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Abstract—The widely used RFID tags impose serious pri-
vacy concerns as a tag responds to queries from readers no
matter they are authorized or not. The common solution is to
use a commercially available blocker tag which behaves as if
a set of tags with known blocking IDs are present. The use of
blocker tags makes RFID estimation much more challenging
as some genuine tag IDs are covered by the blocker tag and
some are not. In this paper, we propose REB, the first RFID
estimation scheme with the presence of blocker tags. REB
uses the framed slotted Aloha protocol specified in the C1G2
standard. For each round of the Aloha protocol, REB first
executes the protocol on the genuine tags and the blocker tag,
and then virtually executes the protocol on the known blocking
IDs using the same Aloha protocol parameters. The basic idea
of REB is to conduct statistically inference from the two sets
of responses and estimate the number of genuine tags. We
conduct extensive simulations to evaluate the performance of
REB, in terms of time-efficiency and estimation reliability. The
experimental results reveal that our REB scheme runs tens of
times faster than the fastest identification protocol with the
same accuracy requirement.
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I. INTRODUCTION

RFID systems have been widely used in a variety of
applications such as supply chain management and inventory
control [1]–[7] as the cost of commercial passive RFID tags
is negligible compared with the value of the products to
which they are attached (e.g., as low as 5 cents per tag
[8]). For example, in Hong Kong International Airport where
RFID systems are used to track shipment, the average daily
cargo tonnage in May 2010 was 12K tonnes and has been on
the rise [9]. An RFID system typically consists of a reader
and a population of tags [10]. A reader has a dedicated power
source with significant computing capability. It transmits
commands to query a set of tags and the tags respond over
a shared wireless medium. A tag is a microchip with an
antenna in a compact package that has limited computing
capability and longer communication range than barcodes.
There are two types of tags: (1) passive tags, which do
not have their own power sources and are powered up
by harvesting the radio frequency energy from readers; (2)
active tags, which have their own power sources.

The widely used RFID tags impose serious privacy
concerns as when a tag is interrogated by an RFID reader,
no matter the reader is authorized or not, it blindly responds
with its ID and other stored information (such as manu-
facturer, product type, and price) in a broadcast fashion.

For example, a woman may not want her dress sizes and
a patient may not want his/her medication, to be publicly
known. An effective solution to this privacy issue is to use
commercially available blocker tags [11], [12]. A blocker tag
is an RFID device that is preconfigured with a set of known
RFID tag IDs, which we call blocking IDs. The blocker tag
behaves as if all tags with its blocking IDs are present. A
blocker tag protects the privacy of the set of genuine tags
whose IDs are among the blocking IDs of the blocker tag
because any response from a genuine tag is coupled with
the simultaneous response from the blocker tag; thus, the
two responses collide and attackers cannot obtain private
information.

This paper concerns with the problem of RFID (popu-
lation size) estimation with the presence of a blocker tag.
Formally, the problem is defined as follows: given (1) a set of
unknown genuine tags 𝐺 of unknown size 𝑔, (2) a blocker
tag with a set of known blocking IDs 𝐵, (3) a required
confidence interval 𝛼 ∈ (0, 1], and (4) a required reliability
𝛽 ∈ [0, 1), we want to use one or more readers to compute
the estimated the number of genuine tags in 𝐺, denoted as 𝑔,
so that 𝑃 {∣𝑔 − 𝑔∣ ≤ 𝛼𝑔} ≥ 𝛽. In other words, we have a set
𝐺 of genuine tags with unknown number of unknown IDs
and a set 𝐵 of tags with known number of known IDs, we
want to estimate ∣𝐺∣ with the presence of 𝐵. The two sets 𝐺
and 𝐵 may overlap, as shown in Fig. 1. This problem may
arise in many applications. For example, a jewel store may
want to use such an RFID estimation scheme to monitor its
stock while a blocker tag is being used to protect the privacy
of some precious items.

Each ID corresponds
to a blocking tag

Each ID  corresponds to 
a blocking tag and a genuine tag

Each ID corresponds
to a genuine tag

Blocking IDs (known)

Genuine Tag IDs (unknown)

Fig. 1. Three types of IDs in the system containing blocker tags.

To the best of our knowledge, this paper is the first to
investigate RFID estimation with the presence of a blocker
tag. Although some RFID estimation schemes have been
proposed [7], [10], [13]–[18], none of them considers the
presence of a blocker tag. Furthermore, none of them can
be easily adapted to solve our problem. How about turning
off the blocker tag and then using prior RFID estimation



schemes to estimate the number of genuine tags? Turning off
the blocker tag will give attackers a time window to breach
privacy, especially for the scenarios that RFID estimation
schemes are being continuously performed for monitoring
purpose. Existing tree walking based [19] and framed slotted
Aloha based [20] RFID identification schemes can be used
to exactly identify the genuine tags, and thus obtaining the
genuine tag cardinality. However, they are too slow for our
estimation purpose.

In this paper, we propose an RFID Estimation scheme
with Blocker tags (REB). The communication protocol used
by REB is the standard framed slotted Aloha protocol, in
which a reader first broadcasts a value 𝑓 and a random
number 𝑅 to the tags where 𝑓 represents the number of
time slots in a forthcoming frame. Then, each tag computes
a hash using the random number 𝑅 and its ID, where the
resulting hash value ℎ is within [0, 𝑓−1], and the tag replies
during slot ℎ. For each slot, if no tag replies, we represent
it as 0; if only one tag replies, we represent it as 1; if more
than one tag replies, the tag responses will collide, and we
represent this slot as 𝑐. Note that a reader can detect if there
is a collision according to the C1G2 standard. Executing
this protocol for the blocking IDs (simulated by the blocker
tag) and genuine tags, we get a ternary array 𝔹𝔾[0..𝑓 − 1]
where each bit is 0, 1, or 𝑐. As we know the blocking IDs,
we can virtually execute the framed slotted Aloha protocol
using the same frame size 𝑓 and random number 𝑅 for the
blocking IDs; thus, we get a ternary array 𝔹[0..𝑓 −1] where
each bit is 0, 1, or 𝑐. From the two arrays 𝔹𝔾[0..𝑓 − 1] and
𝔹[0..𝑓 − 1], we calculate two numbers: 𝑁00, which is the
number of slots 𝑖 such that both 𝔹𝔾[𝑖] = 0 and 𝔹[𝑖] = 0,
and 𝑁11, which is the number of slots 𝑖 such that both
𝔹𝔾[𝑖] = 1 and 𝔹[𝑖] = 1. REB is based on the key insight
that in general the smaller 𝑁00 is, the larger ∣𝐵 ∪𝐺∣ is and
the larger 𝑁11 is, the larger ∣𝐵 − 𝐺∣ is. In this paper, we
show that 𝑁00 monotonously decreases with the increase of
∣𝐵 ∪𝐺∣ and 𝑁11 monotonously increases with the increase
of ∣𝐵 −𝐺∣. Thus, from the observed 𝑁00 and 𝑁11, we can
estimate ∣𝐵 ∪ 𝐺∣ and ∣𝐵 − 𝐺∣. Then, we can calculate the
size of 𝐺 because ∣𝐺∣ = ∣𝐵 ∪𝐺∣ − ∣𝐵 −𝐺∣.

We make the following three key contributions in this
paper. First, we make the first effort towards RFID estima-
tion with the presence of a blocker tag. We propose the REB
scheme jointly using 𝑁00 and 𝑁11 to achieve an unbiased
estimator for the genuine tag cardinality. The key technical
development of this paper is on quantitatively and statisti-
cally correlating 𝑁00 and ∣𝐵∪𝐺∣, 𝑁11 and ∣𝐵−𝐺∣. Second,
we conduct thorough analysis to optimize system parame-
ters, thereby achieving the required confidence interval and
reliability in the fastest speed. Third, we implement REB
in Matlab and evaluate its performance through extensive
simulations. The experimental results reveal that our REB
scheme runs tens of times faster than the fastest identification
protocol under the same accuracy requirement.

