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Bridging Dimensions in Fingerprints to Advance
Distinctiveness: Recovering 3D Minutiae from a

Single Contactless 2D Fingerprint Image
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Abstract—Contactless 3D fingerprint identification systems have emerged to provide more accurate and hygienic alternatives to
contact-based conventional systems that acquire hundreds of millions of fingerprints everyday. However, the intricate process of
acquiring 3D fingerprints presents a significant challenge, acting as a key barrier to fully unlocking the potential of 3D fingerprint
biometrics. This paper introduces a novel framework to directly recover corresponding 3D minutiae template from a single contactless
2D fingerprint image. Billions of contact-based fingerprints have been acquired and employed everyday for e-governance and other
applications. Seamless adoption of contactless 3D fingerprint technologies also requires advanced capabilities to accurately match
3D fingerprints with respective 2D fingerprint templates, which is currently missing in existing literature. We therefore introduce novel
capabilities to accurately align minutiae templates in 3D spaces and enable compensation for the unknown perspective transformation.
This capability significantly enhances the ability to accurately match 3D to 3D and 3D to 2D fingerprint templates. Furthermore, we
introduce a new approach to synthesizing realistic contactless fingerprint images, resulting in the generation of a large synthetic
database complete with corresponding 3D ground truths of minutiae points. Finally, we provide a detailed theoretical analysis of
formulation for the uniqueness of recovered 3D minutiae templates, providing a theoretical justification for the superiority of such 3D

minutiae templates over their 2D counterparts.

Index Terms—Contactless 3D Fingerprint Identification, Fingerprint Synthesis, Biometrics, Cross-Domain Fingerprint Matching.

1 INTRODUCTION

OMPLETELY contactless fingerprint identification has
C attracted significant attention, such systems offer a high
level of hygiene and address skin deformation-related chal-
lenges with the contact-based fingerprint systems. Widely
deployed fingerprint matching algorithms [1], [6] are largely
based on minutiae-based features since minutia are robust
to re-scaling, rotation, distortion, and noise. Such minutiae-
based methods are interpretable compared with texture-
based fingerprint matching methods since the minutiae
matching or correspondence is provided along with the
match score. Therefore, the accuracy of minutiae extrac-
tion, from the acquired fingerprint images, is critical for
accurate matching, including contactless-to-contact-based
(CL2CB) and contactless-to-contactless (CL2CL) fingerprint
image matching. Traditional minutiae detection methods,
such as in [24], rely on topological analysis and hand-crafted
features for the minutiae extraction. There have been several
promising attempts using deep learning-based methods [4],
[20], [23], [25], [26], [27] to recover the minutiae templates
from contact-based and contactless fingerprint images.

As compared to contact-based fingerprints, completely
contactless fingerprints are often acquired under six degrees
of freedom, under diverse finger poses, and can require
complex perspective transformations to align the contactless
fingerprints that are to be matched. Such match accuracy
significantly degrades when two contactless fingerprints,
from the same fingers, acquired under very diverse finger
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poses are matched. Therefore, the localization of contact-
less fingerprints in 3D spaces can offer a viable solution
to address such problems: Related work in [21], [28] ac-
quired contactless fingerprint images with the depth map.
Therefore, 3D fingerprint templates were recovered which
localized the minutiae in 3D spaces, along with the minutiae
orientations using the elevation and azimuth angles. By
incorporating the relative 3D measurements between the
3D minutiae, two 3D templates can be iteratively aligned,
and such an approach has shown impressive results and
advantages over the 2D minutiae templates. However, there
are two challenges with such [21], [28] conventional meth-
ods: i) the 3D information needs to be acquired by specially
designed devices or sensors which are not cost-effective,
complex, and also computationally demanding, ii) the stan-
dalone performance from the 3D minutiae template match-
ing methods, e.g. [21], [28], is quite limited and needs to be
further enhanced to meet expectations for the deployments.

