides the
pre-processing level based on current network condition and
other information in order to maximize the image processing
accuracy while meeting the time and power constraints. We
analytically show that an optimal pre-defined value can be
found to maximize the image processing accuracy for differ-
ent condition check starting time. Specifically, we find that
earlier condition check starting time results in higher image
processing accuracy, but also incurs more extra energy cost.

We implemented a prototype of the decision making ap-
proach on the Android platform, and developed an OpenCV-
based image processing module on the server. We evaluated
the prototype extensively in real-world environments, and
compared it with other alternative approaches. From exper-
iment results, we show that pre-processing images before
uploading them to the server can effectively reduce the energy
consumption on smartphones. We also validate our analytical
results of how the condition check starting time and the pre-
defined value would affect the image processing accuracy.
Finally, we show that our approach achieves a near-optimal
image processing accuracy (nearly 99% correct detection
ratio for face detection), and sufficiently satisfies the energy
constraint, whereas other approaches either fail to satisfy the
energy constraint, or produce undesirable result accuracy.

We summarize our contributions as follows.

• We reveal that, to counteract the heavy energy consump-
tion of computer vision applications on smartphones,
offloading a pre-processed image to a server is a prac-
tical and efficient solution, which has been neglected
previously. We conduct our motivating experiments to
empirically show how the image pre-processing level
would affect the image processing accuracy and energy
consumption on data transmission.

• We study the problem of how to maximize the image pro-
cessing accuracy subject to time and power constraints.
Our proposed approach is applicable to any dynamic envi-

ronments without assuming a priori knowledge of work-
load pattern and network variation. We analytically show
that, by putting configurable parameters, our approach
yields different maximum image processing accuracy for
different power constraints.

• We implemented our proposed approach and conducted
extensive experiments in real-world scenarios. Experi-
ment results show that compared with other approaches,
our method achieves a near-optimal image processing
accuracy and sufficiently satisfies the energy constraint.

The rest of the paper is organized as follows. We introduce
our motivating experiments and the problem formulation in
Section II. Followed is the client side design detail of the
single task offloading decision making in Section III and the
multiple task offloading decision making in Section IV. We
present how we implement our proposed approach in Section
V and evaluate it in Section VI. Related work can be found in
Section VII. Finally, we conclude this paper in Section VIII.

II. MOTIVATION & PROBLEM FORMULATION

In this section, we present our motivating experiment and
formulate our studied problem. First, we study how different
image pre-processing levels would impact the image process-
ing accuracy and energy consumption. Then, we give the
problem formulation.

A. Face Detection Experiment
1) Overview: First, we conduct face detection experiments

to study the effect of different image pre-processing levels on
image processing accuracy. We choose face detection, because
it is well developed and provides stable software tools. In order
to detect faces using face detectors with fixed resolution, such
as Viola-Jones [4], the same image is scanned multiple times,
each time applied with different scaling factors. However, as
images are downscaled to a certain extent, some important
feature information for face detection may be lost permanently.
Intuitively, we argue that the face detection accuracy will be
adversely affected when images are over-downscaled. One
purpose of the experiment is to validate whether the image
pre-processing level affects the image processing accuracy.

Then, we attempt to analyze how image pre-processing
would affect the image file size and thus energy consumption



of image uploading. Normally, if a raw image is applied
with a downscaling factor of 0.5, the file size will become
one fourth of the original size. However, images are usually
compressed in the JPEG format, which may not follow this
rule. Thus, another purpose of the experiment is to find a
mapping relationship between downscaling factor and image
file size (namely energy consumption of image uploading).
Note that we only consider image downscaling, not image
compression, to simplify the analysis.

2) Set-up: We downloaded 12 group photos from the
Internet as the sample images in our experiment. Each image
is applied with downscaling factor ranging from 0.1 to 0.9
with step of 0.1. Thus, we obtain 12∗10 = 120 images in all.
Then, each image goes through the Viola-Jones face detector.
We record the correct detection rate and the false positive rate
for each image, where the former refers to the ratio of the
number of correctly detected faces over that of the actual faces,
and the latter refers to the ratio of the number of incorrectly
detected faces over that of all detected faces. These two terms
are commonly used as the metrics to measure the performance
of face detection. We also record the change of image file size
as the donwscaling factor varies, since image file size directly
affects the energy consumption in data transmission. For each
of these metrics, we plot the average, the 10th percentile
and the 90th percentile of 12 images under each downscaling
factor, as shown in Figure-1.

