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Abstract—Radio Frequency Identification (RFID) has dra-
matically streamlined supply chain management by automat-
ically monitoring and tracking commodities. Considering the
proliferation of RFID data volume, distributed storage is more
applicable and scalable than centralized storage for distributed
query processing. Traditional distributed RFID data storage
requires each distribution center to locally store raw RFID
data, leading to data redundancy, storage and query inefficiency.
In this paper, we design an efficient distributed storage model
by leveraging Bloom filters to save storage space and improve
query efficiency. Meanwhile, we establish corresponding query
processing schemes to locally support existence queries and path
queries, which are two kinds of most popular queries in the
supply chain management. A local query can be completed with
constant time complexity regardless of data volume. Experiments
demonstrate that our storage model outperforms the traditional
one in terms of both space and time efficiency.

I. INTRODUCTION

Radio Frequency Identification (RFID) plays a crucial role
in improving the efficiency of business processes in supply
chain management by automatically monitoring and tracking
commodities [1]–[7]. In the near future, the RFID data volume
tends to be enormous. For example, Venture Development
Corporation, a research firm, predicts that when tags are used
at the item level, Walmart will generate around 7 terabytes
of data every day [8]. Along with the data explosion, many
new challenges arise. One big challenge is to store big data
and improve query efficiency in large RFID-enabled supply
chains, resulting in the urgent need of new approach design
for efficient data storage.

Applying centralized storage of RFID data in a supply
chain can maintain a single copy of all RFID raw data.
However, it is not scalable for large-scale RFID-enabled supply
chains. Although this approach can simplify query processing
by a global view of the entire supply chain, it causes high
communication cost due to transmitting all raw data to a
central server for archival and query processing. In addition,
the central server is prone to be the bottleneck for high-
frequency query processing.

An alternative to centralized storage is the distributed stor-
age with RFID data spreading across warehouses/distribution
centers in a supply chain. In the traditional distributed storage,
each warehouse locally stores the raw data of commodities
that move through it. This approach dramatically reduces the
communication overhead as the raw RFID data no longer need
to be transmitted to a central server. Thus, it is more appli-
cable to large-scale warehouse management, considering the
proliferation of RFID data and limited bandwidth resources.

However, two tough challenges have to be addressed. The first
challenge is how to compress massive and redundant data.
Throughout the entire supply chain, products are transferred
from one position to another in a flow. A simple local storage
of each commodity leads to data redundancy in the flow
route. The second challenge is how to support efficient query
processing without a global view of RFID data. Unfortunately,
most previous work focused on centralized storage [9]–[13].
Few research papers have investigated the two challenges in
the distributed storage, which are, obviously, highly desirable.

In this paper, we take the first step toward efficient dis-
tributed storage to support fast query for large RFID-enabled
supply chains. The major contributions of this paper are
threefold.

First, we propose a novel space-efficient and time-efficient
distributed RFID data storage model. The model captures the
product flow property in a supply chain and incorporates the
Bloom filter technique. It can provide constant storage time
regardless of the number of tags to be stored, and significantly
compress massive raw data. For example, a Bloom filter can
store an EPC with only 9.6 bits, which reduces data by a factor
of 10 compared with the traditional storage (96 bits per EPC
in the C1G2 standard). The great space saving can allow the
stored data to be put in the main memory of a query processing
server, which in turn massively reduces the query time without
resorting to slow hard disk scanning.

Second, we establish corresponding query processing
schemes to locally support the existence query and path query.
A local query can be completed with a constant time complex-
ity regardless of data volume. We even can totally remove false
positives caused by Bloom filters to obtain accurate queries by
sending these queries to terminal nodes.

Third, we comprehensively analyze key performance indi-
cators, such as false positive probability, storage space, storage
time, query time and overhead, to optimize the model setting.
Extensive simulations and experiments show that our storage
model can save local storage space 10 times with 1% local
false positive probability and the query processing can improve
local query efficiency 70 times, compared with the traditional
distributed RFID data storage approach.

The rest of the paper is organized as follows. Section II
presents the system model. Section III proposes our RFID
data storage model. Section IV establishes the correspond-
ing query processing schemes. Section V analyzes the false
positive probability, followed by the performance analysis in
Section VI. Section VII evaluates our model through both
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simulations and experiments. Section VIII reviews the related
work. Finally, Section IX concludes this paper.

II. SYSTEM MODEL

A. System Assumption

In the supply chain, commodities flow from suppliers
to distributors. Each business entity has several downstream
distributors to which it sells its products. Meanwhile, it is the
downstream distributor of its upstream supplier from which it
purchases products. In this paper, we focus on the distribution
process for one kind of commodity in the supply chain, which
forms a well-accepted tree structure shown in Fig. 1.

The node A, as the source of the entire supply chain, is
B, C and D’s upstream supplier (parent node). By contrast,
B, C and D are A’s downstream distributors (children). We
treat a business entity as a node of the tree in the rest of this
paper. Assume that every node except the root has only one
parent but is likely to have multiple children. Meanwhile, the
node can communicate with all its children as well as the only
parent node. Because products are completely distributed to the
current node’s children until leaf nodes, all commodities flow
from the root to leaf nodes. Throughout the supply chain, we
divide the business entities into two categories: terminal nodes
(leaf nodes) and internal nodes (non-leaf nodes).