To address the first challenge, we design a one-stage
lightweight learning-based model, abbreviated as FingerY-
olo3D in this paper, which can be used to recover 3D
minutiae templates from a single contactless monocular
fingerprint image. The proposed network architecture can
also be used to extract 2D minutiae templates and such 2D
minutiae extractor is abbreviated as FingerYolo2D in this
paper. The 3D minutiae templates are uniquely represented
using z, v, z, 0, ¢, t, where (z,y) is the location of respective
minutia in 2D space, z is the height of the minutiae at loca-
tion (z,y), t is the type of the minutiae, while # and ¢ respec-
tively represents the azimuthal and elevational angles for
the respective 3D minutia orientation. Experimental results
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presented in this paper illustrate that the 3D minutiae tem-
plates recovered by FingerYolo3D can immensely benefit
from such 3D information and offer significant advancement
for the minutiae-based contactless fingerprint verification
capabilities available today. The FingerYolo2D model can
also achieve state-of-the-art (SOTA) performance compared
with previous 2D minutiae extractors, which can validate
the superiority of the design of the proposed architecture.

To effectively train the FingerYolo3D, it is necessary to
acquire a large contactless fingerprint database with accu-
rately labeled respective 3D ground truths. However, it is
difficult to acquire such a large database for four reasons: i)
Several legal restrictions such as from GDPR [34] prohibit
large-scale collection of private databases, including those
from fingerprints; ii) Current 3D fingerprint acquisition
methods [21], [28], [29], [30], [31], [33] provide the depth
map of the contactless fingerprint with inadvertent errors
introduced during the acquisition, reconstruction or the
labeling, and therefore such acquired 3D information cannot
be regarded as true ground truth for 3D minutia; iii) gener-
ation of accurate ground truths, especially for 3D surfaces,
is widely regarded as laborious and costly task. Therefore,
this paper introduces a new approach to more accurately
synthesize a large database that contains realistic contactless
fingerprint images with the corresponding ground truths for
the respective 3D minutiae templates.

Contactless 3D fingerprint surfaces are non-rigid sur-
faces that cannot be accurately described with spherical
or cylindrical models. Therefore, accurate alignment of 3D
minutiae templates that are often acquired from different
viewpoints, largely due to the nature of contactless finger-
print imaging, cannot be accurately achieved by linear per-
spective transformations in 3D spaces. This is a key factor
that limits match accuracy for contactless 3D fingerprints.
Therefore, to address the second challenge, we introduce
the Perspective Transformation Compensation Mechanism
(PTCM) for 3D minutiae template matching, and this ap-
proach can achieve the SOTA performance. Our experimen-
tation reveals that currently available 3D minutiae match-
ing methods [21], [28] cannot outperform the SOTA 2D
minutiae template methods, and such comparisons are also
missing in respective references. This is largely due to the
limitations of prior methods [21], [28] to avail full poten-
tial from the 3D minutiae templates. In addition, currently
available methods for 3D fingerprint matching cannot be
used for 3D to 2D template matching, which is critical for
the success of 3D fingerprint technologies to replace large-
scale deployments that have already acquired billions of 2D
fingerprint templates. On the contrary, the proposed PTCM
aligns the 3D minutiae templates to alleviate the influence
of perspective transformation, and it is the first such method
to accurately match 3D to 2D minutiae templates. The
experimental results indicate that both CL2CB and CL2CL
match performance benefits from the proposed PTCM.

Earlier studies [28] on the uniqueness of 3D fingerprints
have made assumptions on the independence of 3D fea-
tures. Such an assumption is not reasonable, although it
may help to establish an overestimated upper bound on
the individuality of 3D fingerprints, i.e., the probability of
falsely matching randomly selected 3D fingerprints from
different persons. This paper presents a systematic theoret-

ical analysis of the accurate estimates for the uniqueness
of contactless 3D fingerprints. Key contributions from this
paper can be summarized as follows:

o This paper develops a lightweight model to recover 3D
minutige template from a single contactless 2D fingerprint
image. We also design a novel optimization function that
can account for the cyclic nature of 3D angles, which
enables our network to precisely estimate the location and
orientation of 3D minutiae. Such capabilities to localize
minutiae positions and orientations in 3D spaces enable
highly accurate matching of contactless 2D fingerprint im-
ages using the recovered 3D minutiae templates. Rigorous
experimental results in Sec. 7 indicate outperforming re-
sults, both for the 3D minutiae template and 2D minutiae
template extractor introduced from this work.