The rest of this paper is organized as follows. In Sec-
tion II, we describe REB and our theoretical analysis. In
Section III, we conduct extensive simulations to evaluate the
performance of REB. We discuss related work in Section IV.
Finally, we conclude the paper in Section V.

II. REB PROTOCOL

In this section, we first describe the system model used
in this paper. Then, an efficient RFID Estimation scheme
with Blocker tags (REB) is proposed to estimate the number
of genuine tags by jointly using 𝑁00 and 𝑁11 observed in a
time frame. We explicitly give the functional estimator and
point out that the estimation using a single time frame is
hard to be accurate due to probabilistic variance. Hence, we
propose to use multiple independent time frames to refine the
estimation. This section further presents rigorous theoretical
analysis to investigate how many frames are needed to
guarantee the desired estimation accuracy and how to avoid
premature protocol termination. We also investigate the
parameter settings (i.e., 𝑓 and 𝑝) to optimize the performance
of our REB.

A. System Model

For the clarity of presentation, we first consider the RFID
system containing a single reader, a single blocker tag, and
a population of genuine tags. Then, we will discuss how to
extend REB to the scenario that deploys multiple readers
and blocker tags. We represent the set of blocking IDs as
𝐵, whose cardinality is 𝑏. The set of genuine tags is denoted
as 𝐺, whose cardinality is 𝑔. We use 𝑈 to denote the union
tag set, i.e., 𝐵 ∪𝐺, and ∣𝑈 ∣ = 𝑢. The IDs in 𝐵 −𝐺 do not
correspond to any genuine tags, whose cardinality is denoted
as 𝑏′, i.e., 𝑏′ = ∣𝐵 −𝐺∣.

The reader communicates with tags (including both
genuine tags and virtual ones simulated by the blocker tag)
under control of the backend server. The communication
between the reader and tags are based on a time slotted
way. Any two consecutive transmissions (from a tag to
a reader or vice versa) are separated by a waiting time
𝜏𝑤 = 302𝑢𝑠 [10]. According to the specification of the
Philips I-Code system [21], the wireless transmission rate
from a tag to a reader is 53𝐾𝑏/𝑠, that is, it takes a tag
𝜏𝑡 = 18.9𝑢𝑠 to transmit 1 bit. The rate from a reader to a
tag is 26.5𝐾𝑏/𝑠, that is, transmission of 1 bit to tags requires
𝜏𝑟 = 37.7𝑢𝑠. Then, the time of a slot for transmitting 𝑚-bit
information from a tag to the reader is 𝜏𝑤 + 𝑚 × 𝜏𝑡; and
the time of a slot for transmitting 𝑚-bit information from
a reader to the tags is 𝜏𝑤 + 𝑚 × 𝜏𝑟. The notations used
throughout the paper are summarized in Table I.

B. Protocol Description

Our REB uses the standard framed slotted Aloha protocol
specified in EPC C1G2 [22] as the MAC layer commu-
nication mechanism. The reader initializes a slotted time
frame by broadcasting a binary request ⟨𝑅, 𝑓⟩, where 𝑅 is a
random number and 𝑓 is the frame size (i.e., the number
of slots in the forthcoming frame). Using the received
parameters ⟨𝑅, 𝑓⟩, each tag initializes its slot counter 𝑠𝑐 by
calculating 𝑠𝑐 = 𝐻(𝐼𝐷,𝑅) mod 𝑓 and the hashing result
follows a uniform distribution within [0, 𝑓 − 1]. The reader
broadcasts QueryRep command at the end of each slot. Upon
receiving QueryRep, a tag decrements its slot counter 𝑠𝑐
by 1. In a slot, a tag will respond to the reader if its slot
counter 𝑠𝑐 becomes 0. According to the occupation status,
slots are classified into three types: empty slot in which no



TABLE I. NOTATIONS USED IN THE PAPER

Notations Descriptions
𝐺 set of genuine tags.
𝑔 cardinality of 𝐺. i.e., 𝑔 = ∣𝐺∣.
𝐵 set of blocking IDs.
𝑏′ cardinality of 𝐵 − 𝐺. i.e., 𝑏′ = ∣𝐵 − 𝐺∣.
𝑈 union set. 𝑈 = 𝐵 ∪ 𝐺.
𝑢 cardinality of 𝑈 . i.e., 𝑢 = ∣𝐵 ∪ 𝐺∣.
𝛼 required confidence interval.
𝛽 required reliability.
𝑔 estimate of 𝑔.
𝑓 frame size.
𝑝 persistence probability.

𝐸(⋅) expectation.
𝑉 𝑎𝑟(⋅) variance.
𝑍𝛽 the percentile of 𝛽. e.g., 𝑍𝛽 = 1.96 when 𝛽 = 95%.
𝑝00 probability that a slot pair is ⟨0, 0⟩.
𝑝11 probability that a slot pair is ⟨1, 1⟩.
𝑁00 # of the persistent empty slots in a frame.
𝑁11 # of the persistent singleton slots in a frame.

tag responds; singleton slot in which only one tag responds;
collision slot in which two or more tags respond.

In the following, we present how our REB estimates
the number of genuine tags by observing the slots in a
frame. Since the backend server gets full knowledge of the
simulated blocking IDs, it is able to predict which slots the
blocking IDs are “mapped” to. Thus, it is able to construct
a virtual ternary array 𝔹[0..𝑓 −1]. A bit in 𝔹[0..𝑓 −1] is set
to 0 when no blocking ID is mapped to this slot; 1 when
only one blocking ID is mapped to this slot; 𝑐 when two
or more blocking IDs are mapped to this slot (a hashing
collision). On the other hand, by observing the frame, the
reader could get another array 𝔹𝔾[0..𝑓 − 1], also consisting
of 𝑓 bits. A bit in 𝔹𝔾[0..𝑓 − 1] is set to 0 when no tag
responds in this slot; 1 when only one tag responds in this
slot; 𝑐 when two or more tags cause a collision in this slot.
To distinguish a singleton slot from a collision one, each
tag does not need to respond with the whole 96-bit ID. For
saving time, each tag responds with the RN16 (16-bit) [22]
that is much shorter than 96-bit ID. Two slots with the same
index in 𝔹[0..𝑓 − 1] and 𝔹𝔾[0..𝑓 − 1] are called a slot pair.
In our scheme, the reader needs to record the numbers of
the following two types of slot pairs.

∙ 𝑁00 is the number of persistent-empty slot pairs
⟨0, 0⟩ (i.e., 𝔹[𝑖] = 0 AND 𝔹𝔾[𝑖] = 0, 𝑖 ∈ [0, 𝑓−1]).

∙ 𝑁11 is the number of persistent-singleton slot pairs
⟨1, 1⟩ (i.e., 𝔹[𝑖] = 1 AND 𝔹𝔾[𝑖] = 1, 𝑖 ∈ [0, 𝑓−1]).