B. Problem Definition

Under above supply chain structure, our problem definition
is as follows: Design an efficient distributed storage model to
store a set of n tags S={a1, a2, ..., an} when they are distribut-
ed in a tree-structure flow, and establish corresponding query
processing schemes, satisfying the following requirements:

1) Store data locally to reduce enormous communication
overhead and a query can be launched at any node. 2)
Compress massive raw data and improve storage efficiency
to be scalable in a large-scale supply chain. 3) Complete the
local query with a constant time complexity, and support the
remote query involving multiple nodes to provide any query
accuracy and product trajectory information.

In summary, we aim to design a space-efficient distributed
storage model to support time-efficient query processing in
large-scale RFID-enabled supply chains.

C. Bloom Filters

The Bloom filter [14] is an efficient data structure that
can not only rapidly check set membership but also greatly
save storage space. An empty Bloom filter is an array with
m bits initially set to 0. There are also p hash functions Hi

(1 ≤ i ≤ p), each of which maps the input into {1, 2, 3, ...,m}.
Let C[k] be the kth bit of the array. To store a set S =
{a1, a2, a3, ..., an} in the Bloom filter, all C[Hi(aj)] are set
to 1 for each aj (1 ≤ j ≤ n). Consider an item a. If all
C[Hi(a)] are 1, a is regarded as a member of S with an error
rate. Otherwise, a is definitely not in the set S.

Given a Bloom filter with m bits and p hash functions,
both insertion and query time are O(p). Specifically, to add
an element or check membership, it only needs to run the
element through the p hash functions and update or check
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Fig. 1: The supply chain structure

corresponding bits, regardless of the data volume. In addition,
Bloom filters can significantly compress data at the expense
of a small error rate. For example, a Bloom filter with 1%
error rate and an optimal value of p, requires only about 9.6
bits per item. Therefore, the Bloom filter is not only time-
efficient but also space-efficient, which is the main reason why
we incorporate it into our data storage model.

III. RFID DATA STORAGE MODEL

In this section, we design an efficient distributed storage
model leveraging Bloom filters to save storage space and
improve storage efficiency. In traditional distributed storage,
when tagged commodities are transferred from one location to
another, the tags are scanned automatically by RFID readers.
Then, the tag information, such as EPCs, is stored locally to
avoid high communication overhead. However, this kind of
local storage causes data redundancy from a global view of
the supply chain. In addition, the huge local data volume in
upstream suppliers will cause high storage cost. For instance,
the root is supposed to store all tags’ information. Therefore,
our primary performance objective is to reduce storage space
and improve storage efficiency.

As aforementioned, there are two kinds of business entities:
terminal nodes and internal nodes. In our storage model, every
node maintains a space-efficient Bloom filter to store EPCs of
all tags that move through it. The storage operation in the
Bloom filter is an irreversible hash process that cannot restore
raw information, so one copy of raw data are reserved in
terminal nodes for minimizing redundancy as well as avoiding
information loss. In other words, every terminal node not
only holds a Bloom filter for storing EPCs, but also saves
raw tag information in a database table like epc table (epc,
product name, ...). As a result, internal nodes can efficiently
compress RFID EPCs while terminal nodes can offer accurate
queries. We will analyze the space and storage efficiency of
the model in Section VI.

We present an example to illustrate our storage model in
Fig. 2. The internal nodes A, B and C use only Bloom filters to
store tags’ EPCs. With the whole tag set S={a1, a2, a3, ..., a8}
distributed from A, A inserts S into its Bloom filter. Simi-
larly, after purchasing related commodities, B and C insert
{a1, a3, a5, a7} and {a2, a4, a6, a8} into their Bloom filters
respectively. Apart from Bloom filters, the terminal nodes D,
E, F and G also save tag information with epc tables. For
example, when the tag set S11={a1, a3} is distributed to D,
D stores raw information of {a1, a3} in its epc table and also
inserts their EPCs into its Bloom filter. So do E, F and G.

IV. QUERY PROCESSING

According to our proposed distributed storage model, this
section designs the corresponding query processing to support
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Fig. 2: An example of distributed storage model

two kinds of most popular queries in the supply chain man-
agement, existence queries and path queries.

A. Existence Query

Existence queries check whether a tag has been in a certain
location (the granularity is the node). We define local existence
query (local query for short) as a kind of existence query
asking for information from only a node’s local storage without
communicating with other nodes. Specifically, when a local
query launched at a node L, L executes the query based on
its local Bloom filter. After that, the query is likely to return
false with certainty or true with an error rate caused by the
inherent false positives of Bloom filters (query accuracy will be
discussed in Section V). If the query result is false, the query
will finally be terminated with false result. Otherwise (the
query returns true), L will continue to inquire its epc table
for achieving higher query accuracy only when L is a terminal
node, without further querying other nodes.