« This paper for the first time develops a novel mechanism
(PTCM) to accurately align and match 3D minutiae tem-
plates for both contactless 3D to contactless 3D, and con-
tactless 3D to contact-based 2D fingerprint matching. Such
new capability to align 3D minutiae templates (regardless
of whether the 3D templates are acquired from the real-
world 3D sensors or recovered by our proposed model)
addresses a key challenge associated with estimating the
perspective transformations for aligning completely con-
tactless fingerprint images that are often acquired with arbi-
trary finger pose. In the PTCM module, a new tetrahedron-
based algorithm is designed to remove outlier minutiae
matching pairs from the minutiae correspondences that are
extracted by the GNN-based module. We also provide theo-
retical proof (in Sec. 4) on the effectiveness and justification
of the candidate tetrahedron selection strategy introduced
in this algorithm. In the experiments, we align and match
the 3D minutiae templates using the proposed PTCM and
achieve outperforming results, both for the CL2CB and
CL2CL fingerprint matching.

« Earlier research on 3D minutiae templates’ individuality
has overlooked the interdependence between the locations
and orientations of 3D minutiae, resulting in a large overes-
timation of uniqueness. We present a systematic theoretical
analysis to accurately estimate such real-world interdepen-
dence in the distribution of 3D minutiae. Such analysis en-
ables us to determine the degree of performance enhance-
ment on several 2D fingerprint databases in the public
domain, validating the merit of our work in recovering 3D
templates from single contactless fingerprints.

In addition, this paper also addresses technical challenges in
accurately and efficiently synthesizing a large-scale database
of contactless fingerprint images, along with the respective
3D ground truth minutiae templates. Accuracy of the syn-
thesized database is vital to robustly train the 3D minutiae
detector for the contactless 2D fingerprint images. Our ex-
perimental results indicate that such synthesized database is
more effective in training such minutiae detection network,
both for recovering 3D and 2D templates, introduced in this

paper.

2 RELATED WORK

In this section, we present a brief summary of the cur-
rently available methods of fingerprint synthesis, minutiae
extraction, 3D information recovery, 3D minutiae template
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matching. We also summarize the methods that analyze the
individuality of minutiae templates.

2.1 Contactless Fingerprint Synthesis

Priesnitz et al. [35] propose a method to synthesize con-
tactless fingerprints by distorting contact-based fingerprint
images to simulate contactless fingerprints’ ridge and valley
pattern deformations. However, such distortion cannot ad-
here to the accurate 3D geometric perspective relationship,
making it unable to provide a reliable 3D depth map for
the synthesized contactless fingerprints. In addition, their
synthesis method can only generate ridge-valley patterns
of contactless fingerprints, which is not a realistic represen-
tation of real-world fingerprint images. Recent work in [5]
uses Bezier surfaces to model 3D finger shapes. This method
involves engraving ridge-valley patterns onto a 3D surface,
from which contactless fingerprint images are projected us-
ing a camera projection model. However, the 3D-2D texture
mapping technique used in this process is extremely time-
consuming and limits the speed for generating large-scale
contactless fingerprints due to the inclusion of a large num-
ber of redundant points during texture mapping. Moreover,
as these contactless fingerprint images only display ridge-
valley patterns without any realistic texture, the authors in
[5] were obliged to adopt the Gabor filter to compensate
for the domain gap between such unrealistic synthesized
images and real-world contactless fingerprint images.

2.2 Minutiae Extraction of Contactless Fingerprints

Several deep neural network-based methods in the literature
can detect fingerprint minutiae and outperform conven-
tional methods such as Mindtct [24]. The patch-wise method
in [20] partitions the fingerprint image into patches and
predicts the minutia within each patch, which, however,
ignores global features and leads to an extremely long infer-
ence time. Tang et al. [25] introduce FingerNet for minutiae
extraction, but the performance achieved is not competitive.
Reference [26] proposes a coarse-to-fine framework and
generates candidate patches from the coarsely extracted
minutiae map to decrease the patch count, but it remains a
two-stage method with considerable time complexity. The
authors in [27] propose a Fast Minutiae Extractor (FME)
but still adopt a two-stage design, which motivated fellow
researchers to design one-stage architectures to further en-
hance the extraction speed. The ContactlessMinuNet (ab-
breviated as CMNet) [4] is an end-to-end minutiae detection
algorithm, but it is quite slow because of its inefficient U-Net
architecture. Reference [23] recently proposed a framework
to address the limitations discussed above. A single-stage
design with a lightweight architecture was introduced, and
patchwise detections were avoided. However, the neural
architecture in [23] outputs the probability map instead
of the actual positional results for the minutiae templates.
Therefore, a complex post-processing stage is incorporated
to generate the exact locations of the minutiae, which con-
siderably reduces the total speed for the minutiae detection.