REB can estimate the cardinality of genuine tags by
jointly using the number of persistent-empty slots and that
of persistent-singleton slots. A persistent-empty slot happens
only when no ID in 𝑈 = 𝐵 ∪ 𝐺 is mapped to this
index. Thus, 𝑁00 reflects the cardinality 𝑢 of 𝑈 . Latter,
we will show that a monotone functional relationship can
be established between 𝑢 and 𝑁00. REB uses this function
to estimate 𝑢 from 𝑁00. Similarly, a persistent-singleton slot
happens when only one ID in 𝐵−𝐺 is mapped to this index.
Therefore, 𝑁11 reflects the cardinality ∣𝐵 −𝐺∣ (denoted as
𝑏′). Clearly, if we know 𝑢 and 𝑏′, we can get the cardinality
𝑔 of genuine tags by calculating 𝑔 = 𝑢 − 𝑏′. It may not
be sufficient to satisfy the required estimate accuracy by
counting the numbers of 𝑁00 and 𝑁11 in a single frame. To

improve the accuracy, REB requires the reader to execute 𝑘
independent frames with different random number 𝑅.

Note that, the frame size should be set no more than 512
in practice [10], [19], [23] (the detailed reasons can be found
in literature [19]). If a large number of tags contend for
such a short frame, most slots will become collision slots.
To scale to a large tag population, we exploit the method
stated in [10]. Specifically, the reader uses a persistence
probability 𝑝 ∈ (0, 1] to virtually extends the frame size
𝑓 to 𝑓/𝑝, but actually terminates the frame after the first
𝑓 slots. Fundamentally, each tag participates in the actual
frame of 𝑓 slots with a probability 𝑝.

C. Functional Estimator

In this section, we derive the functional estimator 𝑔 from
𝑁00 and 𝑁11 for the REB protocol in one frame. For an
arbitrary slot pair, the probability that it is ⟨0, 0⟩, denoted as
𝑝00, is given as follows.

𝑝00 = (1− 𝑝

𝑓
)𝑢 ≈ 𝑒

−𝑢𝑝
𝑓 (1)

The approximation in Eq. (1) holds when 𝑓/𝑝 is relatively
large [5], [10], [13]. The number of slot pairs ⟨0, 0⟩, i.e.,
𝑁00, follows 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓, 𝑝00). The expectation and vari-
ance of the variable 𝑁00 are presented as follows.

𝐸(𝑁00) = 𝑓 × 𝑝00 = 𝑓𝑒
−𝑢𝑝

𝑓 (2)

𝑉 𝑎𝑟(𝑁00) = 𝑓 × 𝑝00 × (1− 𝑝00) = 𝑓𝑒
−𝑢𝑝

𝑓 (1− 𝑒
−𝑢𝑝

𝑓 ) (3)

Similarly, we use 𝑝11 to denote the probability that a slot
pair is ⟨1, 1⟩, which is given as follows.

𝑝11 =

(
𝑏′

1

)
(
𝑝

𝑓
)(1− 𝑝

𝑓
)𝑢−1 ≈ 𝑏′𝑝

𝑓
𝑒
−𝑢𝑝

𝑓 (4)

The number of ⟨1, 1⟩ slot pairs, i.e., 𝑁11, also follows
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑓, 𝑝11). The expectation and variance of the
variable 𝑁11 are presented as follows.

𝐸(𝑁11) = 𝑓 × 𝑝11 = 𝑏′𝑝𝑒−
𝑢𝑝
𝑓 (5)

𝑉 𝑎𝑟(𝑁11) = 𝑓 × 𝑝11 × (1− 𝑝11) = 𝑏′𝑝𝑒−
𝑢𝑝
𝑓 (1− 𝑏′𝑝

𝑓
𝑒
−𝑢𝑝

𝑓 )

(6)
According to Eq. (2), 𝑢 can be expressed as follows.

𝑢 = −𝑓

𝑝
ln[

𝐸(𝑁00)

𝑓
] (7)

Dividing Eq. (5) by Eq. (2), we have:

𝐸(𝑁11)

𝐸(𝑁00)
=

𝑏′𝑝
𝑓

⇒ 𝑏′ =
𝑓𝐸(𝑁11)

𝑝𝐸(𝑁00)
(8)

According to Eqs. (7)(8), 𝑔 is expressed as follows.

𝑔 = 𝑢− 𝑏′ = −𝑓

𝑝
ln[

𝐸(𝑁00)

𝑓
]− 𝑓𝐸(𝑁11)

𝑝𝐸(𝑁00)
(9)

By substituting 𝑁00 for 𝐸(𝑁00) and 𝑁11 for 𝐸(𝑁11) in
Eq. (9), we get the estimator of 𝑔 as follows.

𝑔 = −𝑓

𝑝
ln(

𝑁00

𝑓
)− 𝑓𝑁11

𝑝𝑁00
(10)

That is, Eq. (10) exactly specifies how to use the observed
𝑁00 and 𝑁11 to estimate the cardinality 𝑔 of genuine tags.



Theorem 1 presents the expectation and the variance of
the estimate 𝑔, which are very important to investigate the
probabilistic accuracy of the estimator.

Theorem 1. 𝑔 in Eq. (10) is an unbiased estimator of 𝑔, that
is, 𝐸(𝑔) = 𝑔. The variance of the estimator is 𝑉 𝑎𝑟(𝑔) =
1

𝑓𝑝2 𝑒
𝑢𝑝
𝑓 (𝑏′2𝑝2 + 𝑓2 − 𝑏′𝑓𝑝)− 𝑓

𝑝2 .

Proof: To get the expectation and variance of 𝑔, we
use a similar method in [10]. Since the variance expression
is different from [10] [24], we present the detailed proving
procedures for the completeness of this paper. According to
Eq. (10), 𝑔 is a function with respect to 𝑁00 and 𝑁11. Hence,
we denote 𝑔 as 𝜑(𝑁00, 𝑁11), that is, 𝑔 = 𝜑(𝑁00, 𝑁11).
We present the Taylor’s series expansion [25] of function
𝜑(𝑁00, 𝑁11) around (𝜂0, 𝜂1), where 𝜂0 = 𝐸(𝑁00) and
𝜂1 = 𝐸(𝑁11).

𝜑(𝑁00, 𝑁11) ≈ 𝜑(𝜂0, 𝜂1)+[(𝑁00 − 𝜂0)
∂𝜑

∂𝑁00
+(𝑁11 − 𝜂1)

∂𝜑

∂𝑁11
]

(11)
We have the following equation by taking expectation of

both sides of Eq. (11).

𝐸[𝜑(𝑁00, 𝑁11)]

=𝜑(𝜂0, 𝜂1) +
∂𝜑

∂𝑁00
𝐸(𝑁00 − 𝜂0) +

∂𝜑

∂𝑁11
𝐸(𝑁11 − 𝜂1) = 𝑔

(12)
So far, 𝐸(𝑔) = 𝑔 is proved, that is, 𝑔 is an unbiased estima-

tor of 𝑔. In what follows, we investigate the variance of 𝑔.

𝑉 𝑎𝑟(𝑔) = 𝐸[𝑔 − 𝐸(𝑔)]2

=𝐸[(𝑁00 − 𝜂0)
∂𝜑

∂𝑁00
+ (𝑁11 − 𝜂1)

∂𝜑

∂𝑁11
]2

=𝑉 𝑎𝑟(𝑁00)(
∂𝜑

∂𝑁00
)2 + 𝑉 𝑎𝑟(𝑁11)(

∂𝜑

∂𝑁11
)2+

2𝐶𝑜𝑣(𝑁00, 𝑁11)
∂𝜑

∂𝑁00

∂𝜑

∂𝑁11

(13)

In the following, we present how to get the covariance
𝐶𝑜𝑣(𝑁00, 𝑁11). Since 𝐶𝑜𝑣(𝑁00, 𝑁11) = 𝐸(𝑁00𝑁11) −
𝐸(𝑁00)𝐸(𝑁11), we calculate 𝐸(𝑁00𝑁11) below.