When an existence query at the node L requires high query
accuracy like 99.9% but the local query with 99% accuracy
cannot meet this requirement, it is necessary for L to cooperate
with other nodes for accomplishing this confined existence
query. In this case, L first executes the local query based
on its local storage. If the query returns false or L is a
terminal node, L will stop the query immediately since the
query accuracy reaches up to 100%. Otherwise (the result is
true and L is an internal node), L will inform all its children to
execute the query and then wait for their replies. Among these
replies, the final result is true as long as there is a true reply.
Otherwise, the query returns false as the final result. Upon
receiving the query, all L’s children do the same operations
as L does. This process repeats until it satisfies the suitable
terminating condition, such as the expected query accuracy.

In light of this, we introduce an important definition: N -
layer existence query. For an existence query launched at the
node L, if it is allowed, at most, to be forwarded to the N th

layer node in the subtree rooted from L, then we refer to
this kind of existence query as N -layer existence query (N -
layer query for short) issued at L. Note that the number of
layers starts counting from 1. That is, L as the root of the
subtree is the first layer and the local query is actually the
1-layer query. Algorithm 1 describes the specific query and
communication process of the N -layer query. Take Fig. 3 for
example. A 2-layer query is issued at B. If B’s local query
returns true (errors may occur), B will send the updated query
to its children and wait for their responses after changing the
2-layer query into the 1-layer query. Upon receiving the 1-layer
query, B’s children, D and E execute the query and reply to
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Fig. 3: A 2-layer existence query

B. As a result, B returns the final result according to their
responses. On the other hand, if B’s local query returns false
with certainty, the 2-layer query with the false result will be
terminated immediately without further querying. Therefore,
the 2-layer query at the node B, at most, is forwarded to the
second layer, D and E, in the subtree rooted from B.

Algorithm 1: N-layer Existence Query
Input: t: tag’s EPC, n: layer limitation, L: current node
Output: true/false

1: re = local existence query(t, L);
2: if re == false ∥ L is terminal node ∥ n ≤ 1 then
3: send re to the querier; return;
4: else
5: send the query with parameters (t,n− 1) to L’s children;
6: RP = the set of replies from all L’s children;
7: count = |RP |;
8: for (i = 1; i ≤ count; i++) do
9: if RP [i] == true then

10: send true to the querier; return;
11: end if
12: end for
13: send false to the querier; return;
14: end if

B. Path Query

Besides existence queries, the path query as another kind
of common query is widely available for tracing the tagged
item’s lifetime trajectory in practical applications. If a path
query for a tag t is issued at the node L and t went
though L before, then t’s trajectory will be split into three
parts: L, upstream path composed of L’s ancestor nodes
and downstream path composed of L’s descendant nodes.
Thus, the complete path is supposed to be upstream path→
L→downstream path. Consider the path query. L first carries
out the local query to check whether t has stayed in L.
If the query result is false, the path query finally returns
null without further querying. Otherwise, the trajectory will
consist of only upstream path→L when L is a terminal node,
but upstream path→L→downstream path when L is an
internal node.

For the upstream path, L is supposed to inquire its parent
node which executes the same operation as L does until the
root node, as shown in Algorithm 2. Clearly, once a tag went
through L, it must stay in L’s parent node, due to the fact
that all products in L are distributed from L’s ancestor nodes.
Therefore, the upstream path is related to only the supply chain
structure, instead of the queried tag. Further, Algorithm 2 is
required to be executed only once for a fixed supply chain
structure. On the other hand, consider the downstream path
query. L sends the query to all its children and waits for their
replies. Then, any child node C receiving the query executes
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the local query firstly. If it returns false, C will send null to its
parent node immediately without other operations. Otherwise,
C also forwards the query to its children and waits for their
replies as L does. After receiving a non-null path, C assembles
and sends the new path C→path to its parent node. However,
if all paths tend to be null, C will send null as the final result
to its parent node. The process repeats until terminal nodes,
as shown in Algorithm 3.

V. FALSE POSITIVE PROBABILITY

Although Bloom filters incorporated in our storage model
are space-efficient, they are likely to cause query errors. In
order to clarify the query accuracy, we analyze the error rate of
different queries in this section. In general, our storage model
has no false negatives (FNs) but false positives (FPs). An FN
means the query result is false but it is in fact true. In our
model, once a tag goes through a node, the node must store the
tag’s EPC in its Bloom filter, resulting in corresponding bits
are all set to 1. When a new query about this tag is issued, it
is definite that the EPC has been in the previous Bloom filter.
Therefore, there are no FNs occurring in our storage model.
Unfortunately, an FP is likely to occur when a Bloom filter

Algorithm 2: Upstream Path Query
Input: L:node who launches the query, M :current node

1: if M is the root then
2: if L == M then
3: return null;
4: end if
5: send “M” to L; return;
6: else
7: send the query with parameter “M” to M ’s parent;
8: end if
9: path = the reply from M ’s parent node;

10: if L==M then
11: return path;
12: else
13: new path=path→M ;
14: send new path to L; return;
15: end if

Algorithm 3: Downstream Path Query
Input: t: tag EPC, M : current node

1: re = local existence query(t);
2: if re == false then
3: send null to M ’s parent node; return;
4: end if
5: if M is the terminal node then
6: send “M” to M ’s parent node; return;
7: end if
8: send the query with parameters(M ,t) to M ’s children;
9: paths = the set of replies from all M ’s children;

10: count = |paths|
11: for (i = 1; i ≤ count; i++) do
12: if paths[i] ̸= null then
13: break;
14: end if
15: end for
16: if i > count then
17: send null to M ’s parent node;
18: else
19: new path = M→paths[i];
20: send new path to M ’s parent node; return;
21: end if

suggests that a tag is in the Bloom filter but it is actually not.
We next analyze the false positive probability (FPP) of two
kinds of queries, existence queries and path queries.