2.3 BRecovery of 3D Information from Monocular 2D
Contactless Fingerprint

Earlier research has shown that 3D information can be
recovered from monocular contactless images using neural

networks. Cui et al. [2] propose a neural model to predict
the 3D surface normal from a single contactless fingerprint
image, followed by the recovery of depth information from
the estimated gradient maps. Such an approach to recover
3D information from the entire fingerprint region is compu-
tationally demanding as our objective is to recover the 3D
information from the minutiae points. Instead, it is practical
to only predict the 3D information on the key regions of in-
terest. The authors in [13] propose Yolo-6D to predict the 3D
bounding boxes of certain objects from a monocular image
and the 3D pose can be recovered from such detected 3D
bounding boxes, which motivates us to consider the task of
3D minutiae detection as a six-dimensional object detection:
for each object (minutiae) to be detected, the model should
generate its spatial coordinates and the orientations along
x,y, z axes to construct a 6D descriptor.

2.4 Matching of 3D Minutiae Templates

There has been exciting work in [21], [28] to match finger-
print templates generated from 3D fingerprints. However,
there are several limitations to such earlier work: i) These
methods cannot be used to match 3D fingerprint templates
with 2D fingerprint templates. Such interoperability is crit-
ical to advance contactless 3D fingerprint technologies for
real-world applications; ii) these are extremely slow; and
iii) These methods were introduced long back and cannot
outperform the currently available contactless fingerprint
SOTA methods that can match respective 2D fingerprints for
the 3D fingerprint images. Therefore, there is a compelling
need to develop advanced matchers to fully realize the
potential of 3D fingerprint templates over 2D fingerprint
templates.

2.5 Individuality Analysis for Minutiae Templates

The individuality of widely employed fingerprint minutiae
templates to accurately identify humans has attracted sev-
eral studies over the last hundred years. It's quantified as the
probability of false random correspondences between two
randomly matched templates from different individuals. A
study in [3] is one example that provides an estimation of
such individuality using 500 dpi sensors but with several
assumptions on the independence of minutiae features.
Zhu et al. [18] noted such limitations and modeled the
relationship between the distributions of spatial positions
and the orientations to quantify the probability of false
random correspondences (PRC) more accurately. Dass et
al. [19] introduce further enhancement in estimating the
accuracy of PRC for real-world fingerprints by accounting
for the influence of noise in minutiae detection. Reference
[28] presented the first such estimation on the individuality
of 3D fingerprints, and [32] underlines that such estimation
fails to consider the inter-dependence of various minutiae
features. Therefore, the estimates presented in [28] can only
indicate the upper bound and are far from the expectations.
A more accurate analysis of the interdependence among
minutiae features on real-world 3D surfaces is necessary
to generate an accurate estimation of the uniqueness of 3D
fingerprint minutiae templates.
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Fig. 1: Network architecture for our framework to recover 3D minutiae from single monocular fmgerprmt image.

3 MINUTIAE DETECTION IN 3D SPACE

A range of Yolo-based methods [9], [10], [11], [12] have
recently emerged for object detection, which inspires us to
address the challenges of minutiae detection in 3D spaces.
Several reasons contribute to the balance between the ac-
curacy of detection and inference speed. The introduction
of appropriate loss functions forces the predicted bounding
boxes to approach the target object’s central location while
considering the object’s width and height since the incorrect
prediction of the size of the bounding box will penalize the
network using the enhanced loss function. The attentional
mechanism in the design of such architecture contributes to
the enhanced accuracy of the model significantly, especially
for the objects with different scales, while the lightweight ar-
chitecture with a Non-Maximum Suppression (NMS) mod-
ule can eliminate redundantly detected boxes to ensure high
performance and fast inference speed.

Architecture of Proposed Framework: The architecture of
our FingerYolo3D network can be visualized in Fig. 1. Dif-
ferent from a series of popular Yolo-based architectures, our
model adopts a lightweight design by removing branches
for large object detection and only retaining the branch to
detect tiny objects from the backbone. The FingerYolo3D
receives 480 x 480 pixels fingerprint images as the input
and partitions them into grids with the size of 6 x 6 pixels
to predict the bounding boxes of 2D minutiae locations,
confidence, minutiae type, depth, elevational angle, and
azimuthal angle for minutiae in each of these grids.