𝐸(𝑁00𝑁11) =

𝑓∑
𝑥=0

𝑓−𝑥∑
𝑦=0

𝑥𝑦𝑃 [𝑁00 = 𝑥 ∧𝑁11 = 𝑦]

=

𝑓∑
𝑥=0

𝑓−𝑥∑
𝑦=0

𝑥𝑦

(
𝑓

𝑥

)
(𝑝00)

𝑥

(
𝑓 − 𝑥

𝑦

)
(𝑝11)

𝑦(1− 𝑝00 − 𝑝11)
(𝑓−𝑥−𝑦)

=𝑝11

𝑓∑
𝑥=1

𝑓(𝑓 − 𝑥)

(
𝑓 − 1

𝑥− 1

)
(𝑝00)

𝑥(1− 𝑝00)
𝑓−𝑥−1

=
𝑝00𝑝11𝑓

2

1− 𝑝00

𝑓∑
𝑥=1

(
𝑓 − 1

𝑥− 1

)
(𝑝00)

𝑥−1(1− 𝑝00)
𝑓−𝑥

− 𝑓(𝑓 − 1)(𝑝00)
2𝑝11

1− 𝑝00

𝑓∑
𝑥=2

(
𝑓 − 2

𝑥− 2

)
(𝑝00)

𝑥−2(1− 𝑝00)
𝑓−𝑥

− 𝑓𝑝00𝑝11
1− 𝑝00

𝑓∑
𝑥=1

(
𝑓 − 1

𝑥− 1

)
(𝑝00)

𝑥−1(1− 𝑝00)
𝑓−𝑥

=
𝑝00𝑝11𝑓

2

1− 𝑝00
− 𝑓(𝑓 − 1)(𝑝00)

2𝑝11
1− 𝑝00

− 𝑓𝑝00𝑝11
1− 𝑝00

= 𝑓(𝑓 − 1)𝑝00𝑝11

(14)

As required by Eq. (13), we also calculate the first-order
partial derivatives of 𝜑(𝑁00, 𝑁11) as follows.

∂𝜑

∂𝑁00
∣𝑁00=𝜂0
𝑁11=𝜂1

= 𝑒
𝑢𝑝
𝑓 (

𝑏′

𝑓
− 1

𝑝
)

∂𝜑

∂𝑁11
∣𝑁00=𝜂0
𝑁11=𝜂1

= −1

𝑝
𝑒

𝑢𝑝
𝑓

(15)

We have obtained 𝐸(𝑁00𝑁11) in Eq. (14), 𝐸(𝑁00) in
Eq. (2), and 𝐸(𝑁11) in Eq. (5). Thus, we can calculate
𝐶𝑜𝑣(𝑁00, 𝑁11) as follows.

𝐶𝑜𝑣(𝑁00, 𝑁11) = 𝐸(𝑁00𝑁11)− 𝐸(𝑁00)𝐸(𝑁11)

=− 𝑓𝑝00𝑝11 = −𝑏′𝑝𝑒−
2𝑢𝑝
𝑓

(16)

By combining Eqs. (3) (6) (15) (16) into Eq. (13), we then
get the variance of 𝑔 as follows.

𝑉 𝑎𝑟(𝑔) =
1

𝑓𝑝2
𝑒

𝑢𝑝
𝑓 (𝑏′2𝑝2 + 𝑓2 − 𝑏′𝑓𝑝)− 𝑓

𝑝2
, (17)

where 𝑓 and 𝑝 are the used frame size and the persistence
probability, respectively.

D. Refined Estimation with 𝑘 Frames

Because of probabilistic variance, the estimate 𝑔 got
from a single frame is hard to meet the predefined accuracy.
By the law of large number [26], we issue 𝑘 independent
frames and use the average estimation result 𝑔𝑘 = 1

𝑘

∑𝑘
𝑗=1 𝑔𝑗

to achieve a more accurate estimate in REB, where 𝑔𝑗 is
the estimate of 𝑔 derived from the 𝑗𝑡ℎ frame. We propose
Theorem 2 to investigate how many independent frames
are necessary to guarantee that the average estimate 𝑔𝑘 can
satisfy the predefined (𝛼, 𝛽) accuracy.

Theorem 2. The reader performs 𝑘 independent frames.
The average estimate 𝑔𝑘 = 1

𝑘

∑𝑘
𝑗=1 𝑔𝑗 can guarantee the

required (𝛼, 𝛽) accuracy, if the frame number 𝑘 satisfies

𝑘 ≥ 𝑍𝛽

𝑔𝛼

√
𝑘∑

𝑗=1

[ 1
𝑓𝑗𝑝2

𝑗
𝑒

𝑢𝑝𝑗
𝑓𝑗 (𝑏′2𝑝2𝑗 + 𝑓2

𝑗 − 𝑏′𝑓𝑗𝑝𝑗)− 𝑓𝑗
𝑝2
𝑗
], where

𝑓𝑗 and 𝑝𝑗 are the frame size and persistence probability of
the 𝑗𝑡ℎ frame, respectively.

Proof: We define 𝑔𝑘 = 1
𝑘

∑𝑘
𝑗=1 𝑔𝑗 as the average esti-

mate of 𝑘 successive frames, where 𝑔𝑗 is the estimate of the
𝑗𝑡ℎ frame, 𝑗 ∈ [1, 𝑘]. The reader initializes each frame with
different random seeds. Hence, the estimate 𝑔𝑗 is indepen-
dent to each other. Thus, we have 𝐸(𝑔𝑘) =

1
𝑘

∑𝑘
𝑗=1 𝐸(𝑔𝑗) =

𝑔; and 𝑉 𝑎𝑟(𝑔𝑘) = 1
𝑘2

∑𝑘
𝑗=1 𝑉 𝑎𝑟(𝑔𝑗). Clearly, the average

estimate 𝑔𝑘 still converges to the actual cardinality 𝑔. Given
a required reliability 𝛽, the actual confidence interval is
within [𝑔 − 𝑍𝛽

√
𝑉 𝑎𝑟(𝑔𝑘), 𝑔 + 𝑍𝛽

√
𝑉 𝑎𝑟(𝑔𝑘)], where 𝑍𝛽

is a percentile of 𝛽, e.g., if 𝛽 = 95%, 𝑍𝛽 will be 1.96. To
guarantee the required confidence 𝛼, we should guarantee:⎧⎨⎩ 𝑔 + 𝑍𝛽

√
𝑉 𝑎𝑟(𝑔𝑘) ≤ 𝑔 + 𝑔𝛼

𝑔 − 𝑍𝛽

√
𝑉 𝑎𝑟(𝑔𝑘) ≥ 𝑔 − 𝑔𝛼

Substituting 1
𝑘2

∑𝑘
𝑗=1 𝑉 𝑎𝑟(𝑔𝑗) for 𝑉 𝑎𝑟(𝑔𝑘) and solving the

above inequalities, we have:

𝑘 ≥ 𝑍𝛽

𝑔𝛼

√√√⎷ 𝑘∑
𝑗=1

𝑉 𝑎𝑟(𝑔𝑗) (18)



According to Eq. (17), we have 𝑉 𝑎𝑟(𝑔𝑗) =
1

𝑓𝑗𝑝2
𝑗
𝑒

𝑢𝑝𝑗
𝑓𝑗 (𝑏′2𝑝2𝑗 + 𝑓2

𝑗 − 𝑏′𝑓𝑗𝑝𝑗) − 𝑓𝑗
𝑝2
𝑗

. Substituting it
into Eq. (18), we have:

𝑘 ≥ 𝑍𝛽

𝑔𝛼

√√√⎷ 𝑘∑
𝑗=1

[
1

𝑓𝑗𝑝2𝑗
𝑒

𝑢𝑝𝑗
𝑓𝑗 (𝑏′2𝑝2𝑗 + 𝑓2

𝑗 − 𝑏′𝑓𝑗𝑝𝑗)− 𝑓𝑗
𝑝2𝑗

] (19)

When the above inequality holds, the predefined (𝛼, 𝛽)
accuracy can be satisfied.