According to the process of the path query, the query may
be terminated by false result with certainty or be forwarded
to terminal nodes with epc tables guaranteeing 100% query
accuracy. Thus, there are no FPs happening for path queries. As
a result, we focus on analyzing the FPP of the existence query.
Table I lists the notations to be used below. We first discuss
FPPs of local queries and then FPPs of N -layer queries.

TABLE I: NOTATIONS OF PARAMETERS
Parameters Definitions

ni the number of tags stored at the node i
mi the length of the bit array of i’s Bloom filter
pi the number of hash functions of i’s Bloom filter
fi the FPP of the local query at the node i
fn
i the FPP of the n-layer query at the node i

H(i) height of the tree rooted from i (count from 1)
D(i) the set of the node i’s children

A. FPP of the Local Query

Consider a local query checking the membership based on
only the local storage. Terminal nodes do not incur FPs due
to their epc tables offering 100% query accuracy. However,
an internal node which only holds a Bloom filter is likely to
cause FPs. Assume that the Bloom filter consists of m bits and
p hash functions for storing n tags.

Theorem 1: The FPP of the local existence query at the
internal node is:

f =
(
1− (1− 1

m
)pn

)p ≈
(
1− e

−pn
m

)p (1)

Proof: The probability that a certain bit is set to 1 by a
hash function is 1

m . Thus, the probability that the bit is not
set by a hash function is (1− 1

m ). After inserting n elements
with p hash functions, the probability that the bit is still 0 is
(1 − 1

m )np≈e
−pn
m . Hence, the probability that the bit is 1 is

(1− (1− 1
m )np)≈(1− e

−pn
m ). The FP occurs when the p bits

mapped by the p hash functions are all 1. Therefore, the FPP
is f = (1− (1− 1

m )pn)p ≈ (1− e
−pn
m )p.

The FPP decreases with m but increases with n. Table II
presents different FPPs under different optimized parameters
in Bloom filters. When m/n = 10, the FPP is 1%. In other
words, if each EPC (96 bits in the C1G2 standard) takes up
10 bits in a Bloom filter, the query accuracy will reach up to
99%. It indicates that the Bloom filter can greatly compress
raw data at the expense of a small error rate.

TABLE II: FPPS UNDER DIFFERENT PARAMETERS
FPP 10% 1% 0.1% 0.01% 0.001%
m/n 5 10 15 20 24

p 3 7 10 14 17

To sum up, the FPP of the local query at a node L is:

fL =

{
0 if L is a terminal node(
1− e

−p
L

n
L

m
L

)p
L otherwise

(2)
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B. FPP of the N-Layer Query

Having considered various tree structures, we find that it
is too complicated to directly deduce the FPP of the N-layer
query. Instead, we resort to recursive analysis. The FP of the
N -layer query at the node L occurs, only when both L’s local
query and any i’s (i∈D(L)) (N -1)-layer query incur FPs.

Theorem 2: The FPP of the N -layer query at L is:

fN
L = fL

(
1−

∏
i∈D(L)

(1− fN−1
i )

)
(3)

where, f j
i = 0 (j ≥ 1) when i is a terminal node.

Proof: The N -layer query will be updated to the (N -1)-
layer query when being sent to L’s children. For a single node
i (i∈D(L)), the probability that it does not incur an FP of
the (N -1)-layer query is (1 − fN−1

i ). Thus, the probability
that there are no FPs of (N -1)-layer queries at all D(L) is∏

i∈D(L)(1−fN−1
i ). The probability that at least one node i in-

curs an FP of the (N -1)-layer query is (1-
∏

i∈D(L)(1−fN−1
i )).

Therefore, the FPP of the N -layer query is the probability that
both the FP of L’s local query and FP of any i’s (i∈D(L))
(N -1)-layer query occur: fN

L = fL
(
1−

∏
i∈D(L)(1−fN−1

i )
)
.

With more information obtained from other nodes, the
N -layer query (N≥2) dramatically improves query accuracy
compared with the local query. Fig. 4 simulates the FPP of a
N -layer query (1≤N≤6), where the supply chain is comprised
of a full binary tree. It is clear that the FPP decreases with N .
When the FPP of the local query is 0.1, the FPP of the 3-layer
query tends to be just under 0.01. Similarly, the 4-layer FPP
falls to less than 0.05 with the local FPP being 0.3.

Note that the computation process of fN
L is bottom-up

throughout the whole supply chain structure. Meanwhile, the
initial N in fN

L is 1 and it increases by 1 each time. This
process continues until fN

L = 0 (fm
L must be 0 when m > N ).