The bounding box represents the 2D location of the
minutiae and the average ridge-valley distance of the grid
where the minutiae is located, thus it is described in three-
tuple real numbers as the output feature. The confidence
score occupies only one tuple whose value ranges from 0
to 1 and it reflects how likely the box contains minutiae
and how accurate is the boundary box. We use ”01”, ”10”
to encode the minutiae ending and minutiae bifurcation
respectively, and we adopt BCE loss for minutiae type classi-
fication. In this work, we re-scale the fingerprint images into
480 x 480 and assume that the depth of the minutia lies in a
range of 0 to 200 pixels along the z-axis. It was experimen-
tally observed that the convergence of the model is unstable
if the depth value is optimized by I, loss. We consider the
depth prediction as a classification problem. The class iden-
tity increases by one for every 10 pixels in depth, starting
from a depth of 0 pixels, and there is a total of 20 classes for
the depth. We use one-hot encoding to represent the feature
of depth, which is a 20-digit binary tuple for optimization
by BCE loss. Both azimuth and elevation angles are encoded
using a single digit. Therefore, the total size of the encoded
feature template is 80 x 80 x 28(3+1+2+20+ 1+ 1).
The Optimization of the Network Model: The architecture
of FingerYolo3D is optimized during training using the total

loss liotar (Eq. (1)) which is the weighted combination of
five loss functions, i.e. objectness loss l,,; measuring the
probability that a minutia exists in a proposed region of
interest, classification loss l.;s denoting the type of detected
minutia, depth [, indicating the depth information of the
detected minutia, bounding box loss {;,, measuring how
accurately the model can predict the center of the minutia
and how well the predicted bounding box can localize the
minutiae, and our 3D orientation loss [, for predicting the
azimuth and elevation angles of the minutia.

liotal = Aobjlobj + Avowlbor + Actslers + Azl + Aolo (1)
The orientation of minutia is a cyclic variable and there-
fore the direct prediction of this angle is not appropriate.
Earlier studies that predict the orientation of 2D minutiae,
several representative ways [4], [23], [27] are proposed to
address this challenge. For the accurate prediction of minu-
tiae orientations in 3D space, we propose the [,, and can be
defined in Eq. (2):

lo =wg(cos ™' ((cosBcosf+sinBsind—0.5) /(1+¢) +0.5))1+6
! ((cospcosp+singsing—0.5) /(1 +¢) —i—0.5))1+(S

In Eq. (2), 8, ¢ respectively represent the ground truth
for the azimuth and elevational orientations, é, gz% are the
respective predicted azimuthal and elevational orientations,
wp and w, are weights to reflect the importance of 6 and
¢ respectively, € is set to 107° to clip the range of the item
in the cos™!(-) to alleviate the failure during the backprop-
agation from cos™!(+) function as also stated in [23]. When
FingerYolo2D is trained to extract 2D minutiae templates,
we set the [, in Eq. (1) and wy in Eq. (2) as zero. More details
on loss functions are provided in Appendix G.

@
+wg(cos™

‘ c‘osine /

similarity X

(b) L1 (c) chord
Fig. 2: Comparative loss functions with their gradients.

(d) cosine

(a) proposed

We visualize the proposed [, in Fig. 2 with other related
loss functions for the prediction of minutia orientation.
Here A and A¢ respectively represent [§—6| and |p—a|.
The L; distance loss is Af+A¢, the chord length loss is
\/(cosﬂ—cosé)Q+(sin0—siné)2+\/(cos¢—cos¢3)2+(sin¢—sinq§)2, the co-
sine similarity loss is 2—cosAf#—cosA¢. Their corresponding
gradients are visualized in Figs. 2a to 2d. In Fig. 2a, the wy
and wy are set to 1 for better visualization.