After 𝑘 frames, the backend server calculates the R.H.S.
(Right Hand Side) of Eq. (19). If the result is less than (or
equal to) 𝑘, the estimation process terminates; otherwise,
the next frame continues to be issued. Note that, we do not
know the actual 𝑢, 𝑏′ and 𝑔. We propose to use the first 𝑘
leading frames to estimate them, as shown in Eq. (20).

�̂�𝑘 =
1

𝑘

𝑘∑
𝑗=1

�̂�𝑗 =
1

𝑘

𝑘∑
𝑗=1

[−𝑓𝑗
𝑝𝑗

ln(
𝑁00𝑗

𝑓𝑗
)]

𝑏′𝑘 =
1

𝑘

𝑘∑
𝑗=1

𝑏′𝑗 =
1

𝑘

𝑘∑
𝑗=1

[
𝑓𝑗𝑁11𝑗

𝑝𝑗𝑁00𝑗
]

𝑔𝑘 =
1

𝑘

𝑘∑
𝑗=1

𝑔𝑗 =
1

𝑘

𝑘∑
𝑗=1

[−𝑓𝑗
𝑝𝑗

ln(
𝑁00𝑗

𝑓𝑗
)− 𝑓𝑗𝑁11𝑗

𝑝𝑗𝑁00𝑗
],

(20)

where 𝑁00𝑗 and 𝑁11𝑗 are the numbers of persistent empty
slots and persistent singleton slots observed in the 𝑗𝑡ℎ frame.

E. Avoiding Premature Termination

In the execution of REB, we can get �̂�𝑘, 𝑏′𝑘 and 𝑔𝑘
after 𝑘 frames. However, their estimation is inaccurate due
to probability variance. If we directly use them to calculate
the R.H.S. of Eq. (19), 𝑘 may have a chance to be larger
than it, which is not true and REB will have a premature
termination (i.e., the currently achieved accuracy has not met
the required one yet). In the following, we propose to solve
the issue of premature termination. First, we calculate the
variances of �̂�𝑘, 𝑏′𝑘 and 𝑔𝑘 as follows. Note that, we can
obtain the variances of �̂�𝑘 and 𝑏′𝑘 using similar method of
getting 𝑉 𝑎𝑟(𝑔𝑘).

𝑉 𝑎𝑟(�̂�𝑘) =
1

𝑘2

𝑘∑
𝑗=1

𝑓𝑗
𝑝2𝑗

(𝑒
�̂�
𝑘
𝑝𝑗

𝑓𝑗 − 1)

𝑉 𝑎𝑟(𝑏′𝑘) =
1

𝑘2

𝑘∑
𝑗=1

𝑒
�̂�
𝑘
𝑝𝑗

𝑓𝑗 (
𝑏′

2

𝑘

𝑓𝑗
+

𝑏′𝑘
𝑝𝑗

)

𝑉 𝑎𝑟(𝑔𝑘) =
1

𝑘2

𝑘∑
𝑗=1

1

𝑓𝑗𝑝2𝑗
𝑒

�̂�
𝑘
𝑝𝑗

𝑓𝑗 (𝑏′
2

𝑘𝑝
2
𝑗 + 𝑓2

𝑗 − 𝑏′𝑘𝑓𝑗𝑝𝑗)−
𝑓𝑗
𝑝2𝑗
(21)

When calculating the R.H.S. of Eq. (19), we can use �̂�𝑘↑ =

�̂�𝑘+ 𝛿
√

𝑉 𝑎𝑟(�̂�𝑘) to substitute 𝑢, 𝑏′𝑘↑ = 𝑏′𝑘+ 𝛿
√
𝑉 𝑎𝑟(𝑏′𝑘)

to substitute the first 𝑏′, 𝑏′𝑘↓ = 𝑏′𝑘 − 𝛿
√
𝑉 𝑎𝑟(𝑏′𝑘) to

substitute the second 𝑏′, 𝑔𝑘↑ = 𝑔𝑘+𝛿
√
𝑉 𝑎𝑟(𝑔𝑘) to substitute

𝑔. In Section III, simulation results demonstrate that this
tactic can effectively avoid the premature termination. The
three-sigma rule [27] indicates 𝛿 = 3 is large enough.

F. Dynamically Optimizing 𝑝 and 𝑓

In REB, parameters 𝑝 and 𝑓 can significantly affect the
protocol performance, thus need to be optimized. We use the
information observed from the 𝑥 leading frames to facilitate
the optimization of 𝑝 and 𝑓 in the (𝑥 + 1)𝑡ℎ frame. The
optimization goal is to minimize the execution time while
guaranteeing the required (𝛼, 𝛽) accuracy.

In the first frame, we set 𝑓1 = 512. To coarsely set 𝑝1,
we modify the scheme used in [10], [18], [19]. Specifically,
the reader keeps issuing one-slot frames. The persistence
probability follows a geometric distribution, 1

2 , 1
4 , 1

8 , ⋅ ⋅ ⋅,
i.e., the persistence probability in the 𝛾𝑡ℎ single-slot frame
is 1

2𝛾 . This process does not terminate until an empty slot
appears. Assuming the ℓ𝑡ℎ slot is the first empty slot, we
have a coarse estimation of 𝑢 to be 2ℓ [18]. The persistence
probability 𝑝1 of the first frame is simply set to 𝑓/2ℓ.

In what follows, we describe how to optimize 𝑝 and 𝑓
for the (𝑥+1)𝑡ℎ frame (𝑥 ≥ 1). Since 𝑝 and 𝑓 are correlated
to minimize the total execution time, we first fix the 𝑓 value
to get an optimized 𝑝. The range of 𝑓 is from 1 to 512 and
its value should be 2, 4, 8, ⋅⋅⋅, 512, as suggested in the C1G2
standard. Thus, we can get an optimized 𝑓 by comparing all
possible pairs of 𝑝 and 𝑓 (with only 9 possible 𝑓 values).
Note that, the proposed REB is not sensitive to the coarse
settings of 𝑝1 and 𝑓1, because REB will quickly converge to
a near-optimal setting of 𝑝 and 𝑓 after a few frames, which
will be demonstrated in the simulations.

1) Optimizing 𝑝: We optimize 𝑝 using a binary search
method for a given 𝑓 value. Since the smaller the estimation
variance of 𝑔 is, the less frames will be required, that is,
the less the execution time (𝑓× frame number) is. We
theoretically investigate how to optimize 𝑝 to minimize the
estimation variance 𝑉 𝑎𝑟(𝑔) in Eq. (17).

We prove that 𝑉 𝑎𝑟(𝑔) is a convex function of 𝑝 ∈ (0, 1]
in Theorem 3. By virtue of the convex property, we have
two claims: (i) There is an optimal 𝑝𝑜𝑝 ∈ (0, 1] minimizing
the variance 𝑉 𝑎𝑟(𝑔). Taking Fig. 2 (a)(b) for example. (ii)
The first order partial derivation ∂𝑉 𝑎𝑟(𝑔)

∂𝑝 presented in the
following Eq. (22) satisfies ∀𝑝 ∈ (0, 𝑝𝑜𝑝),

∂𝑉 𝑎𝑟(𝑔)
∂𝑝 ≤ 0

and ∀𝑝 ∈ (𝑝𝑜𝑝, 1],
∂𝑉 𝑎𝑟(𝑔)

∂𝑝 ≥ 0. Taking Fig. 2 (c)(d) for
example.