3) Result Analysis: Figure-1a shows how the correct de-
tection rate changes with respect to different downscaling
factors. As the downscaling factor drops below 0.3, the correct
detection rate drops significantly, sometimes even to 0. This
validates our hypothesis. We also observe that for the down-
scaling factor that is below 0.6, the correct detection rate is
quite different at the 10th percentile and the 90the percentile,
since some images are more sensitive to the downscaling factor
than others in face detection applications. We believe that in
other image processing applications, such as crowd counting,
we expect to see a much sharper variation of the correct
detection rate with respect to the downscale factor.

Figure-1b shows how the false positive rate is associated
with different downscaling factors. We observe that like the
correct detection rate, the average false positive rate increases
as the donwscaling factor increases. As we determine the
downscaling factor to maximize the correct detection rate, we
also need to be aware of the false positive rate.

Figure-1c plots the change of the ratio of downscaled image
file size over its original file size as the downscaling factor
increases from 0.1 to 1. We find that due to the JPEG format,
the file size is not quadratically related to the downscaling
factor, but almost linearly. Since image file size directly affects
energy consumption of image uploading, we will use this
result to analyze data transmission energy consumption for
our proposed approach.

Note that we only show the experiment results of varying
the downscaling factor. As another pre-processing method, the
compression shows similar effects on the correct detection
ratio as the downscaling. To simplify our analysis, we only
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Figure 2: The workflow of the single task offloading.

consider the downscaling as the pre-processing method in this
paper. In fact, the downscaling can be readily replaced by or
combined with the compression in our analytical framework
and our implemented system.

B. Problem Formulation

We consider a mobile cloud offloading model where images
on the smartphone are uploaded to and processed on the server
while the result is sent back from the server to the smartphone.
In this model, we focus on the energy consumption on the
smartphone, the image processing accuracy and the response
time. The energy consumption mainly comes from using the
network interfaces, while the image processing accuracy is
closely related to the image quality. Normally, there is a
tradeoff between these two metrics. The response time is
usually regarded as a time constraint for image uploading.
Based on this model, we formulate our studied problem as an
optimization problem, i.e., maximizing the image processing
accuracy while satisfying certain response time and power
constraints.

III. SINGLE TASK OFFLOADING DECISION MAKING

In this section, we focus on a decision making problem for
the single task offloading. Two important decisions need to be
made in order to maximize the image process accuracy while
satisfying time and power constraints. One is to decide when to
start data transmission via which network interface, which has
a direct impact on energy efficiency, since using network with
different type or quality results in completely different energy
consumption on data transmission. The other is to determine
how to pre-process the image before uploading it to the server,
which empirically shows an impact on the image processing
accuracy based on our motivating experiments.

In order to understand the problem more thoroughly, we
present the basic workflow under the single task scenario, as
shown in Figure-2. Basically, as a new task arrives, it will
first go through a condition checking process. If it passes,
the image in the task will be pre-processed accordingly, and
then will be uploaded to a server for further processing via a
chosen network. Otherwise, it has to go through the condition
checking process again after a fixed amount of time.

A. Methodology

Now, we present our methodology in terms of how to make
decisions of when to start data transmission via which network
and how to pre-process images. Inspired by the Lyapunov
optimization framework, we only utilize current channel status
and task delay time to make decisions, without assuming
a priori knowledge of future network conditions or using



t

 Condition Check 
Deadline

Task Completion 
Deadline

Arrive
Start Condition

Check

Actual Data TransferPeriodic Condition Check

D(0)

Figure 3: One illustrating example of making decisions for the
single task offloading.

predictive methods. We also allow users to specify the time
and power constraints to achieve different maximum image
processing accuracy. The specific procedures are described in
more details as follows, with an illustrating example shown in
Figure-3.

1) Estimate the largest image pre-processing level: To
ensure a minimum image processing accuracy, we roughly
estimate the largest image pre-processing level θmax and the
corresponding image file size Smin under θmax, based on
our findings of the motivating experiments. θmax varies with
different types of applications. For example, people counting
may require a minimum of 95% accuracy, indicating that
θmax ≈ 0.5.

2) Calculate the condition check deadline: To ensure that
image uploading is completed before its deadline, we calculate
the maximum time needed to upload an image with the size
of Smin using cellular network. Then, we can calculate the
condition check deadline before which condition check must
performed, as well as the remaining time D between current
time and the condition check deadline.

