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Abstract—In RFID systems, the grouping problem is to effi-
ciently group all tags according to a given partition such that
tags in the same group will have the same group ID. Unlike
previous research on the unicast transmission from a reader to
a tag, grouping provides a fundamental mechanism for efficient
multicast transmissions and aggregate queries in large RFID-
enabled applications. A message can be transmitted to a group of
m tags simultaneously in multicast, which improves the efficiency
by m times when comparing with unicast. We study fast grouping
protocols in large RFID systems. To the best of our knowledge,
it is the first attempt to tackle this practically important yet
uninvestigated problem. We start with a straightforward solution
called the Enhanced Polling Grouping (EPG) protocol. We
then propose a time-efficient FIltering Grouping (FIG) protocol
that uses Bloom filters to remove the costly ID transmissions.
We point out the limitation of the Bloom-filter based solution
due to its intrinsic false positive problem, which leads to our
final ConCurrent Grouping (CCG) protocol. With a drastically
different design, CCG is able to outperform FIG by exploiting
collisions to inform multiple tags of their group ID simultaneously
and by removing any wasteful slots in its frame-based execution.
Simulation results demonstrate that our best protocol CCG can
reduce the execution time by a factor of 11 when comparing with
a baseline polling protocol.

I. INTRODUCTION

Radio Frequency IDentification (RFID) has been widely de-
ployed in a variety of applications for monitoring and tracking
tagged objects [1], [2], supply chain management [3], [4],
and warehouse inventory control [5]–[7]. Grouping RFID tags
can play an important role in improving the performance of
RFID-enabled applications. For example, when tags belonging
to the same group share a common group ID, the reader
can simultaneously transmit the same data to them, greatly
saving the communication overhead in comparison with the
traditional unicast transmission. In another example, after
grouping all tags, the reader can execute effective aggregate
queries, such as sensor-data collection [8], [9] or cardinality
estimation [10]–[12], for tags in the same group as required,
dramatically benefiting monitoring functions and inventory
management. Given the tag population G in an RFID system
and an arbitrary group partition of G (i.e., non-overlapping
subsets of G), the grouping problem is to efficiently inform
all tags in G about which groups they belong to, so that tags
in the same subset will have the same group ID.

To further clarify the grouping problem and understand
its practical significance, consider an example of multicast
transmissions in Fig. 1. The reader in Fig. 1(a) intends to
transmit data D1 to tags t1, t2, and t3, and data D2 to tags
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Fig. 1: Multicast transmissions with the grouping scheme

t4, t5, and t6, where the data may be shipment information
about tagged objects to be recorded on tags for tracking
purpose or queries for reporting different sensor information.
The traditional approach is for the reader to unicast the same
data to the relevant tags, one at a time. Six data transmissions
are needed. In contrast, with the tags being grouped in Fig.
1(b), the reader is able to send D1 to tags t1, t2, and t3 by
one transmission that carries their group ID as the destination
address. Similarly, data D2 can be transmitted to t4, t5, and
t6 in one transmission. Two transmissions are needed in total,
reducing the overhead by a factor of 3. Therefore, grouping
tags is a fundamental mechanism that may drastically improve
management efficiency in RFID-enabled applications.

How to group RFID tags efficiently is a new problem
not studied before. One intuitive solution is to leverage the
traditional polling protocol [13]: For each tag, the reader
transmits its ID together with the assigned group ID to inform
the tag of its group. This protocol is inefficient for a large
RFID system because it requires the reader to broadcast a
large number of tag IDs and the same number of group
IDs. In this paper, we propose a series of protocols to
progressively improve the performance of grouping. We first
present an Enhanced Polling Grouping (EPG) protocol that
avoids repeatedly transmitting the same group ID, improving
the grouping efficiency over the traditional polling protocol.
We then propose a FIltering Grouping (FIG) protocol that
uses Bloom filters [14] to avoid transmitting the tag IDs.
We address the negative impact of the false positive problem
intrinsic to any Bloom filter, and determine the optimal sys-
tem parameters through a joint optimization to minimize the
protocol execution time. We finally propose a more scalable
and efficient ConCurrent Grouping (CCG) protocol that avoids
the false positive problem and can simultaneously label tags
of different groups with their respective group IDs in a single
time frame, which is fundamentally different from the one-
group-at-a-time approach by FIG. Moreover, CCG is capable



of exploiting collisions to label multiple tags in one slot. The
efficiency is further improved by leveraging an ordering vector
to eliminate any slot waste. We derive an upper bound for the
execution time of CCG, which is equivalent to transmitting
(0.028+0.018×⌈ log2 k⌉)×n tag IDs, much faster than trans-
mitting n tag IDs as well as n group IDs in the traditional
polling protocol, where n is the number of tags in the system
and k is the number of groups.

We conduct extensive simulations based on the specification
of the EPCglobal Gen-2 standard [15]. The simulation results
show that to group 10,000 RFID tags in 100 groups, the
execution time of the traditional polling protocol is 44.6s. EPG
reduces the execution time to 39.1s. FIG further shortens the
execution time to 7.4s. CCG performs best and takes only
3.9s, which improves the grouping efficiency by a factor of
11 when comparing with the traditional polling protocol, and
is thus more suitable for real-time RFID-enabled applications.

The rest of the paper is organized as follows. Section
II states the grouping problem and shows a straightforward
solution. Section III proposes a filtering grouping protocol.
Section IV presents a more efficient concurrent grouping
protocol. Section V evaluates our protocols. Finally, Section
VI concludes this paper.