The plots in Fig. 2 show that for L; distance and chord
length distance loss functions, the gradient remains constant
or increases as Af and A¢ decrease. This is not the desirable
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output for effective network training when the predicted
orientation is close to the actual value. For the cosine simi-
larity loss, the gradient nears 0 when Af and A¢ approach
m, causing the backpropagation process to stall. On the
contrary, as depicted in Fig. 2a, these drawbacks do not exist
in our proposed loss function. The experimental results also
validate the merit of our proposed 3D orientation loss.
Design of Dynamic Bounding Boxes: It may not be appro-
priate to consider the minutiae detection task as a fixed or
center point detection task, primarily due to the obscure
definition of the pinpoint location of minutiae since the
minutiae ground truths (locations) labeled by different ex-
perts can itself be different. Such inconsistencies have been
widely considered in several references [46]. Therefore, as
argued in earlier studies, the exact location of minutiae
ground truth should not be regarded as a point but a region:
in [4], 12 x 12 pixels around the minutiae ground truth are
labeled as a high probability region. In comparison, [23]
assumes the minutiae ground truth is located in a circular
region with a radius of 3 pixels. Our work is also motivated
by such a consideration of the ground truth regions. We
assign a square bounding box to each minutiae ground
truth; the pixels within the bounding boxes are regarded
as effective regions of the minutiae. We observe that the
size of such an effective minutiae region is highly related
to the ridge-valley distance of that region, which is ignored
in previous studies [4], [23] that fix the region of minutiae
ground truth. We therefore propose dynamic size bounding
boxes for minutiae ground truth. We partition the image
into 24 x 24 pixels patches and compute the average ridge-
valley distance within each patch. The width of the square
bounding box of a minutiae ground truth equals the aver-
age ridge-valley distance of the patch where the respective
minutiae are located.

Inference: The candidates for 3D minutiae templates are
selected from features extracted by FingerYolo3D. We re-
move the candidates when their predicted confidence score
is lower than the threshold of ¢,y = 0.1. Non-max suppres-
sion algorithm [9] is then used to eliminate the repeatedly
predicted boxes for the same minutiae as per the threshold
of tio, = 0.1. Finally, from the remaining bounding boxes,
we acquire the 2D location, size, depth, minutiae type,
elevational and azimuthal angle of minutiae. To extract 2D
minutiae by FingerYolo2D, we follow the same steps but
ignore the predicted depth and elevational orientation.

4 MINUTIAE MATCHING IN 3D SPACE

This section describes the perspective transformation com-
pensation mechanism (PTCM) that can be used for both 3D-
2D and 3D-3D minutiae template matching. There are four
key steps in PTCM: i) find the matching correspondences
between source and target template minutiae using a graph
neural network (GNN), ii) identify and remove the outlier
matching correspondences using the proposed tetrahedron
based outlier matching removal algorithm, iii) compute the
optimal transformation parameters from the inlier matching
correspondences and align the input templates, iv) project
the aligned templates on a 2D plane and use off-the-shelf
2D minutiae template matcher to compute the match score.

Each of these steps is detailed in the following paragraph,
and Fig. 3 visualizes the PTCM framework.

We first define some variables and minutiae represen-
tations in 3D and 2D space. In this section and Sec. 5, the
locations and orientations of 3D minutia are represented
by § = (z,9,2), & = (04,04,0,) s.t. 307 = 1 to facilitate
computational simplicity in 3D space. Considering that the
common notation of 3D minutiae is (z,y, 2,0, ¢,t) [32] and
also the extracted minutiae by FingerYolo3D are represented
in this format, the equivalent representation of ¢, ¢ to 5,0
can be achieved from Eq. (3), and more details on such
representation appear in Appendix E. Similarly, the com-
mon representation for 2D minutiae is (z,y, ,t), while the
locations and orientations of 2D minutia are stated in this
section as § = (z,y) and 6 = (0g,0y), Where 0, = cosf,
oy = sinf. We denote the 3D source template with m
minutiae as T = (X1,0;) € R™*6, where X,,0, <
R™*3 st (@1 © ©1)J31 = Jpm1. The 3D target template
with n minutiae is denoted as T's = (X5, ©5) € R**6, where
X2,0, € R™3 5.t (02003)J 31 = Jp 1. The 2D target tem-
plate with n minutiae is denoted as Ty = (X, ©2) € R"*4,
where X9,0, € R"*2 s.t. (@2 ) @2);]2’1 = Jn,l' The Ji’j
means all-ones matrix of i x j, ©® denotes Hadamard product.