∂𝑉 𝑎𝑟(𝑔)

∂𝑝
= 𝑒

𝑢𝑝
𝑓 (

𝑏′2𝑢
𝑓2

+
𝑏′ + 𝑢

𝑝2
− 𝑏′𝑢

𝑓𝑝
− 2𝑓

𝑝3
) +

2𝑓

𝑝3
(22)

Based on the above two claims, we propose a binary-search
algorithm to get the optimal 𝑝𝑜𝑝 for the 𝑗𝑡ℎ frame, 𝑗 ≥ 2. In
step 1 of Algorithm 1, 𝛿 specifies the maximum deviation
between the outputted 𝑝 and its actually optimal value.
Initially, 𝑝ℎ𝑖𝑔ℎ = 1 and 𝑝𝑙𝑜𝑤 is set to a small enough
value 1/�̂�𝑥. By the while loop in steps 4∼10, 𝑝ℎ𝑖𝑔ℎ and
𝑝𝑙𝑜𝑤 progressively approach the optimal 𝑝𝑜𝑝. When the
optimization derivation is less than 𝛿, the average value of
𝑝ℎ𝑖𝑔ℎ and 𝑝𝑙𝑜𝑤 are returned as the optimal 𝑝. The complexity
of Algorithm 1 is Θ(lg 1

𝛿 ).

Theorem 3. 𝑉 𝑎𝑟(𝑔) in Eq. (17) is a convex function of 𝑝.

Proof: 𝑉 𝑎𝑟(𝑔) is a convex function of 𝑝 ∈ (0, 1], if
and only if its second order partial derivative satisfies ∀𝑝 ∈



0.001 0.2 0.30.1 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14
x 10

12

persistence probability

 
V

a
r
(ĝ
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Fig. 2. 𝑏 = 10000, 𝑏′ = 5000, 𝑔 = 10000, 𝑓 = 512. (a) The variance 𝑉 𝑎𝑟(𝑔) against 𝑝 ∈ [0.001, 1]. (b) Magnified plot of (a), 𝑝 ∈ [0.001, 0.2]. (c)
The first order partial derivation of 𝑉 𝑎𝑟(𝑔) against 𝑝 ∈ [0.001, 1]. (d) Magnified plot of (c), 𝑝 ∈ [0.005, 0.2].

(0, 1], ∂2𝑔
∂𝑝2 > 0. We get its second order partial derivative

as follows.

∂2𝑔

∂𝑝2
=𝑒

𝑢𝑝
𝑓 (

𝑏′2𝑢2

𝑓3
+

2𝑏′𝑢+ 𝑢2

𝑓𝑝2
− 𝑏′𝑢2

𝑓2𝑝
− 2𝑏′ + 4𝑢

𝑝3
+

6𝑓

𝑝4
)︸ ︷︷ ︸

denoted as ℜ

−6𝑓

𝑝4

(23)
As shown in Eq. (23), we denote ( 𝑏

′2𝑢2

𝑓3 + 2𝑏′𝑢+𝑢2

𝑓𝑝2 − 𝑏′𝑢2

𝑓2𝑝 −
2𝑏′+4𝑢

𝑝3 + 6𝑓
𝑝4 ) as ℜ. In what follows, we first prove ℜ is

always larger than 0.

ℜ =(𝑏′2𝑢2𝑝4 + 2𝑏′𝑢𝑓2𝑝2 + 𝑢2𝑓2𝑝2 − 𝑏′𝑢2𝑓𝑝3 − 2𝑏′𝑓3𝑝

− 4𝑢𝑓3𝑝+ 6𝑓4)/(𝑓3𝑝4)

=[(𝑏′𝑢𝑝2 − 1

2
𝑢𝑓𝑝)2 + (

√
2𝑏′𝑢𝑓𝑝−

√
2

2
𝑓2)2 +

1

6
𝑓4

+ (

√
3

2
𝑢𝑓𝑝− 4

√
3

3
𝑓2)2 + 2(

√
𝑏′𝑢− 𝑏′)𝑓3𝑝]/(𝑓3𝑝4)

(24)

Since 𝑢 > 𝑏′ in Eq. (24), we have ℜ > 0. Using
the fourth-order Taylor series expansion, we have 𝑒

𝑢𝑝
𝑓 >

1 + 𝑢𝑝
𝑓 + 𝑢2𝑝2

2𝑓2 + 𝑢3𝑝3

6𝑓3 + 𝑢4𝑝4

24𝑓4 . According to Eqs. (23)(24),
we have:

∂2𝑔

∂𝑝2
= 𝑒

𝑢𝑝
𝑓 ℜ− 6𝑓

𝑝4

>(1 +
𝑢𝑝

𝑓
+

𝑢2𝑝2

2𝑓2
+

𝑢3𝑝3

6𝑓3
+

𝑢4𝑝4

24𝑓4
)ℜ− 6𝑓

𝑝4

=
1

24
(

𝑢3𝑝

2𝑓2
√
𝑓
− 𝑢3𝑏′𝑝2

𝑓3
√
𝑓
)2 +

5𝑢6𝑝2

1152𝑓5
+

𝑝2

2𝑓5
(𝑢2𝑏′ − 𝑢3

12
)2

+
1

𝑓3
(

√
2

3
𝑢𝑏′ −

√
3

128

𝑢3𝑝

𝑓
)2 +

𝑢2

3𝑓3
(𝑏′ − 𝑢

2
)2

+
𝑢3𝑏′2𝑝
𝑓4

+
𝑢5𝑏′2𝑝3

6𝑓6
+

2𝑢− 2𝑏′

𝑝3
> 0

(25)
Eq. (25) indicates that ∀𝑝 ∈ (0, 1], ∂2𝑔

∂𝑝2 > 0, which is a
necessary and sufficient condition to prove that 𝑉 𝑎𝑟(𝑔) is a
convex function of 𝑝 ∈ (0, 1].

2) Optimizing 𝑓 : We optimize 𝑓 for the (𝑥+1)𝑡ℎ frame.
Considering C1G2 standard and practical constraints [10], 𝑓
should take a value from 2, 4, 8, ⋅ ⋅ ⋅, or 512. To improve the
time-efficiency, it is reasonable to minimize the expected
remaining execution time. We denote the minimum frame
number that needs to be further executed as 𝑦, our goal is:

Minimizing (𝑓 + 1)× 𝑦 (26)

Algorithm 1: Optimizing 𝑝𝑥+1 for the (𝑥+1)𝑡ℎ frame.

Input: �̂�𝑥, 𝑏′𝑥, 𝑔𝑥, and 𝑓 .
Output: The optimized 𝑝𝑥+1 for the (𝑥+ 1)𝑡ℎ frame.