II. PROBLEM STATEMENT

A. System Model

An RFID system typically consists of one or multiple read-
ers and a large number of tags under coverage. The readers are
connected with a backend server for information storage and
computation. Each tag has a unique tag ID. It can communicate
with a reader directly, but tags cannot communicate amongst
themselves. We can logically treat the readers as one if they are
well synchronized and scheduled [16], [17]. To simplify the
description, our protocols are presented for a single reader,
but they can be easily modified for multiple readers when
the collision-free transmission schedule among the readers is
established.

We assume that the reader has the knowledge of all tag IDs
as a priori [8], [18]–[20]. The tag IDs can be automatically
collected through one of the numerous existing tag identifica-
tion protocols [21]–[23].

In a large RFID system, tagged objects may be classi-
fied into groups by their properties (e.g., shoes or bags),
arrival/departure dates, or other criteria. Grouping objects
facilitates the inventory process and benefits the warehouse
management because we can easily carry out operations for
particular groups based on their group IDs. For example, once
we are able to inform tags about their group IDs, we can
transmit a message to tags in one group by using their group
ID as the destination address, which is much more efficient
than sending each tag in the group a separate message using
the tag ID as the destination address.

B. Problem Definition

Consider a large RFID system containing n tags. We denote
the tag set as G = {t1, t2, ..., tn}. A partition of the set G

is a family of disjoint sets P = {P1, P2, ..., Pk} such that∪k
i=1Pi = G. We refer to Pi as a group and each tag in G

exactly belongs to one group.
The grouping problem is to efficiently label all RFID tags in

G according to P , such that tags in the same group will have
the same group ID. More specifically, the reader is instructed
by the user with the partition P , and it is supposed to label
all tags in the same group Pi with the same group ID gi,
1 ≤ i ≤ k, where different groups should have different group
IDs.

In today’s practice, when a tag ID is written, a portion of
the prefix in the ID can serve as a static group ID. This works
when we manually program tags one by one before deploy-
ment. This paper studies dynamic grouping based arbitrary
partition after tags are deployed. Certainly we can still use a
portion of the prefix in the tag ID as its group ID. In that
case, we will have to overwrite that portion for regrouping.
However, the state of the art does not address the problem of
how to efficiently inform the tags about their individual new
group IDs when all tags are now mixed together.

C. A Naive Solution

As aforementioned, in the Traditional Polling Grouping
(TPG) protocol, the reader first separates a tag from others by
broadcasting its ID and then transmits the corresponding group
ID to label this tag. The same group ID will be repeatedly
broadcast for labeling multiple tags in an identical group. We
now present an Enhanced Polling Grouping (EPG) protocol
that avoids transmitting group IDs redundantly.

EPG contains k grouping rounds, where k is the number
of groups. In each round, the reader polls all tags in a single
group. Consider an arbitrary round for grouping Pi, 1≤i≤k.
The reader broadcasts IDs of all tags belonging to Pi in turn.
Each unlabeled tag keeps listening to the wireless channel,
and only the tag receiving its own ID transitions from the
unlabeled state to the marked state. After polling all tags in Pi,
the reader labels the marked tags by broadcasting the group ID
gi, and these tags transition to the labeled state. Each labeled
tag then keeps silent while others stay alert for participating in
the subsequent rounds. Fig. 2 illustrates the state diagram of
an RFID tag in the EPG protocol, with the initial state being
the unlabeled state.
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Fig. 2: State diagram of an RFID tag in EPG

Note that the major difference between TPG and EPG is
that EPG transmits each group ID only once. Let tid be the
length of a time slot that transmits a 96-bit tag ID [15], and
tgid be the length of a slot for transmitting a group ID. The
total execution time of TPG is n×(tid+ tgid), where n is the
number of tags. In comparison, the execution time of EPG is
n×tid + k×tgid, where k is the number of groups.

Although EPG can improve the grouping efficiency over
TPG, it still has to painstakingly transmit n tag IDs, resulting



in long running time under a large tag set. Hence, we seek
novel grouping protocols to quickly group a large number of
tags.

III. FILTERING GROUPING PROTOCOL

In this section, we propose an efficient FIltering Grouping
(FIG) protocol that avoids most ID broadcasting.

A. Basic Idea

The idea is to separate tags in one group at a time from
other groups by using a space-efficient Bloom filter [14].
As the reader broadcasts a filter encoding one group to all
tags in the system, the tags in the encoded group will be
correctly labeled. Some tags in other groups may also be
marked mistakenly due to the false positive of Bloom filters.
Because the reader has both the filter and all tag IDs, it can
predict the mis-marked ones and can thus inform them to
unmark by transmitting their IDs in an additional phase, which
can however cause significant overhead. We may reduce the
unmarking overhead by lowering the false positive ratio with a
larger filter, at the expense of increasing the filtering overhead.
The key is to perform a joint optimization to minimize the
combined overhead of filtering and unmarking. The end result
is a protocol that is far superior than EPG. Moreover, we need
to consider the order of the groups in which the Bloom filters
are applied, which also affects the overall execution time.