0y = cosfcosp; o, = sinfcosg; o, = sing 3)

Minutiae Correspondences: Earlier work [36] has incor-
porated GNN to locate the correspondences among the
minutiae of two matched templates. However, the feature
information extracted by CNN is integrated into such an
approach, and therefore, their proposed method cannot find
correspondence of the minutiae without textural informa-
tion. Such an approach [36] is impractical as only the minu-
tiae templates are stored and retrieved in most fingerprint-
based systems. We therefore propose a GNN that can locate
the minutiae correspondences, between 3D-3D and 3D-2D
templates without textural features. We follow the same
protocol with the ANN strategy in [36] to construct the
graph from 2D minutiae templates and extend the protocol
to 3D scenarios to construct the graph from 3D minutiae
templates. The constructed graph is fed into GNN with
three PPFConv [48] layers and two SageConv [51] layers
in sequence, and we detail the forward propagation of
the GNN in Eq. (5). We use v, ; in Eq. (4) to denote the
Point Pair Feature, an antisymmetric 4D descriptor, that
represents the pair-wise spatial information between nodes
of minutiae p; = (s;,0;) and p; = (s}, ;) sharing the same
edge in the constructed graph.

¢i,j = (HSZ - S;"|21 4(07575:' - 53)74(03757 - 8;)74(02703))7 (4)
where 4(V1, V2) :atanZ(Hvl XV2||,V1'V2).

ng(wi,j)))+ka =0

max
JEN(H)U{i}

k k - _
s (@ eY)) k=12 ()

:nf+1<— wWhal+wk mjevgi(n)[o'k(ngfm? + bk)], k=34
FJEN (i

xi T RELU(Q(

xF T RELU(Q(

In Eq. (5), the t denotes the binary feature of minutiae
type that represents the type of each node of the graph, ®
denotes concatenation, N (4) is the set of neighbors of node i,
Qﬁ and Q’; denote two MLP encoders in the k™ (k = 0, 1, 2)

layer of PPFConv, W%, W%, W, b" are parameters and o
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Fig. 3: Illustration for our PTCM framework, we set m = 6 and n = 7 in above figure for better visualization.

is non-linear function of the &' (k = 3, 4) layer of SageConv.
By the GNN layers represented in Eq. (5), we acquire the
high-dimensional nodes 7 € R'*?56 that represents the
feature for each minutiae. We denote such node features of
Ty, T3 as fq, fo, where f; € RM*256 £, ¢ Rnx256,

Given the feature f,, f, together with the similarity
matrix C(f; x f, —R™*") which is computed using Eq. (6),
we optimize our GNN model following the [36] by mini-
mizing the difference between the C and the ground truth
for correspondences.

c- 1( fi . f3
V(F10F1)T 256,256 \/J256,256(f§®f2T)

2

To find the one-to-one match correspondence between
the features of graph nodes, [36] uses a coarse procedure to
generate the results from the distance map, and therefore
their selected match pairs may not be optimal. In this paper,
we adopt the Hungarian algorithm [50] to ascertain the
optimal one-to-one assignment F : f; — f, such that the
total cost Zszfl C(f;,F(f;)) is maximized. The details
of steps are listed in Alg. 1 which output minutia T';+
and its match correspondence T'5; with the same size, [i,]
denotes the operation to get the i" row of matrix. The
T+ = <X17,91T> € RdXG, Ty = <X21‘,®2T> € RIx6 (3D
template) or e R¥* (2D template).

+1) (6

Algorithm 1 Computing Optimal One-to-One Minutia Match

Input: C €R™", T e R™, T, eR™C (3D) ore R (2D)
Output: the match pair T';+, T'5+; the number of matches d
1: Initialize empty node lists G5, G, empty edge list Ey,

2: for i in range (m) do
for j in range (n) do
4 if Ci][j] > 0.5 then
5 Add node; to Gg, set node;.val = ¢
6: Add nodez to G, set nodez.val = j
7 Add edge to Ey,
8:
9
0
1

Set edge.weight = C[i][J]
Set edge.left=node1, edge.right=nodez

: Construct bipartite graph B from (G5, G, Ew).

: Find the optimal assignment F from B using Hungarian
algorithm [50], the number of optimal matches computed —
d, the edges of optimal matches — w1, w2, ..., wq

12: Initialize T+ € 09%6

13: Initialize T'5+ € 09%% (3D template) or € 04** (2D)

14: for ¢ in range(d) do

15: idxs = w;.left.val, idx; = w;.right.val

16: T+ [i, :] = Tl[idxs, :], Tyt [i, :} =T [idXt7 :]

Find the Optimal Transformation from Matches: Minutiae
template with the limited number of minutia is sparse
point cloud, and the orientations of minutia are critical
to matching. Therefore, common point cloud registration
methods cannot be directly incorporated to align the 3D-3D

minutiae templates, let alone align the 3D-2D minutiae tem-
plates. In this part, we develop a tetrahedron-based inlier
match selection algorithm that utilizes the locational and
directional information of minutiae to remove the outlier
matches between T';+ and T'y;.