3) Condition Check: Condition check is applied on two
variables, namely current Wi-Fi bandwidth Bw and the re-
maining time D before the condition check deadline. If D ≤ 0,
the task must be executed now via cellular network with the
maximum pre-processing level θ applied. Otherwise, it will
turn on Wi-Fi and test the bandwidth of the associated AP
every fixed amount of time tcheck until it either passes the
condition check or reaches the condition check deadline. If
the tested bandwidth Bw is greater than β times the cellular
bandwidth, i.e., Bw ≥ βBc, the task passes the condition
check.

4) Determining the Image Pre-processing level: To maxi-
mize the image processing accuracy, we need to maximize the
image file size S, since images with higher resolution come
in larger file size and usually result in better image processing
accuracy. Let S′ denote the minimum file size that yields a
100% accuracy. Based on min(S, S′), we can determine the
corresponding image pre-processing factor θ.

Specifically, we can formulate the problem of maximizing
S as an optimization problem, i.e.,

maximize
S

S

subject to
S

Bw
≤ Smin

Bc
+D, (1)

Pw ·
S

Bw
≤ Pc

(
Smin
Bc

+ ttail

)
, (2)
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Figure 4: The change of E[S] as β increases for Case 1.

where (1) is the time constraint that image uploading under
current Wi-Fi must finish before the task completion deadline,
and (2) is the power constraint that the incurred energy cost
must not be larger than uploading the image with the size
of Smin using cellular network. ttail represents the tail time
of cellular network that remains in high power state after
the last active data transmission. Pw and Pc represent the
power consumption of Wi-Fi and cellular network in active
transmission state, respectively. Bc is the current bandwidth
for cellular network.

Basically, D determines which constraint dominates in this
optimization problem. We can obtain the solution as

S =


(
Smin

Bc
+D

)
Bw, if D < Dm

Pc

Pw

(
Smin

Bc
+ ttail

)
Bw, if D ≥ Dm.

(3)

where Dm = Pc−Pw

Pw
· Smin

Bc
+ Pc

Pw
· ttail.

B. Analytical Framework

Now, we give a mathematical analysis on how D and
β would combine to affect S. Assume that Bw follows an
exponential distribution with rate λ. Thus, we have Pr(Bw ≥
βBc) = e−λβBc , denoted as p. In other words, each time the
condition check is performed, the probability that the task will
pass is e−λβBc . Provided that it passes the condition check,
we calculate the conditional expected bandwidth for Wi-Fi,
i.e.,

E[Bw|Bw ≥ βBc] =
∫ +∞

βBc

Bwλe
−λBw dBw.

Now, we need to calculate the expected image file size E[S]
in two cases according to the equation 3, i.e., D < Dm and
D ≥ Dm.

Case 1: It starts condition check when D < Dm. Obviously,
S = [Smin

Bc
+ D] · Bw, where D decreases by tcheck each

time condition check is performed. Considering that it passes
condition check with probability p, it resembles a geometric
distribution, except that there is a termination condition. Thus,
we can calculate the expected image file size as

E[S] =

l∑
i=0

(1− p)ip
(
Smin
Bc

+D(0)− itcheck
)

E[Bw|Bw ≥ βBc] + (1− p)l+1Smin,

(4)
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Figure 5: Analysis results for Case 2 and the practical consideration.

where D(0) represents the time length between the starting
time and deadline for condition check, and l =

⌊
D(0)
tcheck

⌋
.

Now, we show how E[S] changes with respect to β ac-
cording to Equation 4. The power consumption in active state
of Wi-Fi Pw and 3G Bc is set to 1450 mW and 1400 mW,
respectively. The tail time of 3G network is set to 12 seconds.
The bandwidth of 3G network is set to 1 Mbps, which we
assume remains stable throughout the time. We assume that the
bandwidth of Wi-Fi follows an exponential distribution with an
average of 4.5 Mbps. Assume Smin = 1 Mb, and tcheck = 10
seconds. Based on above settings, Dm is calculated as 11.6
seconds, indicating that D(0) must be less than 11.6 seconds
in Case 1.

Figure-4 shows the curve of E[S] with respect to β ranging
from 0 to 5 with step of 0.1, where we set D(0) to 10.5
seconds, a value between tcheck and Dm. We enlarge a
part in the graph to emphasize the change of E[S], where
we can observe the maximum E[S] is achieved when β is
approximately equal to 0.5.