B. Protocol Overview

FIG consists of k grouping rounds, each of which deals
with one group in P with three phases: filtering phase, polling
phase, and labeling phase. 1) In the filtering phase, the reader
broadcasts a filter that encodes tags in a group, and only tags
passing this filter will transition from the unlabeled state to the
marked state. Transitions 1 and 2 in Fig. 3 depict this phase.
2) The polling phase is to unmark all incorrectly marked tags
caused by false positives. The reader broadcasts these tags’
IDs. Upon receipt of their IDs, the tags move back to the
unlabeled state. Transitions 3 and 4 in the figure illustrate this
phase. 3) In the labeling phase, the reader labels the remaining
marked tags by broadcasting the group ID. These tags then
transition from the marked state to the final labeled state.
Other unlabeled tags will participate in and be grouped by
subsequent rounds.

C. Protocol Details

Consider the ith round for grouping P ′
i∈P , 1≤i≤k.1 Let

Gi be the set of unlabeled tags at the beginning of this round.
1) Filtering Phase: This phase roughly yet quickly marks

all tags in P ′
i by leveraging a Bloom filter. The reader first

constructs a Bloom filter by hashing the ID of each tag in P ′
i

to an Li-bit vector with ki hash functions, where the optimal
values of Li and ki will be determined shortly. The filter is
denoted as BF (P ′

i ). The reader broadcasts the values of Li
and ki first, and then the filter BF (P ′

i ). If the filter is too

1The reason for using P ′
i instead of Pi is to show that the order of groups

in the rounds does not have to follow the order of groups defined in P .
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Fig. 3: State diagram of an RFID tag in FIG

long, the reader can split it into 96-bit segments and transmit
each of them in a time slot of length tid [8]. Each unlabelred
tag in Gi hashes its own ID to ki bit positions in the filter,
and thus knows which segments it needs to record. If all those
ki bits in BF (P ′

i ) are ones, the tag passes the filter and thus
transitions to the marked state. Otherwise, the tag remains in
the unlabeled state. We denote the set of tags in the marked
state as Mi(⊆ Gi).

2) Polling Phase: A Bloom filter does not have false
negatives, meaning that P ′

i ⊆Mi. However, it may have false
positives, namely, a tag in Mi may not be in P ′

i . Knowing
the filter BF (P ′

i ) and the unlabeled tag set Gi, the reader
can predict the subset Mi−P ′

i of marked tags that should be
unmarked. The reader then broadcasts the IDs of the tags in
Mi − P ′

i one after another. When receiving their IDs, these
incorrectly marked tags will transition back to the unlabeled
state. After this phase, all remaining marked tags belong to
P ′
i .
3) Labeling Phase: In the final phase, the reader broadcasts

the group ID of P ′
i to notify all marked tags which group they

belong to. When receiving the group ID, the marked tags move
to the labeled state. The protocol then enters the next round.

D. Optimal Parameter Setting

We give the optimal values of Li and ki in the following
theorem.

Theorem 1: Let ni be the number of unlabeled tags in Gi
and m′

i be the number of tags in P ′
i . The optimal filter length

Li and the optimal number ki of hash functions for the ith
round, ∀1≤i≤k, are

ki = ln 2× Li
m′
i

Li =
m′
i

(ln 2)2
× ln(96×(ln 2)2×ni −m′

i

m′
i

),

(1)

which minimize the execution time of the ith round to

T (m′
i, ni) =

Li
96

×tid+(ni−m′
i)×0.6185

Li
m′

i ×tid+ tgid. (2)

Proof: Consider the ith grouping round, where 1≤i≤k.
In the filtering phase, the reader takes Li

96×tid to transmit an
Li-bit filter2. In the polling phase, the reader needs to poll
|Gi − P ′

i | × fi improperly marked tags, where fi is the false
positive rate of the Bloom filter. Since P ′

i⊆Gi, |Gi − P ′
i | =

|Gi| − |P ′
i | = ni −m′

i. The polling time in this phase is thus
equal to (ni−m′

i)× fi×tid. In the labeling phase, the reader

2For the purpose of clarity, we ignore the negligible communication
overhead of transmitting Li and ki, since they generally take only a couple
of bytes to encode [16].



takes a time slot of tgid to transmit a group ID. We thus have
the total execution time T (m′

i, ni) of this round:

T (m′
i, ni) =

Li
96

×tid + (ni −m′
i)× fi×tid + tgid

Given Li, ni, and m′
i, T (m

′
i, ni) increases monotonously with

the false positive rate fi. We are thus supposed to decrease fi
as much as possible, so as to minimize T (m′

i, ni).

fi =
(
1− (1− 1

Li
)kim

′
i
)ki ≈ (

1− e
−kim

′
i

Li

)ki
Let the first-order derivative of fi be 0. We can derive the

minimal fi = 0.6185
Li
m′

i when ki = ln 2× Li

m′
i
. We thus have

the execution time of the ith round under optimal ki.

T (m′
i, ni) =

Li
96

×tid + (ni −m′
i)×0.6185

Li
m′

i ×tid + tgid

Given m′
i and ni, let dT (m′

i,ni)
dLi

= 0. We can derive the
minimal execution time T (m′

i, ni) in (2) when Li is equal
to m′

i

(ln 2)2× ln(96×(ln 2)2×ni−m′
i

m′
i

).

E. Order of Grouping

Although we can minimize the execution time of each single
round according to (1) and (2), different group sequences will
lead to different global execution time, where a sequence
among groups in P gives the order in which the rounds
are applied. It is however a challenging task to find the
optimal sequence. A straightforward solution is to exhaustively
search all possible group sequences, compute their execution
time, and find out the optimal sequence. However, there exist
k! permutations among k groups in P , which makes the
straightforward solution unscalable.