1: 𝛿 = 0.0001;
2: 𝑝𝑙𝑜𝑤 = 1

�̂�𝑥
;

3: 𝑝ℎ𝑖𝑔ℎ = 1;
4: while 𝑝ℎ𝑖𝑔ℎ − 𝑝𝑙𝑜𝑤 > 𝛿 do
5: 𝑝 = (𝑝𝑙𝑜𝑤 + 𝑝ℎ𝑖𝑔ℎ)/2;
6: Calculating ∂𝑉 𝑎𝑟(𝑔)

∂𝑝 in Eq. (22);
7: if (∂𝑉 𝑎𝑟(𝑔)

∂𝑝 > 0) then
8: 𝑝ℎ𝑖𝑔ℎ = 𝑝;
9: else

10: 𝑝𝑙𝑜𝑤 = 𝑝;
11: end if
12: end while
13: 𝑝𝑥+1 = (𝑝𝑙𝑜𝑤 + 𝑝ℎ𝑖𝑔ℎ)/2;
14: return 𝑝𝑥+1;

In Eq. (26), 𝑓 + 1 means a slot for transmitting protocol
parameters is followed by an 𝑓 -slot frame. According to
the termination condition in Eq. (18), the value of 𝑦 should
satisfy the following inequality:

𝑥+ 𝑦 ≥ 𝑍𝛽

𝑔𝛼

√√√⎷ 𝑥∑
𝑗=1

𝑉 𝑎𝑟(𝑔𝑗) + 𝑦𝑉 𝑎𝑟(𝑔) (27)

By solving the above inequality, we know that the minimum
frame number 𝑦 that needs to be further executed is:

⌈𝑍2
𝛽𝑉 𝑎𝑟(𝑔)

2𝑔2𝛼2
− 𝑥+

√√√⎷[
𝑍2

𝛽𝑉 𝑎𝑟(𝑔)

2𝑔2𝛼2
− 𝑥]2+

𝑍2
𝛽

𝑔2𝛼2

𝑥∑
𝑗=1

𝑉 𝑎𝑟(𝑔𝑗)− 𝑥2
⌉

(28)

Here, 𝑉 𝑎𝑟(𝑔𝑗) =
1

𝑓𝑗𝑝2
𝑗
𝑒

𝑢𝑝𝑗
𝑓𝑗 (𝑏′2𝑝2𝑗 + 𝑓2

𝑗 − 𝑏′𝑓𝑗𝑝𝑗)− 𝑓𝑗
𝑝2
𝑗

, 𝑗 ∈
[1, 𝑥], 𝑉 𝑎𝑟(𝑔) = 1

𝑓𝑝2 𝑒
𝑢𝑝
𝑓 (𝑏′2𝑝2 + 𝑓2 − 𝑏′𝑓𝑝) − 𝑓

𝑝2 . 𝑔, 𝑢, 𝑏′

can be approximated by 𝑔𝑥, �̂�𝑥, 𝑏′𝑥, respectively.

For any 𝑓 ∈ {2, 4, 8, ⋅ ⋅ ⋅, 512}, we can use Algorithm 1
to get the corresponding optimal 𝑝. Given each pair (𝑓, 𝑝),
the smallest 𝑦 can be obtained from Eq. (28). Thus, we can
get the optimal 𝑓 from Eq. (26). The calculation complexity
of optimizing 𝑝 and 𝑓 is bounded by Θ(9 lg 1

𝛿 ).



G. REB with Multiple Readers and Blocker Tags

In practice, a single reader cannot probe all the tags
due to the limited communication ranges [10]. Similarly,
a single blocker tag cannot “protect” all privacy-sensitive
tags that may be distributed across the a large area. A
solution is to deploy multiple readers and blocker tags
with overlapping regions to cover the whole monitoring
area. We assume all the readers and blocker tags are well
synchronized by the excellent scheduling schemes [28]–[30].
All parameters 𝑓 , 𝑝, 𝑅 involved in REB are the same across
all readers. In what follows, we present how to distributively
construct the global 𝔹𝔾[0..𝑓−1]. For an arbitrary slot 𝑠 in a
frame, if all the readers observe an empty slot, the backend
server sets 𝔹𝔾[𝑠] = 0; if no reader senses a collision and
all the received RN16s are the same, the backend server
sets 𝔹𝔾[𝑠] = 1; if at least one reader senses a collision
or different RN16s are observed by different readers, the
backend server sets 𝔹𝔾[𝑠] = 𝑐. Based on these rules, the
reader is able to generate a global actual array 𝔹𝔾[0..𝑓−1].
Logically, all the readers co-work like a ‘super reader’ that is
able to cover the whole area. The rest of REB in multi-reader
scenarios is the same as what former sections have described.

III. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the
performance of REB in a large scale RFID system that con-
tains thousands of tags. The simulators were implemented
using MATLAB. Since REB in the multi-reader scenario is
logically the same as that in the single reader scenario, this
paper only simulates a single reader following prior literature
[7], [10], [16], [31]. The setting of slot length is based on
what we specified in Section II-A. In the following, we first
verify the effectiveness of our optimization methods on 𝑓
and 𝑝. Then, we conduct simulations to evaluate the actual
estimation reliability of REB and its time-efficiency. We run
each simulation 1000 times and report the average results.

A. Verifying the Optimized 𝑓 and 𝑝

The setting of parameters 𝑓 and 𝑝 is important to the
performance of REB. To achieve the overall optimal 𝑓 and
𝑝, it is necessary to know the values of 𝑢, 𝑏′ and 𝑔 before
the execution of REB, which, however, are what we want to
estimate. Using the simulation conditions shown in Fig. 3,
the overall optimal 𝑓 is 128, and the overall optimal 𝑝 is
0.01175, which are calculated by the actual values of 𝑢, 𝑏′
and 𝑔. In the simulations corresponding to Fig. 3, we aim to
verify the convergence of 𝑓 and 𝑝 to their overall optimal
values. Results in Fig. 3 (a) demonstrate that about 28.5%
of the independent simulations correctly take the overall
optimal 𝑓 = 128 in the 3𝑟𝑑 frame. And this ratio reaches
50.5% in the 4𝑡ℎ frame, that is, our REB has a good chance
to take the overall optimal 𝑓 just after the 3𝑟𝑑 frame. The
simulation results in Fig. 3 (b) demonstrate that the persistent
probability 𝑝 approaches its overall optimal value frame by
frame. The value of 𝑝 taken in the 4𝑡ℎ is very close to
the optimal value 0.01175. All in all, 𝑓 and 𝑝 approach
their overall optimal values frame by frame. The underlying
reason is that more frames increase the estimation accuracy
of 𝑢, 𝑏′ and 𝑔, which eventually facilitates the optimization
of 𝑓 and 𝑝.
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Fig. 3. Verifying the optimized settings of 𝑓 and 𝑝. ∣𝐵 − 𝐺∣ = 5000,
∣𝐵 ∩ 𝐺∣ = 5000, ∣𝐺 − 𝐵∣ = 5000. 𝛼 = 10%, 𝛽 = 90%. (a) Verifying
the optimized 𝑓 . (b) Verifying the optimized 𝑝.

B. Estimation Reliability

One of the most important performance metrics for
estimation protocols is the actual reliability. In an arbitrary
simulation, if the estimate 𝑔 is within [𝑔(1− 𝛼), 𝑔(1 + 𝛼)],
we refer to it as a successful estimation. We record the suc-
cess times among 1000 independent simulations. The ratio,
i.e., success times/1000, is treated as the actual reliability.
Simulation results in Fig. 4 reveal that REB (𝛿 = 0) does
not always meet the required reliability (i.e., 𝛽 = 95%).
The reason lies in the variances if directly using �̂�𝑘, 𝑏′𝑘
and 𝑔𝑘 to determine the termination condition. By taking
their variances into consideration, the proposed 𝛿-sigma-
based termination tactic effectively avoids the premature
termination. Simulation results in Fig. 4 reveal that the actual
reliability of REB (𝛿 = 1) and REB (𝛿 = 2) is always higher
than the required one.
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Fig. 4. Evaluating the reliability of REB. 𝛼 = 5%, 𝛽 = 95%. (a) Tag
ratio ∣𝐵 − 𝐺∣:∣𝐵 ∩ 𝐺∣:∣𝐺 − 𝐵∣ is fixed to 1 : 1 : 1, and 𝑢 varies from
3000 to 21000. (b) 𝑢 is fixed to 9000, and tag ratio varies.