Take Fig. 3 as an example. C, D, F and G are all terminal
nodes, so f1

C = f1
D = f1

F = f1
G = 0. C, D, F and G

stop computing. Then for the node E, f1
E = fE , f2

E =
fE(1−

∏
i∈{F,G}(1−fi)) = 0. E stops computing. After that,

B has f1
B = fB , f2

B = fB(1 −
∏

i∈{D,E}(1 − fi)) = fBfE ,
f3
B = fB(1 −

∏
i∈{D,E}(1 − f2

i )) = 0. B stops computing.
Finally, A has f1

A = fA, f2
A = fA(1 −

∏
i∈{B,C}(1 − fi)) =

fAfB , f3
A = fA(1−

∏
i∈{B,C}(1− f2

i )) = fAf
2
B = fAfBfE

and f4
A = fA(1−

∏
i∈{B,C}(1−f3

i )) = 0. A stops computing.

Once an existence query is issued at the node L with
expectant query accuracy F (0 < F≤1), we can minimize
i satisfying the following inequation:

f i
L ≤ (1− F ) < f i−1

L (4)

where, i ≥ 1 and f0
L = 1. Moreover, if i = H(L), then

f i
L = 0. In other words, we can definitely guarantee 100%

query accuracy when the query is allowed to be forwarded to
terminal nodes.

VI. PERFORMANCE ANALYSIS

In this section, we analyze key performance metrics for our
storage model and query processing.

Fig. 4: FPP of the N-layer existence query

A. Storage Space

In our storage model, every node is required to construct a
Bloom filter with m bits and p hash functions for storing tags’
EPCs. As a result, m is supposed to be minimized as it acts
as major storage space of the Bloom filter. Assume that there
are n tags1 to be stored at a node L and the EPC is 96 bits.
According to Theorem 1, we have m = −np

ln(1−fL1/p)
. Let the

first derivative of m be zero, we have the minimum m when
p = −lnfL

ln2 . Because p is an integer, we set p = ⌈−lnfL
ln2 ⌉ in

our model. Thus, we have

min(m) =
⌈ −n⌈−lnfL

ln2 ⌉

ln(1− fL
1/⌈−lnfL

ln2 ⌉)

⌉
(5)

Apart from the Bloom filter, L will also be required to
reserve raw RFID data in its epc table if it is a terminal
node. Therefore, the storage space tends to be (96 + k)n (k
bits for storing product information expect for the EPC, if
desired). In summary, if L is an internal node, the storage
space will be ⌈ −np

ln(1−fL1/p)
⌉. Otherwise, the storage space will

be ⌈ −np
ln(1−fL1/p)

⌉+ (96 + k)n, where p = ⌈−lnfL
ln2 ⌉.

B. Storage Efficiency

Storage efficiency is defined as the average storage time
for locally storing each tag’s information. Given a Bloom filter
consisting of an m-bit array and p hash functions, the storage
efficiency remains stable at O(p) regardless of tag cardinality.
Therefore, for a node L, the storage efficiency will be O(pL)
if L is an internal node but tends to be (O(pL)+SL) (SL

changing over tag cardinality is the average storage time for
saving a tag’s information in L’s epc table) otherwise.

C. Query Time & Query Overhead

Query time and query overhead are both important perfor-
mance indicators to evaluate a query. As mentioned, our query
processing supports two types of queries, existence queries
and path queries. A path query launched at L comprises three
parts: L, upstream path and downstream path. However,
execution time and overhead of the path query are mainly
composed of the downstream path query as the upstream path
query is required to be executed only once. Furthermore, ac-
cording to the query processing in Section IV, the downstream
path query at L can be actually treated as H(L)-layer query

1If a priori knowledge of n is unknown, we can construct the Bloom
filter using Scalable Bloom Filters [15], which cost a little extra space to
accommodate dynamic tag cardinality. The Scalable Bloom Filter is actually
a variant of Bloom filters and its theoretical analysis can be found in [15], we
therefore focus on analyzing the general case with a prior n in this paper.
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without considering negligible differences of communication
packages. Hence, this subsection focuses on analyzing query
time and overhead for only the N -layer query. Table III lists
the notations to be used below.

TABLE III: NOTATIONS OF PARAMETERS
Parameters Definitions

tc communication time between two nodes
p(t, i) probability that the tag t is the node i’s member
TE(i) time of local existence query at the node i

TE(i, n) time of n-layer existence query at the node i
TE1(i, n) time of n-layer query for a member tag at i
TE0(i, n) time of n-layer query for a non-member tag at i

1) Query Time: Query time is defined as the average time
for executing a query. We first analyze query time of a local
query (1-layer query). If L is an internal node, the query time
TE(L) will be O(p). By contrast, if L is a terminal node
and the query returns true (an FP may occur), the query will
continue to be executed in L’s epc table. In order to improve
query efficiency, we suppose that a B-tree index, one of the
most common indexes, is created, so the query time tends to
be O(log(n)). Therefore, we have the local query time:

TE(L) =

{
O(p) if L is an internal node

O(p) +
(
µ+ (1− µ)fL

)
O
(
log(n)

)
otherwise

where, µ = p(t, L).