We propose a greedy group ordering scheme that finds a
near-optimal group sequence (see Section V-B1). This scheme
takes the candidate group with minimal grouping overhead as
the next to be grouped. More formally, the greedy scheme is
to form an ordered grouping sequence P ′

1, P
′
2, ..., P

′
k satisfying

T (m′
i, ni)≤T (m′

j , ni), 1≤i≤j≤k, where m′
1,m

′
2, ...,m

′
k are

the tag size for each group. Note that T (m′
j , ni) denotes the

execution time to label the tags belonging to P ′
j in the ith

round and T (m′
i, ni)≤T (m′

j , ni) depicts that the group P ′
i

is the best choice for the current round since the grouping
overhead is minimum among all unlabeled groups. Consider
the ith grouping round. It is clear that there are (k − i + 1)
unlabeled groups left as the reader has labeled (i− 1) groups
in the previous (i − 1) rounds. Suppose that the tag size for
each unlabeled group is q1, q2, ..., qk−i+1. Without loss of
generality, we assume that q1≤q2≤...≤qk−i+1. We then have
the following Theorem.

Theorem 2: The next group to be labeled must be one of
the two groups with the tag sizes q1 and qk−i+1.

Proof: Suppose that x(> 0) is a real number that indicates
the tag size of an unlabeled group. Let dT (x,ni)

dx = 0, we have
the maximum/minimum execution time when

x =
lambertw(0, e5× ln 2+ln 3+2× ln(ln 2))

lambertw(0, e5× ln 2+ln 3+2× ln(ln 2)) + 1
×ni (3)

where lambertw(0, x) indicates the main branch3 of Lam-
bert W function [24] at the elements of x. According to
(3), we have x = 0.7369×ni. Since limx→0T (x, ni) =
tgid and T (0.7369×ni, ni) = 0.0607×ni×tid + tgid,
T (0.7369×ni, ni) is greater than limx→0T (x, ni) when
ni≥1, demonstrating that T (0.7369×ni, ni) is the function
T (x, ni)’s maximum value for a given ni≥1. In other words,
T (x, ni) first increases with x. After peaking at 0.7369×ni,
it monotonously declines. Since q1≤q2≤...≤qk−i+1, the min-
imal grouping overhead T (x, ni) in the ith round must be
T (q1, ni) or T (qk−i+1, ni).

Fig. 4 illustrates the execution time with respect to the
tag size of an unlabeled group, where k = 10, ni = 1000,
tid = 3.8ms, and tgid = 0.4ms (the parameter setting follows
the EPCglobal Gen-2 standard [15], see Section V-A). We can
clearly see that the execution time T (x, 1000) first experiences
an increase trend over the tag size x. After reaching the
maximum when x = 0.7369×ni = 736.9, the execution
time sharply decreases with x. Algorithm 1 depicts how to
get ordered groups whose tag size are orderly m′

1,m
′
2, ...,m

′
k

according to our greedy scheme. We will show that such
ordered group sequence approaches to the optimal one in
Section V-B1.

Algorithm 1: Group Ordering Scheme
Input: M : the tag size set for each group in P
Output: M ′: the tag size set for the ordered groups

1: M ′ = ∅;
2: for (i = 1; i ≤ |M |; i++) do
3: x− = min(M);
4: x+ = max(M);
5: ni = sum(M);
6: if T (x−, ni) ≤ T (x+, ni) then
7: m′

i = x−;
8: else
9: m′

i = x+;
10: end if
11: M =M − {m′

i}; M ′ =M ′ ∪ {m′
i};

12: end for

IV. CONCURRENT GROUPING PROTOCOL

A. Motivation

Although FIG improves the grouping performance by using
Bloom filters, it has to separately deal with one group at a
time. A filter can successfully label all tags in the group P ′

i

that it encodes, but some tags in other groups may be mis-
takenly marked due to false positives, which can be logically
considered as collision in the filter between tags outside P ′

i and
tags in P ′

i . The problem is that there may be a lot more tags
outside P ′

i than those inside, which means that the number of

3In mathematics, the Lambert W function is the inverse relation of the
function f(x) = xex. Since the mapping of x 7→ xex is not injective,
Lambert W function consists of a set of branches, specifically the main branch
is defined for x∈[−e−1,∞].
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Fig. 4: The execution time with respect to the tag size of an
unlabeled group

incorrectly marked tags could be even more than the number in
P ′
i , causing significant polling (unmarking) overhead, unless

we make the false positive ratio of the filter sufficiently small.
Lowering the false positive ratio is not free; it increases the
size of the filter.

The above dilemma is fundamentally due to the choice
of Bloom filters and the one-group-at-a-time strategy in our
protocol design. To further improve the performance, we make
attempt to explore other radically different ideas without using
Bloom filters: labeling tags in all groups together, making
some collisions useful so that multiple tags can be labeled
together in one slot, and identifying unusable collision be-
forehand so that they can be avoided without incurring actual
overhead. These ideas form the basis of our next protocol,
called the ConCurrent Grouping (CCG) protocol.

B. Protocol Description

CCG also consists of multiple grouping rounds, each of
which has an ordering phase and a labeling phase. The
ordering phase tells tags whether and when they will be labeled
in the current round, and the labeling phase transmits group
IDs to label designated tags. Details are given below.