C. Time Efficiency

Besides the estimation reliability, another important met-
ric is time-efficiency. In this subsection, we evaluate the
time-efficiency of the protocols given the same estimation
accuracy. No existing estimation protocols can correctly
approximate the cardinality of genuine tags in an RFID
system with the presence of blocker tags. The only possible
solution, to the best of our knowledge, is to perform the
comprehensive identification protocols to identify the tags
in the system. Hence, we compare REB with two repre-
sentative identification protocols: one is the Tree Hopping



(TH) protocol [19]; the other one is the Enhanced Dynamic
Framed Slotted ALOHA (EDFSA) protocol [20]. TH pro-
tocol terminates after it traverses the whole tree. TH can
identify not only the IDs in (𝐵 − 𝐺) ∪ (𝐺 − 𝐵) when a
queried prefix is followed by a successful read, but also the
IDs in 𝐵∩𝐺 when a prefix whose length is equal to tag ID
but still followed by a collision read. Then, we can get the
set 𝐺, by calculating [(𝐵−𝐺)∪(𝐺−𝐵)−𝐵]∪(𝐵∩𝐺). The
cardinality 𝑔 is got upon getting 𝐺. As for EDFSA protocol,
it executes frames round by round. In a round, only the IDs
in (𝐵 − 𝐺) ∪ (𝐺 − 𝐵) have chance to be identified. We
denote the set of identified IDs as 𝑆𝑖𝑑𝑒𝑛𝑡. Since the reader
does not know whether all IDs in (𝐵 − 𝐺) ∪ (𝐺 − 𝐵) are
completely identified or even what percentage of them are
identified, EDFSA cannot terminate by itself. For the sake
of EDFSA, we assumes it can “intelligently” terminate once
[∣(𝐵 −𝐺) ∪ (𝐺−𝐵)∣ − ∣𝑆𝑖𝑑𝑒𝑛𝑡∣] < ∣𝐺∣ × 𝛼.

1) Impact of Tag Cardinality: To investigate the impact
of tag cardinality on the protocols’ execution time, we
fix the tag ratio ∣𝐵 − 𝐺∣:∣𝐵 ∩ 𝐺∣:∣𝐺 − 𝐵∣ to 1:1:1, and
vary 𝑢 (indicating the system scale) from 20000 to 50000.
The simulation results in Fig. 5 demonstrate that our REB
significantly outperforms HT and EDFSA. For example,
when 𝑢 = 50000, REB (𝛿 = 0) runs about 44 times faster
than EDFSA, and nearly 920 times faster than TH; while
REB (𝛿 = 1) runs 33 times faster than EDFSA, and 682
times faster than TH. Moreover, the execution time of HT
and EDFSA grows linearly as 𝑢 increases. In contrast, our
REB has a stable execution time, which reveals its good
scalability against tag cardinality 𝑢.
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Fig. 5. Evaluating the time-efficiency of protocols with varying 𝑢.Tag
ratio of ∣𝐵 − 𝐺∣:∣𝐵 ∩ 𝐺∣:∣𝐺 − 𝐵∣ is fixed to 1 : 1 : 1 and 𝛼 = 5%,
𝛽 = 95%.

2) Impact of Tag Ratio: The different tag ratio of ∣𝐵 −
𝐺∣ : ∣𝐵 ∩𝐺∣ : ∣𝐺 − 𝐵∣ may have significant impact on the
execution time of protocols. Here, we fix 𝑢 = 30000, and
evaluate the execution time of protocols with varying tag
ratio. The simulation results in Fig. 6 demonstrate that our
REB still outperforms the existing protocols by significantly
reducing the execution time. Moreover, the results in Fig. 6
clearly show the performance trend of the protocols with
varying tag ratio, which are elaborated below.

The results in Fig. 6 (a) reveal that the larger the ratio
of tags in 𝐵 − 𝐺 is, the larger the execution time of our
REB scheme is. The underlying reason is that more tags in
the set 𝐵 − 𝐺 will incur more interferences to the process

of estimating genuine tags. We make another two main
observations from Fig. 6 (b) which shows the execution time
of the protocols with varying ratio of tags in 𝐵 ∩𝐺. First,
the performance of identification protocols deteriorates as
the ratio of tags in 𝐵∩𝐺 increases. The reason is that more
tags in 𝐵 ∩ 𝐺 will cause more blocking collisions, which
seriously interfere the tag identification process. Second, the
larger the ratio of tags in 𝐵∩𝐺 is, the smaller the execution
time of our REB scheme is. The underlying intuitive reason
is that larger ratio of tags in 𝐵 ∩𝐺 leads to smaller ratio of
tags in 𝐵 − 𝐺, which decreases the interference of tags in
𝐵 −𝐺 to the process of estimating 𝑔. Because of a similar
reason, the results in Fig. 6 (c) reveal that the execution
time of REB also decreases as the ratio of tags in 𝐺 − 𝐵
increases.
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Fig. 6. Evaluating the time-efficiency of protocols with varying tag ratio.
𝑢 is fixed to 30000, and 𝛼 = 5%, 𝛽 = 95%.

IV. RELATED WORK

In the infant stage of RFID study, a great deal of
attention was paid to the problem of tag identification that
aims to identify the exact tag IDs. Generally, there are two
types of identification protocols: Aloha-based protocols [32]
and Tree-based protocols [19]. Fundamentally, the Aloha-
based protocol is a kind of Time Division Multiple Access
(TDMA) mechanism. A tag ID can be successfully identified
in a slot when only one tag responds in this slot. As for
tree-based protocols, the reader broadcasts a 0/1 string to
query the tags. A tag responds with its ID once it finds
that the querying string is the prefix of its ID. A reader can
successfully identify a tag ID when only one tag responds.
Clearly, the execution time of identification protocols is
proportional to the tag population size. What is worse, in the
RFID system with presence of blocker tags, the performance
of identification protocols will further deteriorate because of
the blocking collisions caused by IDs in 𝐵 ∩𝐺.

To fast report the tag cardinality for various purposes
such as timely stock monitoring, a great effort has been made
to study the problem of tag estimation [5], [7], [10], [13]–
[18], [23], [33]–[35]. These estimation protocols leverage
the observations from Aloha/Tree protocols to statistically
estimate the tag cardinality. For example, M. Shahzad et
al. proposed the Average Run based Tag estimation (ART)
by observing the average length of sequences of consecutive
non-empty slots [10]. To the best of our knowledge, all these
estimation protocols cannot address the problem of genuine
tag estimation because they cannot exclude the interference
from blocking tags.

RFID privacy is of great importance but suffers the
threat from malicious scanning. Ari Juels et al. proposed
the blocker tags to protect the privacy-sensitive tags from



malicious scanning [11]. Every coin has two sides. Ehsan
Vahedi et al. indicated that the blocking technique causes
a new threat to the RFID system. Specifically, a malicious
blocker tag can prevent the valid reader from reading the
tags. An efficient scheme was proposed to detect the exis-
tence of an attacker in the RFID system [36]. Following the
original purpose of proposing blocker tags, this paper still
leverages the blocker tags to protect the privacy of genuine
RFID tags.

V. CONCLUSION

This paper formally defines a new problem of genuine
tag cardinality estimation with the presence of blocker tags.
To efficiently address this practically important problem,
we propose the RFID Estimation scheme with Blocker tags
(REB), which is compliant with the commodity EPC C1G2
standard and does not require any modifications to off-
the-shelf RFID tags. REB provides an unbiased functional
estimator which can guarantee any degree of estimation
accuracy specified by the users. Using REB, a retailer can
timely monitor the product stock while blocker tags are
being used to protect the privacy of some important items.
Extensive simulation results reveal that REB is tens of times
faster than the fastest identification protocol with the same
accuracy requirement.
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