We then analyze query time of an N -layer query
(2≤N≤H(L)) according to whether t is L’s member. If t is in
L’s Bloom filter, the query will definitely be forwarded along
t’s trajectory, like L1→L2→...→Lk (1≤k≤N ). However, k
relying on both t and the FP varies a lot under different queries.
We instead explore the upper bound of expected query time,
letting k = N . Suppose that the query goes through one of the
longest communication links, like L1(L=L1)→L2→...→LN
and the query result is feed back from Li+1 to Li (1≤i < N ).
The maximal query time for a member tag at L is:

TE1(L,N) =

N−1∑
i=1

(TE(Li) + tc) + TE(LN ) + (N − 1)tc

=

N∑
i=1

TE(Li) + 2(N − 1)tc (6)

On the other hand, if t does not belong to L’s Bloom
filter (it cannot be the member of L’s descendant nodes),
the query will go down the next layer only when FPs occur.
Thus, an N -layer query for t may be completed at the kth

(1≤k≤N ) layer nodes (the kth layer nodes participating the
query all return false). Suppose that the communication link is
L1→L2→...→Lk (1≤k≤N ). Theorem 3 shows the expected
query time.

Theorem 3: The expected query time of an N -layer query
for the non-member tag t at the node L is:

TE0(L,N) = TE(L)(1− fL) + fN−1
L

( N∑
i=1

TE(Li) + 2(N − 1)tc
)

+

N−1∑
k=2

[
(fk−1

L − fk
L)

( k∑
i=1

TE(Li) + 2(k − 1)tc
)]

= TE(L) +

N−1∑
i=1

f i
L

(
TE(Li+1) + 2tc

)
(7)

Proof: L first executes the local query. If it returns false
(the probability is 1− fL), the query terminates immediately.
Thus, we have the first term TE(L)(1− fL). If the FP occurs,
the query will go down the next layer. Then, the probability
that the N -layer query is terminated at the kth (2≤k≤N − 1)
layer nodes (the kth layer nodes participating the query all
return false) is (fk−1

L − fk
L). That is because, fk−1

L as the
probability that the (k − 1)-layer query returns true, means
the query will continue to go to the kth layer. Similarly, fk

L
indicates the probability that the query goes to the (k + 1)th

layer at least. Hence, (fk−1
L − fk

L) is the probability that the
N -layer query is terminated exactly at the kth layer. The
corresponding query time is (

∑k
i=1 TE(Li) + 2(k − 1)tc).

Hence, we have the expected query time by multiplying the
two terms, that is, (fk−1

L − fk
L)(

∑k
i=1 TE(Li) + 2(k − 1)tc).

Note that the probability that the query goes to the N th layer
is fN−1

L , since it must be terminated no matter what the N th

layer nodes return. Finally, we have TE0(L,N) by summing
up all the terms.

The expected query time of the N -layer query for a tag t
at the node L is:

TE(L,N) = TE1(L,N)p(t, L)+TE0(L,N)(1−p(t, L)) (8)

2) Query Overhead: In general, the query overhead is
affected by a range of factors, such as communication and
computation resources. For simplicity, we measure the query
overhead with the number of nodes involved in the query as
they are positively correlated. Table IV lists the notations will
be used below.

TABLE IV: NOTATIONS OF PARAMETERS
Parameters Definitions
C(i, n) overhead of n-layer query at the node i
C1(i, n) overhead of n-layer query for member tag at i
C0(i, n) overhead of n-layer query for non-member tag at i

Similar to query time, the query overhead depends on a
tag’s membership. If an N -layer query for a non-member tag
t is issued at L, the query will go down the next layer only
when the local FP occurs. Thus, the probability that only L
participates in the query is (1− fL). Otherwise, L’s children
will be involved in the (N -1)-layer query. Therefore, we have
the recursion formula:

C0(L,N) = (1− fL) + fL

[
1 +

∑
i∈D(L)

C0(i,N − 1)

]
= 1 + fL

∑
i∈D(L)

C0(i,N − 1)
(9)

where C0(i, n) = 1, when n = 1 or i is a terminal node.

On the other hand, suppose that there is a member tag
t whose trajectory starting from L is L1(L)→L2→...→Lk

(1≤k≤N ). Without FNs occurring in our model, the query
must be transmitted along the trajectory, leading to Li’s
participation (1≤i≤k). Meanwhile, Li’s siblings (nodes with
same parent node) also participate the query due to the fact
that the query from Li−1 is sent to all its children including Li.
Moreover, the query will be forwarded if FPs occur at these
siblings, which is equivalent to the query for a non-member
tag t at these nodes. Therefore, we have the recursion formula
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Fig. 5: False positive probability of the N -layer query

of query overhead for a member tag at the node L:

C1(Li, N) =
∑

j ̸=Li+1

j∈D(Li)

C0(j,N − 1) + C1(Li+1, N − 1) + 1

(10)
where, 1≤i < k and C1(Lk, 1) = 1.