1) Ordering Phase: The reader first broadcasts a request
with parameters ⟨f ,r⟩, where f is the number of slots in a
virtual frame and r is a random seed. Note that the virtual
frame will never be actually played out. It only serves as a
vehicle for finding useful slots in the frame, and later an actual
frame of the useful slots only will be carried out.

Upon receiving this request, each unlabeled tag randomly
picks a slot whose index is H(id, r) mod f , where id is the
tag’s ID and H(·) is a hash function. Slots picked by no tag,
exact one tag, and multiple tags are called empty slot, singleton
slot, and collision slot, respectively. For our protocol, useful
slots are singletons or collision slots that are picked by tags
from the same group. These slots are also called homogeneous
slots. Collision slots picked by tags from different groups are
called heterogeneous slots, which are not useful. Empty slots
are certainly not useful, neither.

Take Fig. 5 for example. The first slot is homogeneous since
it is chosen by t1 and t4 that belong to the same group P1, so
does the fifth slot. In contrast, the third slot is heterogeneous
as its two tags, t2 and t5, are from two different groups. The
remaining slots are empty slots.

Homogeneous Slot 

Heterogeneous Slot

Empty Slot

t1 t2 t3 t4 t5

P1={t1,t4,t5} P2={t2,t3}

0 1 2 3 4 5

Fig. 5: Three kinds of slots in the ordering phase

The tags picking homogeneous slots are called homoge-
neous tags. Each tag does not know whether it has picked
a homogeneous slot or not, but the reader does. With the
tag ID information, the reader can predict which slots in the
virtual frame are empty, homogeneous, or heterogeneous. It
will remove the empty and heterogeneous slots before carrying
out the frame to inform the tags of their group IDs. Before
doing so, it must inform the tags which slots are removed. For
this purpose, the reader broadcasts an ordering vector V of f
bits [13], with one bit for each slot in the virtual frame, 0 for
empty or heterogeneous and 1 for homogeneous. If V is too
long, the reader can split it into 96-bit segments and transmit
each segment in a time slot of length tid [8]. For instance, the
ordering vector V for the example in Fig. 5 is ‘010001’. The
actual frame to be carried out contains only two slots.

From a tag’s perspective, the ordering vector V carries two
pieces of information. For one, the tag can learn whether
the slot it picks is homogeneous or not by examining the
corresponding bit in V . Only if it is, the tag transitions from
the unlabeled state to the marked state. For the other, V tells
the index of a homogeneous slot in the actual frame to be
carried out. If a marked tag finds that there are i ones in V
preceding its bit, the tag knows that it picks the (i + 1)th
homogeneous slot.

2) Labeling Phase: Only the marked tags participate in this
phase. Let h be the number of homogeneous slots. The reader
initiates an actual labeling frame of h slots, and transmits a
group ID in each slot for the tag(s) that pick the slot. Because
the tag(s) in each slot are from the same group, the reader
can label them simultaneously. From the ordering vector, each
marked tag knows which slot it picks in the frame and thus
receives its group ID from the slot. For example, in Fig. 5,
the actual frame contains only two homogeneous slots. In the
first slot, the reader broadcasts P1’s group ID to label t1 and
t4. In the second slot, the reader broadcasts P2’s group ID to
label t3. No slot is wasted in the actual frame.

After the labeling phase, the current grouping round termi-
nates and the above two phases repeat round after round until
all tags are labeled.

C. Parameter Setting and Performance Analysis

We want to determine the optimal value of f . Consider
an arbitrary grouping round. Recall that h is the number of
homogeneous slots. Let ψ be the number of homogeneous tags
(which have picked the homogeneous slots). The execution
time t of this round is

t =
f

96
×tid + h×tgid (4)



We define the grouping efficiency, denoted as λ, as the ratio
of the number of homogeneous tags to the execution time of
this round:

λ =
ψ

t
=

ψ
f
96×tid + h×tgid

(5)

Clearly, the bigger the value of λ is, the more the tags will be
labeled each unit of execution time. We thus need to find the
optimal f that maximizes λ.

Let m′
1,m

′
2, ...,m

′
k be the numbers of unlabeled tags in

groups P1, P2, ..., Pk respectively at the beginning of the
round. Let n′ be their sum, i.e., n′ =

∑k
i=1m

′
i. We give the

expected number h of homogeneous slots and the expected
number ψ of homogeneous tags in the following two theorems.

Theorem 3: With a virtual frame of f slots, the expected
number of homogeneous slots is

h = f×
k∑
i=1

(
(1− 1

f
)n

′−m′
i×(1− (1− 1

f
)m

′
i)
)
. (6)

Proof: Consider the group Pi, 1≤i≤k. The probability
that all m′

i tags in Pi do not pick a slot is (1− 1
f )
m′

i . Hence,
the probability that at least one tag in Pi picks this slot is
(1 − (1 − 1

f )
m′

i). To make this slot homogeneous, the other
(n′ −m′

i) tags are not supposed to pick this slot, that is (1−
1
f )
n′−m′

i . Therefore, the probability that this slot is chosen by
only tags coming from Pi is (1 − 1

f )
n′−m′

i(1 − (1 − 1
f )
m′

i).
With k groups, the probability that a slot is homogeneous is∑k
i=1

(
(1− 1

f )
n′−m′

i(1− (1− 1
f )
m′

i)
)
. There are f slots, and

we thus have the final expression of h as shown in (6).
Theorem 4: With a virtual frame of f slots, the expected

number of homogeneous tags is

ψ = f×
k∑

i=1

m′
i∑

j=0

(j×

(
m′

i

j

)
×(

1

f
)
j

×(1− 1

f
)n

′−j) (7)

= f×
k∑

i=1

(1− 1

f
)n

′−m′
i

m′
i∑

j=0

(j×

(
m′

i

j

)
×(

1

f
)
j

×(1− 1

f
)m

′
i−j)

=

k∑
i=1

(m′
i×(1− 1

f
)n

′−m′
i).