Case 2: It starts condition check when D ≥ Dm. Now, we
need to divide the calculation of E[S] into two parts, since D
is larger than Dm in the beginning and becomes smaller than
Dm as time goes by. First, we calculate the first half when D
remains larger than Dm, which is

E1 =

k∑
i=0

(1− p)ip Pc
Pw

(
Smin
Bc

+ ttail

)
E[Bw|Bw ≥ βBc],

where k =
⌊
D(0)−Dm

tcheck

⌋
.

Then, we calculate the second half when D falls under Dm,
i.e.,

E2 =

n−1∑
i=1

(1− p)k+ip
(
Smin
Bc

+D(0)− (k + i)tcheck

)
E[Bw|Bw ≥ βBc] + (1− p)k+nSmin,

where n =
⌈

D
tcheck

− k
⌉

.
Summing up E1 and E2, we can get the expected image file

size E[S] for Case 2. Keeping the same parameters as in Case
1, Figure-5a shows the curves of E[S] when D(0) ranges from
15 to 55 seconds with step of 10 seconds. For different D(0),

different β leads to different maximum E[S]. For example, the
maximum of E[S] is 61.2499 Mb when β is 1.8 and D(0) is
15 seconds, while the maximum of E[S] is 88.4541 Mb when
β is 4.4 and D(0) is 35 seconds. Figure-5b plots how D(0)
would affect βm and the maximum E[S], where βm represents
β that maximizes E[S] under a specific D(0).

C. Practical Consideration in Implementation

In practice, we must consider the overheads of switching
on and off the Wi-Fi interface, idle listening and scanning, as
well as bandwidth testing. Thus, it is important to determine
when to start condition check, since starting condition check
earlier does not only yield larger expected image file size, but
also incurs more extra overheads. In other words, there exists
a tradeoff between E[S] and the overall energy consumption
Wall = Wtran +Wswitch +Widle +Wscan +Wtest, where
each item is self-explanatory with its index name. As Wtran

and Wswitch are not closely related to the condition check
starting time, we focus mainly on Widle, Wscan and Wtest

here. Let Wextra =Widle +Wscan +Wtest. Similar with the
derivation of E[S], now we derive the expected extra energy
cost E[Wextra] with respect to D(0) as follows.

E[Wextra] =

m−1∑
i=0

(1− p)ip
(
itcheckPidle +Wscan

⌊ itcheck
tscan

⌋
+ (i− 1)Wtest

)
+ (1− p)mWc,

where m =
⌈
D(0)
tcheck

⌉
and Wc = PidleD(0) +Wscan

⌊
D(0)
tscan

⌋
.

We compare E[Wextra] against the corresponding maxi-
mum E[S] when D(0) ranges from 15 to 100 seconds with
step of 1 second, as shown in Figure-5c. We observe that,
as D(0) increases, E[Wextra] increases almost linearly, while
E[S] increases with a slowing rate. To achieve a large E[S]
while keeping E[Wextra] low, we can specify the condition
check starting time as 20 to 30 seconds earlier than the
condition check deadline.

IV. MULTIPLE TASK OFFLOADING DECISION MAKING

A. Overview

We introduce a scheduler to coordinate the execution time of
multiple tasks, aiming at further reducing the energy consump-



tion of Wi-Fi idle listening, scanning and bandwidth testing.
The scheduler bundles multiple tasks for execution at once,
which can also effectively avoid unnecessary tail energy of
using cellular network. The basic idea is stated as follows. As
new tasks arrive, the scheduler does not schedule any condition
check until it reaches a specified starting time for condition
check. Once started, the condition check repeats at a fixed
amount of time until it either passes or reaches a new condition
check deadline for all existing tasks in the queue. One major
difference from the single task offloading is to calculate this
new condition check deadline, which must ensure that every
task in the queue can be completed before their individual
completion deadline. We describe our proposed methodology
for the multiple task offloading in more detail as follows.

B. Methodology

To begin with, we describe how the scheduler accepts new
tasks and schedules existing tasks for condition check and
execution. Then, we present a simple algorithm that iteratively
calculates the new condition check deadline.