In the end, we have the expected query overhead for a tag
t at the node L:

C(L,N) = C1(L,N)p(t, L) + C0(L,N)(1− p(t, L)) (11)

VII. EVALUATION

In this section, we first simulate the key performance
indicators, i.e. FPP, query time and query overhead. We then
compare our storage model with the traditional distributed
approach by real experiments.

A. Simulation

In the simulation, the supply chain structure is comprised of
a full binary tree with 218 tags flowing from the root to terminal
nodes. Consider any internal node L in the tree. Half of the
products at L are distributed to L’s left child, and the remaining
products are distributed to L’s right child. Every node stores
related information of tags according to our storage model. In
each simulation, the FPPs of local queries at all nodes are set
to be the same. Along with above settings, we simulate the
FPP, query time and query overhead.

1) FPP of the Ouery: To simulate FPPs, 108 non-member
tags generated randomly are treated as our test set. We use the
variable total to count the ture returns (FPs occur) and then
the FPP is calculated by total/108 in each simulatioin. Fig.
5 shows FPPs of N -layer queries (1≤N≤5) under different
local FPPs. The FPP of the N -layer query experiences a steady
increase with the local FPP, which is in accordance with our
intuition and theoretical derivation. In contrast, the FPP of
the N -layer query decreases as N increases, confirming that
the N -layer query can efficiently improve the query accuracy.
Table V contrasts the theoretical value with the simulative
FPPs of N -layer queries (1≤N≤5) under different local FPPs.
The data show that the corresponding FPPs are close. Note
that the simulative value is supposed to fluctuate up and down
around theoretical value. However, the figure for simulation is
always a little bigger than theory. There are two reasons for
this case. First, all hash functions do not distribute uniformly,
resulting in deviating ideal expectation. Second, the total
number of hash functions is limited in the simulation, so the
parent and children are likely to share same hash functions,
leading to the increase of FPPs.

TABLE V: COMPARISON OF FPPS
FPPs of N -layer existence queries

1-L theory 0.04 0.08 0.12 0.16 0.20
simulation 0.0402 0.081 0.12 0.16 0.199

2-L theory 0.0031 0.012 0.027 0.0471 0.072
simulation 0.0033 0.013 0.033 0.0474 0.076

3-L theory 2.5e-4 2.0e-3 6.4e-3 0.015 0.028
simulation 3.5e-4 2.7e-3 8.4e-3 0.015 0.03

4-L theory 2.0e-5 3.1e-4 1.5e-3 0.0047 0.011
simulation 2.8e-5 5.2e-4 2.5e-3 0.0048 0.014

5-L theory 1.6e-6 5.0e-5 3.7e-4 1.5e-3 4.4e-3
simulation 2.7e-6 1.2e-4 6.3e-4 1.6e-3 6.8e-3

2) Query Time: Query time consists of computing time
as well as communicating time. Generally, remote commu-
nication takes longer time than local computation due to
the network latency. Assume that the average peer-to-peer
communication time is O(100) and querying the epc table
and Bloom filter takes O(log(n)) (n is the number of tags) and
O(p) (p is the number of hash functions) respectively. In Fig.
6(a), we query 106 non-member tags in each simulation and
calculate average query time of the N -layer query (2≤N≤5).
As it can be seen, the time is positively relevant to the local
FPP and N . First, the bigger the local FPP is, the more likely
an FP incurs. Thus, it is easier for the query to go down
the next layer, increasing query time. Second, the query is
allowed to be forwarded to more layers with the growth of
N , leading to the rise of execution time. Fig. 6(e) contrasts
the simulative time with corresponding theoretical time. The
error rate is controlled within 7% that verifies our theoretical
deduction about query time for non-member tags. By contrast,
in Fig. 6(b), we query 218 member tags in each simulation and
obtain the average query time. The query time decreases with
the local FPP since the bigger the local FPP is, the less local
query time is. Fig. 6(f) shows that the simulative time is equal
to theoretical time, resulting from the fact that the query always
goes to terminal nodes (no FNs), which definitely reaches the
maximal query time (theoretical value).

3) Query Overhead: The overhead of the N -layer query
at the node L relies on whether the tag has stayed in L. Fig.
6(c) queries 106 non-member tags in each simulation, and gets
the average query overhead of the N -layer query (2≤N≤5).
In contrast, Fig. 6(d) queries 218 member tags and obtains the
average number of nodes involved in the query. The overhead
increases with the local FPP as well as N . For one thing,
the high local FPP increases the chance for a query to go
down the next layer. For another, the query is allowed to be
forwarded to more nodes with the increase of n. Note that the
overhead of the 2-layer query in Fig. 6(d) remains unchanged,
since the query for a member tag at L will definitely be
forwarded to all L’s children regardless of the local FPP.
Fig. 6(g) and Fig. 6(h) contrast the simulated overhead with
the corresponding theoretical overhead for non-member and
member tags respectively. Both small relative errors verify that
our theoretical deduction about query overhead.