Proof: Given j tags belonging to Pi, the probability that
a slot is mapped by only these tags is ( 1f )

j×(1 − 1
f )
n′−j .

Because there are
(
m′

i
j

)
kinds of possible combinations for j

tags, the probability that a certain slot is exactly mapped by
j tags from Pi is

(
m′

i
j

)
×( 1f )

j×(1 − 1
f )
n′−j . With j ranging

from 0 to m′
i, the expected number of tags in Pi (excluding

tags outside Pi) mapping to this slot is
∑m′

i
j=0 j

(
m′

i
j

)
( 1f )

j
(1−

1
f )
n′−j . By extracting the common factor (1 − 1

f )
n′−m′

i , we

have the expression
∑m′

i
j=0 j×

(
m′

i
j

)
×( 1f )

j×(1− 1
f )
m′

i−j that is
the expected value of the variable X following the binomial
distribution with parameters m′

i and 1
f , i.e., X∼B(m′

i,
1
f ).

Since E(X) =
m′

i

f , the expected number of homogeneous tags

belonging to Pi in a slot is m′
i

f ×(1− 1
f )
n′−m′

i . Considering k
groups, we have the expected number of homogeneous tags in
a slot

∑k
i=1

(
(1− 1

f )
n′−m′

i×m′
i

f

)
. With f slots in the ordering

phase, we finally have the expected number of homogeneous
tags in this phase, that is

∑k
i=1

(
m′
i×(1− 1

f )
n′−m′

i

)
.

Substituting h and ψ in (5) with (6) and (7), we have the
grouping efficiency λ in this round.

λ =

∑k
i=1

(
(1− 1

f )
n′−m′

i×m′
i

f

)
tid
96 + tgid×

∑k
i=1(1−

1
f )
n′−m′

i(1− (1− 1
f )
m′

i)
(8)

It is challenging to directly derive the maximal λ according
to (8). We instead find an interval of f that maximizes the
grouping efficiency λ, and then search the optimal f in this
interval.

Theorem 5: When λ attains the maximum value, f must be
in the interval [1,e(n′ + 1)], where e is the natural constant.

Proof: Consider the group efficiency λ as defined by (5).
For any two frame sizes f1 and f2, f1≤f2, let ψ1 and ψ2

be the corresponding expected numbers of homogeneous tags,
and h1 and h2 be the expected numbers of homogeneous slots.
We then have λ(f1) =

ψ1
f1
96×tid+h1×tgid

λ(f2) =
ψ2

f2
96×tid+h2×tgid

Let tgid = β× tid
96 and λ(f1)− λ(f2)≥0, we have:

f2 ≥ ψ2

ψ1
(f1 − βh1) + βh2

Clearly, f2 increases with ψ2 and h2, but decreases with ψ1

and h1. For a given frame size f1, the expected number of
singleton slots is n′×(1 − 1

f1
)n

′−1 [10], [25]. As aforemen-
tioned, a singleton slot must be a homogeneous slot, we thus
have h1≥n′×(1− 1

f1
)n

′−1. Since there is at least one tag in a
homogeneous slot, the expected number of homogeneous tags
ψ1≥h1≥n′×(1 − 1

f1
)n

′−1. On the other hand, for the frame
size f2, we have h2≤ψ2≤n′ as there are totally n′ tags. By
substituting above lower bounds and upper bounds, we have
f2 ≥ f1

(1− 1
f1

)n′−1 , such that λ(f1) − λ(f2)≥0 always holds.

We then derive the minimal f2≈e(n′ + 1) when f1 = n′ + 1.
That means, when f2≥e(n′ + 1), there must be a frame size
f1 = n′ + 1 ensuring that λ(f1)− λ(f2)≥0.

Based on Theorem 5, we can numerically compute the
optimal value of f from the range [1,e(n′ + 1)] by finding
which value maximizes λ in (8). As an example, Fig. 6 shows
the grouping efficiency with respect to f , where tid = 3.8ms,
tgid = 0.4ms (see Section V-A), the number of groups is
10, and the number n′ of unlabeled tags is 1,000, evenly
distributed among the groups. The grouping efficiency λ
attains its maximum value when f is in [1,2721].

Once we compute the optimal value of f , we are able
to compute the expected value of h from (6), and then
compute the expected execution time from (4). We cannot
give a formula for execution time in closed form. However, we
can derive an upper bound below, which demonstrates good
performance.

Theorem 6: An upper bound of CCG’s execution time is

Tupper = n×(
e

96
×tid + (e− 1)×tgid). (9)
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Fig. 6: The grouping efficiency λ with respect to the frame
size f

Proof: According to Theorem 5, there must be an optimal
f ∈ [1, e(n′ + 1)] ensuring that λ(f)≥λ(f1), where f1 =
n′ + 1. Since λ(f1) increases with ψ1 and decreases with h1,
we have:

λ(f1) ≥
min(ψ1)

f1
96×tid +max(h1)×tgid

As previously mentioned, a singleton slot is definitely a homo-
geneous slot that has one homogeneous tag at least. The num-
ber ψ1 of homogeneous slots is thus no less than the number of
singleton slots, that is, min(ψ1) = n′(1− 1

n′+1 )
n′−1 ≈ e−1n′.