1) Task execution order: Normally, the scheduler is either
in sleeping mode or in running mode. In sleeping mode, the
scheduler does not turn on the Wi-Fi interface in order to save
energy. It re-calculates the new condition check deadline each
time a new task arrives, based on which the new starting time
for condition check is specified. When it switches to running
mode, the scheduler adopts a FIFO policy to schedule the task
execution order. As one task completes, the subsequent task
will first start condition check if it has not reached its own
condition check deadline. The single task decision making rule
still applies here in the sense that the task must start data
transfer immediately using cellular network when it reaches
its own condition check deadline. When the scheduler is in
running mode, new arriving tasks will be added in the queue
and wait for condition check and execution. If no tasks exist
in the queue, the scheduler will switch back to sleeping mode.

2) Condition check: Now, we presents a simple algorithm
to calculate the new condition check deadline. Assume that
initially T1, ..., Tq have arrived in the queue (smaller index
means earlier arriving time ) and the scheduler is in sleeping
mode. The new condition check deadline will be calculated
based on these q existing tasks. Basically, the algorithm
iteratively compares Ti’s condition check deadline with Ti−1’s
completion deadline as i = q, ..., 2, where the earlier one will
be regarded as the temporary new condition check deadline
against which Ti−1’s condition check deadline will be calcu-
lated. Note that Tq’s condition check deadline is calculated
against its own completion deadline. As a result, the new
condition check deadline can be calculated, which is T1’s re-
calculated condition check deadline.

We define a new term tmin to specify the starting time
for condition check. In other words, the scheduler must start
condition check tmin earlier than the new condition check
deadline. The choice of tmin may affect the number of tasks
existing in the queue before the scheduler switches to running
mode. In practice, we can tune the parameter tmin to achieve
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Figure 6: One illustrating example of making decisions for the
multiple task offloading.

a desirable tradeoff between image processing accuracy and
energy consumption on smartphones, just as how we tune
D(0) in single task decision making.

Next, we give an illustrating example to show how this
algorithm works, as shown in Figure-6.

a) At first, Task A arrives, with its condition check deadline
calculated against its task completion deadline. Then, the
starting time for condition check is specified simply tmin
earlier than the new condition check deadline (i.e., Task A’s
condition check deadline).

b) After a while, Task B arrives before the starting time for
condition check. Now, the new condition check deadline for
existing tasks in the queue needs to be re-calculated. First,
Task B’s condition check deadline is calculated against its
own task completion deadline. Then, Task A’s condition check
deadline is re-calculated against whichever is earlier, Task B’s
condition check deadline or Task A’s completion deadline. In
this case, Task B’s condition check deadline is earlier. As a
result, the new condition check deadline and starting time are
updated accordingly.

V. IMPLEMENTATION

We implemented our prototype of the decision making
framework on the KitKat branch of the Android OS. We tested
it on a commercially available smartphone called RedMi,
which is equipped with fully functional Wi-Fi and 3G inter-
faces. We also implemented an face detection module and
deployed it on a server with a 3.7GHz i7 CPU, running
Windows Server 2012 R2 with an externally accessible IP
address. All these implementations comprised approximately
3,000 lines of Java codes.

We implemented the decision maker as a background ser-
vice on Android. Basically, it listens on incoming tasks submit-
ted from any other third-party app via an Intent, a feature
provided by Android to enable inter-app communication. We
adopted a LinkedList to temporarily store these submitted
tasks in a FIFO policy, and used a separate thread to handle the
actual task execution. We invoked Thread.sleep to specify
how long the Wi-Fi interface on the smartphone should remain
off. The exact sleeping time is calculated based on a function
called getConditionCheckDeadline(Task), which is
recursively calculated on all existing tasks.

To perform condition check, we included a snippet of codes
to test the bandwidth of current associated AP. The idea is
that it sends out a HTTP request to a remote server for
fetching a test image, which is of fixed file size. By marking
the starting time and finishing time of the image fetching,



the transmission time can be estimated. Hence, the network
bandwidth is roughly estimated as the ratio of the test image
file size over the time elapsed during the transmission.

To pre-process images, we used BitmapFactory
to decode an image into a Bitmap, and invoked
createScaledBitmap to downscale the image. The down-
scaling factor is calculated based on Equation 3 in Section
III. The actual image uploading is handled via the HTTP
protocol. In case of network disconnection during uploading,
we used a if statement to check whether the image uploading
is successful or not. The image needs to be uploaded again if
its previous attempt fails.

We implemented the face deteion module using OpenCV
Java API and Java Servlet. We used a stump-based 20x20
gentle AdaBoost [6] frontal face detector to detect images up-
loaded via a servlet. Detected faces are marked with rectangles
so that we can track the correct detection rate and false positive
rate. The client is usually notified via a HTTP response when
the image processing finishes on the server.