B. Experiment

This subsection compares our storage model and query
processing with the traditional distributed approach in terms
of storage space, storage time and local query time. We
experiment on an Intel Dual Core 2.5G CPU with 12G memory
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Fig. 6: Verification of query time and query overhead

and 7200 RPM hard drive using Java. Meanwhile, considering
the traditional distributed storage, we use Oracle Database 11g
Release 2 to locally store raw EPCs that a node captures and
create a default index based on the attribute epc in the database.
Due to the lack of a well known commercial RFID data set,
we generate 96-bit EPCs randomly. The scale of our data set
ranges from 100,000 to 10,000,000.

1) Storage Space: The space of a Bloom filter depends on
the expected error rate. As seen from Fig. 7(a), the storage
space per EPC varies a lot under different local FPPs. The
horizontal ordinate is FPP=2i × 10−4 (0≤i≤11) ranging from
10−4 to 10−1. The traditional storage remains stable at 96
bits, whereas storage space using Bloom filters decreases with
the local FPP. For example, when FPP=10−4 (i=0), our model
needs 20 bits per EPC. When FPP increases to 10−1, it needs
no more than 5 bits per EPC, which compresses the data about
20 times. Therefore, our storage model is space-efficient at the
cost of a small error rate.

2) Storage Time & Local Query Time: Fig. 7(b) compares
our model with traditional one under different data volume
in terms of storage time. In each simulation, we insert 105

EPCs (the horizontal axis indicates the ith group of 105 EPCs)
into the Bloom filter and epc table respectively. Due to the
great space saving, the Bloom filter is put in the main memory
compared with epc table stored in the hard disk. In the figure,
the storage time almost increases exponentially with the data
scale in traditional storage (vertical coordinate is exponential),
because the database has to maintain indexes for storing
new EPCs, leading to great storage overhead. In contrast,
the storage time of Bloom filters with different FPPs (10−3,
10−2, 10−1) fluctuates around different constants respectively,
regardless of the data volume. The FPP=0.01 is 8 times more
efficient than traditional scheme at least. Moreover, the storage
time decreases with the local FPP, resulting from the reason
that the higher FPP is, the less hash functions are required.

Fig. 7(c) compares query time between our model and the
traditional one. In each simulation, we query 105 member and
non-member EPCs based on epc tables and BFs and then

obtain total query time. The query time of traditional storage
(left vertical coordinate) for member tags (EPC Member) and
non-member tags (EPC NonMember) varies a lot with different
number of items. When the number is less than 7 × 106,
the time almost remains stable, with the exception of a peak
at around 3 × 106. The steady trend is due to the fact that
the difference of computation time is negligible facing small-
scale EPCs, while the peak is likely to result from the index
adjustment executed by oracle database. When the number is
greater than 7 × 106, the time generally sees a sharp rise. In
contrast, FPP=0.01 (right vertical coordinate) for member tags
(BF Member) and non-member tags (BF NonMember) does
not change with the data scale. The former one is longer than
the latter, since the query for a member tag must check all
hash functions. Instead, it will return immediately if any bit is
0 for a non-member tag. Our queries are faster than traditional
queries more than 70 times. In summary, our storage model
and query processing with Bloom filters are time-efficient.

VIII. RELATED WORK

Existing research work on RFID data management falls
into two areas. One is concerned with data processing. An
adaptive smoothing filter SMURF for RFID data cleaning was
proposed to provide accurate RFID data to applications in [16].
Rao et al. [17] designed a deferred approach for detecting
and correcting RFID data anomalies by utilizing declarative
sequenced-based rules. Chen et al. [18] proposed a Bayesian
inference based approach for cleaning RFID raw data with data
redundancy and prior knowledge. Mahdin et al. [19] presented
a data filter method that efficiently detected and removed
duplicate readings.

The other area is about data storage and query processing.
A warehousing model was introduced in [8] that preserved
object transitions while providing significant compression and
path-dependent aggregates. Wang et al. [13] established Dy-
namic Relationship ER model (DRER) to track and monitor
RFID data. Lee et al. [11] proposed an effective path encoding
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scheme to encode the flow information for products. The VG-
curve combined with Multidimensional Dynamic Clustering
Primary Index was used to efficiently access multidimensional
data in [20]. Chawathe et al. [10] suggested a layered architec-
ture for managing RFID data. All these approaches assumed
that RFID data were stored within a single data repository. The
traceability networks with a new architecture and algorithms
for processing traceability queries were introduced in [21].
Cao [22] designed a scalable and distributed stream processing
system for RFID tracking and monitoring by combining loca-
tion and containment inference with stream query processing.
These work [21], [22], however, do not consider distributed
RFID data storage and fast query.

IX. CONCLUSIONS

The big data in RFID applications has posed new requests
for distributed data storage and query processing support. In
this paper, we design an efficient distributed storage model
leveraging Bloom filters and establish corresponding query
processing schemes. Our primary objective is to make large-
scale RFID data management more space-efficient and time-
efficient under any query accuracy requirement. Two kinds of
most popular queries, i.e., existence query and path query,
can be efficiently supported in the newly proposed model.
Theoretical analysis and experiments validate the significant
improvement of our model over the traditional distributed
storage approach. With the expense of 1% local false positive
probability, our model can reduce the storage space by a factor
of 10 and improve the local query efficiency 70 times.
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