Meanwhile, the number h1 of homogeneous slots must be
no more than the number of non-empty slots (homogeneous
slots and heterogeneous slots). Because the expected number
of empty slots is (n′+1)(1− 1

n′+1 )
n′≈e−1×n′, the number of

non-empty slots is (1− e−1)n′ and max(h1) = (1− e−1)n′.
We thus have

λ(f1)≥
e−1n′

n′+1
96 ×tid + (1− e−1)n′×tgid

≈ e−1

tid
96 + (1− e−1)tgid

With n tags in G, the total execution time is no more than
n

λ(f1)
= n×( e96×tid + (e − 1)×tgid) ≈ n×(0.028×tid +

1.718×tgid).

D. Performance Improvement

Consider the labeling phase. The reader needs to broadcast
a group ID in each labeling slot, it is time-consuming when
the group ID is too long, e.g., the size of tag IDs. In this
case, we make a minor modification for the labeling phase, so
that it is insensitive to the length of group IDs. The key idea
is to transmit the index of each group instead of the group
ID. That means, for each group Pi, 1≤i≤k, we just need to
transmit the index i rather than gi. Since there are k groups,
⌈log2 k⌉ bits for each index are enough to distinguish each
group. For example, only ⌈log2 2⌉ = 1 bit is needed for a
group in Fig. 5. The reader can respectively broadcast ’1’ and
’0’ in the first and second labeling slot to label corresponding
tags. For further improvement, we orderly concatenate all
indexes to form a labeling vector of ⌈log2 k⌉×h bits, and then
broadcast it, where h is the number of homogeneous slots. If
the vector is too long, we can slip it into 96-bit segments
and transmit each of them in tid [8]. The tags in the ith
labeling slot are thus labeled by the ith index that is from
the ((i − 1)×⌈ log2 k⌉)th bit to ((i×⌈ log2 k⌉) − 1)th bit in

the labeling vector. In this way, tgid in (5) and (9) is equal to
⌈ log2 k⌉

96 ×tid. The upper bound of the total execution time of
CCG is (0.028 + 0.018×⌈ log2 k⌉)×tid×n.

V. EVALUATION

In this section, we evaluate the performance of EPG, FIG,
and CCG by simulations. We first verify the efficiency of
the greedy group ordering scheme in Algorithm 1 and the
derived execution time of FIG and CCG. Since there is no
prior work studying the grouping problem in RFID systems,
we then compare the execution time of our protocols with the
baseline protocol TPG.

A. Simulation Setting

In our simulation, there are totally k groups and we ran-
domly generate the tag size of each group according to the
normal distribution N(µ, σ), where µ is the mean and σ is
the standard variance. The communication parameter settings
follow the specification of EPCglobal Gen-2 standard [15].
Any two consecutive communications, from the reader to tags
or vice versa, are separated by a time interval of 302 µs. The
data rate from the reader to tags is 26.7 kbps to 128 kbps.
We set the data rate with the lower bound 26.7 kbps (the
similar conclusion can also be drawn under other parameter
configurations). That is, it takes the reader 37.45 µs to transmit
one bit. We have tid = (37.45×96 + 302) = 3897.2 µs.
The group ID gi in our simulation is set to the index i,
1≤i≤k, with the length of ⌈ log2 k⌉ bits. tgid is thus equal
to (37.45×⌈ log2 k⌉ + 302) µs. All presented results are the
average of 200 independent trials.

B. Protocol Verification

1) The Greedy Group Ordering Scheme: As discussed
in Section III, different group sequences lead to different
global execution time of FIG. In Fig. 7(a), we quantify
the performance gap between the greedy group sequence in
Algorithm 1 and the optimal group sequence. We compare
the execution time of the optimal, greedy, random, and worst
group sequences under four different scenarios. In scenarios
1 and 2, the number of groups k is 5; the tag size in each
group follows N(1000, 800) and N(1000, 100) respectively.
In scenarios 3 and 4, the tag size in each group still follows the
same normal distribution N(1000, 800) and N(1000, 100), but
the group size k is 8. For each scenario, we randomly generate
a raw group sequence that is treated as the random sequence.
Taking such raw sequence as input, we get the greedy group
sequence according to Algorithm 1. For the optimal and
worst group sequences, we exclusively traverse k! kinds of
group sequences and find out the minimal execution time and
maximal execution time. We observe that the optimal group
sequence performs the best, the greedy sequence follows,
then the random sequence, and finally the worst sequence.
The negligible difference between the greedy group sequence
and the optimal group sequence suggests that our greedy
group ordering scheme can determine a nearly optimal group
sequence. The execution time in the scenarios with small
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(c) Verification of execution time of CCG

Fig. 7: Protocol verification for FIG and CCG

standard variances (scenario 2 and 4) relies little on the group
sequence since there are no significant differences among the
tag sizes of different groups, diminishing the influence of
group sequences.