VI. REAL-WORLD EXPERIMENTS

In this section, we evaluate our proposed decision making
approach in real-world experiments. We first describe our
experiment methodology both in static and dynamic environ-
ments, and then discuss our experiment results.

A. Methodology

1) Static environment: In order to obtain a fine-grained
measurement of energy consumption on smartphones, we set
up a static environment where we use a wireless router to limit
the maximum achievable Wi-Fi bandwidth and a power meter
called Power Monitor [7] to directly measure the voltage and
current of smartphones. Figure-7 shows the setup of power
consumption measurement of the RedMi Android phone using
Power Monitor.

First, we compare the energy consumption of applying
different pre-processing levels and uploading images under
the Wi-Fi environment. We adopt the same set of 12 sample
images as in our motivating experiment. On the RedMi phone,
each of these sample images is applied with the downscaling
factor ranging from 0.2 to 1 with step of 0.1 before being
uploaded to the server. Note that when the downscaling factor
is 1, it means that the image is not pre-processed. For each
task execution, we use Power Monitor to measure the energy
consumption between the starting time of image downscaling
and the finishing time of image uploading. We also manually
configure the wireless router to set up a maximum achievable
Wi-Fi bandwidth in order to show how Wi-Fi quality would
affect energy consumption. We simulate three types of Wi-Fi
environment, i.e., low quality (2,000 kbps), medium quality
(5,000 kbps) and high quality (10,000 kbps). Under each
type of Wi-Fi environment, we conduct the same power
measurement experiment on the same set of images.

Second, we compare the energy consumption of pre-
processing and uploading images under Wi-Fi and 3G envi-
ronments. Specifically, we consider four execution methods,

Figure 7: Power consumption measurement using Power Monitor.
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Figure 8: The CDF of (a) Wi-Fi bandwidth (at three different
locations)and (b) cellular bandwidth.

i.e., using Wi-Fi with pre-processing, using Wi-Fi with no
pre-processing, using 3G with pre-processing and using 3G
with no pre-processing. The pre-processing level is chosen
as a downscaling factor of 0.5, while Wi-Fi is configured
to medium quality. For each execution method, we supply
the same set of 12 sample images and measure the energy
consumption for each task execution using Power Monitor.

2) Dynamic environment: In order to evaluate the perfor-
mance of our proposed decision making approach, we test it
under dynamic environments where the phone holder walks
around and the wireless network conditions vary.

We choose three different locations to conduct our exper-
iments. To profile the network environment, we collect the
bandwidth information of both Wi-Fi and 3G networks at each
location and plot the CDFs in Figure-8. We observe that Wi-Fi
conditions vary with different locations, while 3G bandwidth
falls within the range of 30 KB/s to 200 KB/s. Note that we
only plot one curve of CDF of 3G, since the other two curves
are very similar with current drawn one. We regard these three
locations as low quality, medium quality and high quality Wi-
Fi environments, respectively.

We conduct the experiments by walking in three locations
and uploading those 12 sample images in a pre-defined
sequence. We adjust two parameters, i.e., condition check
duration and β, to demonstrate how they affect the perfor-
mance of our approach. When experimenting on condition
check duration, we keep β fixed, and vice versa. We set the
completion deadline for all tasks to 60 seconds and the energy
constraint to 5 mAh on the RedMi phone based on our static
experiment results. We also compare our approach against
other alternative approaches, i.e., instant check and instant
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Figure 9: Energy consumption measurement of pre-processing and uploading images at different downscaling factors under three different
Wi-Fi environments. The maximum Wi-Fi bandwidth is set to (a) 2,000 kbps, (b) 5,000 kbps and (c) 10,000 kbps, respectively.
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Figure 10: Energy consumption comparison of using Wi-Fi and 3G.

upload, in terms of image processing accuracy, energy con-
sumption and response time. Since the use of Power Monitor
is limited in the lab environment, we use the built-in tool in
Android called dumpsys batterystats to observe the
energy consumption for our application.

The instant check method is the extreme version of our ap-
proach. It starts condition check right after arrival, and uploads
images when it either passes condition check or reaches the
deadline. It is equivalent to our approach when the specified
condition check duration is larger than current remaining time
till the deadline. The instant upload method uploads images
right after arrival using available network. It adopts a pre-
processing level that yields the best image processing accuracy.
This method ignores the energy constraint, but is still much
better than previous work that does not leverage pre-processing
in terms of energy efficiency.