2) Verification of Execution Time: In Fig. 7(b) and Fig.
7(c), we conduct simulations to verify the correctness of
derived execution time of FIG and CCG. There are three
kinds of scenarios. In the first scenario, the number of groups
k is 20, the average tag size µ is 200, and the standard
variance σ is 20. In the second scenario, we fix k, but alter
the normal distribution, i.e., µ = 1000 and σ = 100. In
the third scenario, we fix µ and σ, but set k = 100. We
sample 200 simulation results in each scenario and plot the
relative error by computing vsim−vtheo

vtheo
, where vsim is the

simulated time and vtheo is the theoretical time. In Fig. 7(b),
we observe that the relative error of FIG mainly vibrates
between the interval [-0.05, 0.05] in the first scenario. With
the increase of the tag size in each group (scenario 2) and
the number of groups (scenario 3), the relative error can
further decrease. In Fig. 7(c), the relative error of CCG is
within the smaller interval [-0.02, 0.02] in the first scenario.
The same conclusions can also be drawn in the second and
third scenarios. The tightness between the simulated value and
theoretical value demonstrates that the derived execution time
can well depict the actual execution time of FIG and CCG.

C. Protocol Performance

In this subsection, we evaluate the performance of our
protocols under various parameter settings. In Fig. 8(a), we
compare the execution time of EPG, FIG, and CCG with
the baseline protocol TPG under three various scenarios. In
scenario 1 we set k = 50, µ = 100, and σ = 40. In scenario
2, we double the number k of groups without changing others,
i.e., k = 100, µ = 100, and σ = 40. In scenario 3, we increase
the tag size of each group, i.e., k = 100, µ = 200, and σ = 80.
We take the scenario 2 as an example to examine the execution
time of our protocols, where the number n of tags is 10,000.
The execution time of TPG is 44.6s, which is the most time-
consuming amongst four protocols. EPG reduces the execution
time to 39.1s since it avoids transmitting redundant group IDs.
FIG further shortens the execution time by 83% to 7.4s. CCG
works best, which takes only 3.9s, no more than one eleventh
of the time needed by TPG. Similar conclusions can also

be drawn in other two scenarios: CCG performs best, FIG
follows, then EPG, and finally TPG.

Note that different scenarios in Fig. 8(a) affect the execution
time of our protocols. We now study the impact of various
parameters, i.e., the number k of groups, the average tag size
µ, and the standard variance σ, on our protocol performance.

In Fig. 8(b), we show how k influences the execution time
of EPG, FIG, and CCG. We set n = 214 = 16, 384, σ =
0, and µ = n

k , where n is the number of all tags. We vary
k from 2 to 1,024 and observe the execution time of each
protocol. EPG almost remains stable since the transmission
overhead for sending group IDs is negligible compared with
broadcasting n tedious tag IDs. In contrast, FIG and CCG see
a logarithmic growth over k. In FIG, the number of grouping
rounds increases as k increases, leading to more execution
time. In CCG, the reader needs to transmit ⌈ log2 k⌉ bits in
a homogeneous slot in the labeling phase. More transmission
bits thus consume longer execution time. Although both FIG
and CCG experience the rise tread over k, CCG increases more
slowly than FIG. It demonstrates that CCG is less sensitive to
the number k of groups than FIG.

In Fig. 8(c), we study the impact of the average tag size µ
on the execution time of EPG, FIG, and CCG. We set k =
100, σ = 0, and vary µ from 10 to 100. We observe that
EPG sees a sharp rise over µ and it approaches to 40s when
µ = 100. By contrast, CCG spends the minimal execution
time under various µ. It takes no more than 4s to achieve
the same grouping task, producing a 10× performance gain.
Although FIG is far superior than EPG, it takes longer time to
achieve the same grouping task in comparison with CCG. We
thus conclude that the execution time of EPG, FIG, and CCG
increases with µ and CCG is the most insensitive to µ. It is
worth mentioning that, in this simulation, the total number n
of tags is equal to k×µ and we thus can assert that n has the
similar impact on the execution time.

In Fig. 8(d), we evaluate the standard variance σ with
respect to the execution time of EPG, FIG, and CCG. In this
simulation, we set k = 10, µ = 1, 000, and vary σ from
100 to 800. EPG and CCG remain stable because the total
number of tags as well as the number of groups stays the
same regardless of various σ. FIG experiences a slight decrease
over σ. That is because the smaller σ is, the more similar
tag sizes are, which makes it more difficult for the reader to
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Fig. 8: Performance comparison

sift out tags belonging to the same group. However, with the
increase of k, the influence of the standard variance weakens
since the gaps between different tag sizes narrow. According
to above simulation results in Fig. 8, we say that the average
tag size µ or the total number n of tags has the most impact
on the execution time, the number k of groups follows, and
the standard variance σ influences only FIG’s execution time.

VI. CONCLUSION

This paper investigates a new problem of how to fast
group a large number of tags in RFID systems. Grouping
tags plays a fundamental role in improving the inventory
and management efficiency in RFID-enabled applications. We
present three protocols tailored to such grouping problem. The
first one called Enhanced Polling Grouping (EPG) protocol
avoids repeatedly transmitting the same group ID compared
with the Traditional Polling Grouping (TPG) protocol. The
second one is called FIltering Grouping (FIG) protocol that
uses Bloom filters rather than tedious polling to label tags
group by group. The joint optimization together with a greedy
group ordering scheme is exploited to minimize the execution
time of FIG. We finally propose a more scalable and efficient
ConCurrent Grouping (CCG) protocol that avoids the false
positive problem intrinsic to Bloom filters and simultaneously
labels tags of different groups in a single time frame. Simula-
tion results show that CCG performs best, which takes about
half of the execution time of FIG, one tenth of the execution
time of EPG, and only one eleventh of the execution time of
the baseline protocol TPG.
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