B. Results

1) Static environment: Figure-9 shows the energy con-
sumption of pre-processing and uploading images at different
downscaling factors under three different Wi-Fi environments.
We observe that as the downscaling factor increases from 0.2
to 0.9, the corresponding energy consumption also increases.
However, we also notice that the energy consumption drops
when the downscaling factor changes from 0.9 to 1 in Figure-
9a and from 0.8 to 1 in Figure-9c. On the other hand, the
improvement in Wi-Fi quality shows reduction on energy
consumption, as it takes less time to transmit data using faster
Wi-Fi. Figure-10 plots the energy consumption comparision
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Figure 11: The correct detection rate and false positive rate with
respect to (a) condition check duration and (b) β.
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Figure 12: The response time with respect to (a) condition check
duration and (b) β.

of using Wi-Fi and 3G with/without pre-processing. The most
energy efficient method is to use Wi-Fi with pre-processing,
while the most energy consuming method is to use 3G with no
pre-processing. It shows that pre-processing helps save energy
on the smartphone, and that Wi-Fi is far more energy efficient
than 3G.

2) Dynamic environment: Figure-11 shows how the correct
detection rate and false positive rate are affected by condition
check duration and β. We observe that both metrices increase,
as the condition check duration increases from 0 to 20 seconds,
and both drop to a stable value when the condition check
duration is larger than 20 seconds. As β increases, the curve
first goes up, then stays flat and finally goes down, which fits
nicely with our analytical model. Figure-12 charts the variation
of response time with respect to condition check duration and
β. Longer condition check duration leads to earlier starting
time for condition check, thus resulting in shorter response
time, while larger β lowers the chances that the condition
check passes, thus resulting in longer response time.
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Figure 13: Comparison results of our approach, instant check and instant upload in terms of (a) correct detection rate, (b) energy
consumption and (c) response time.

Figure-13 shows the comparison results of our approach,
instant check and instant upload. The instant check approach
satifies both the energy and time constraints, but achieves the
lowest correct detection rate among all. The instant upload
approach delivers the best result in correct detection rate and
response time, but fails to satisfy the energy constraint. Our
approach achieves a nearly 99% of correct detection rate, very
close to the instant upload approach. It only incurs less than
3 mAh of energy consumption, which sufficiently satisfies the
energy constraint. It also limits the overall response time under
60 seconds, which satisfies the time constraint.

VII. RELATED WORK

Recently, much work has been done in the area of appli-
cation offloading. MAUI [2] and CloneCloud [3] are among
the first systems that offload applications from smartphones to
servers in order to save energy, as these offloaded applications
are usually compute-intensive. ThinkAir [8] extends MAUI
and CloneCloud by offloading to multiple VM images, with
more focus on system’s scalability. Odessa [9] is intended for
interactive perception applications, targeting at performance
improvement. However, these systems do not consider any op-
timization on data transmission. Our approach utilizes the idea
of pre-processing images before uploading them to servers,
which can greatly reduce the energy consumption.

Link selection is another hot research topic that arises
recently. TailEnder [10] smartly schedules data transfers to Wi-
Fi so as to minimize the high tail energy overheads incurred
by cellular network. Based on the Lyapunov optimization
framework, SALSA [11] utilizes channel conditions and local
information to make link selection decisions, achieving an
near-optimal energy-delay tradeoff on smartphones. Bread-
Crumbs [12] and Wiffler [13] strive to delay data transfers so
as to offload more data on Wi-Fi, based on its prediction on
future Wi-Fi connectivity. Our work borrows the link selection
idea from above work, but goes beyond that by using image
pre-processing to further reduce the energy consumption.

VIII. CONCLUSION

We propose an online decision making approach to deter-
mining the pre-processing level for computer vision appli-

cation offloading. We solve the problem of maximizing the
image processing accuracy while satisfying the energy and
response time constraints. Our approach does not require any
a priori knowledge of future network variation, or use any
predictive techniques. Our analytic results suggest the settings
for obtaining optimal results under specific constraints. We
implemented a prototype of our approach and evaluated it
extensively in real-world scenarios. Experiment results show
that as compared with other alternative approaches, our ap-
proach achieves a near-optimal image processing accuracy
while sufficiently satisfying the energy constraint.
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