Let us assume that ¢ matches are selected from the
total of d matches between T:i, T+ to find the optimal
transformation parameters, and we denote the selected
minutiae as (X, ©7), (X{, ©F) respectively. The objective
functions for the optimization of 3D-3D matches and 3D-2D
matches are illustrated in Eq. (7) and Eq. (8) respectively.
We denote the weight for the importance of orientations
as 9, and denote the Frobenius norm of matrix by || - ||r.
The 6,,0,,0. represent angles of roll, pitch, and yaw angle
rotating operation in 3D space respectively. We compute
the optimal R*,t*, s* by minimizing the objective function
which is subject to the respective constraints and Powell
algorithm [52] is adopted for the optimization.

00 0
00 -1
01 0

001

6, 0 00

e L7100 € SO(3)
e[ e ]

0-10
6.1 0 0 6,
000

R=c¢ e

ol 1 17 o7 17 oT

(I’_FR_I %R_lt}[XbT sﬁ@{]_[xf \/79@5} @
L o” 1 17 o” 1” o”
tc R X,,0,, X;, 0, c RT3
5.t (0@ ©Og)J31 = Jg,1,(Op ©Op)J31 = Jg1
R, t",s" =argming, , (| Y[|r +[|®[F)

Scenario 3D-3D: We assume that the 3D minutia (X,, ®,)
are transformed by s, R, t to align the 3D minutia (X, ©),
the SO(3) denotes the group of all rotation matrices with
respect to the origin of three-dimensional Euclidean space.
We use Y in Eq. (7) to represent the weighted difference
between the transformed (X,,®,) and original (X, ©y)
that underlines the importance of locational difference
and orientational difference. Symmetrically, we inverse
the transform on (X, ®;) to match (X,,®,), and the
weighted difference between original (X,,®,) and trans-
formed (X, ®;) is denoted as ® in Eq. (7). The Frobenius
norms of Y, ® are jointly optimized.

cosf.cosb,, sinf.cosf,,
R™=|cosb. sinfysinf,—sinf.cosf, cosh.cosd,+sind.sind,sinf,
sinf sinf,+cosfsinf,cosf, sinb.sinb,cosd,—cosh.sinf,,

VIR®T _ T
V/J2:(ROTOROT) Ve,

te R, X,, 0, € R*3, X, @, € RI¥2
5. (0q ©Oa)J3,1 = Jg1,(Op © Op)J21 = Jg1
R*,t",s" = argming ;. (|IT]lr + |®[|F)

Y=sRXI+t—X[ &=
b ®
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Scenario 3D-2D: We assume that the 3D minutia (X,, ®,)
are transformed by s, R, t to match the 2D minutia (X, ©),
we use Y in Eq. (8) to represent the difference between
the transformed X, and original X, we use ® in Eq. (8)
to represent the weighted orientational difference between
the transformed ®, and original ©;. The Frobenius norms
of Y, ® are jointly optimized. It should be noted that the
irreversible rotation matrix R in Eq. (8) rotates 3D minutiae
to align the 2D minutiae and is therefore totally different
from the R € SO(3) in Eq. (7).

Outlier Selection: If we set ¢ = d (i.e. use all match pairs) to
compute the transformation parameters, it is observed that
the outlier of spurious matches can adversely impact the
alignment and lead to the discrepancy of the result. There-
fore, the tetrahedron-based outlier match removal algorithm
is developed as Alg. 2 which can remove outlier matches for
both 3D-3D and 3D-2D minutiae template matching.

We iteratively select four random minutia from the
source points T';; to construct tetrahedron Te; = (M, Z,,)
, and the average length € (computed using Eq. (9)) of
edges of Te; should be longer than threshold t;. We use
Mi,Z;, € R*3 to denote the locations and vertex di-
rections of selected tetrahedron Te;. In target points T,
the corresponding matched points of Te; are denoted as
Tey = (M, Zy). If the target minutiae template is 3D (2D),
the My, Z, € R**3 (¢ R**?). We compute the parameters
R;, . t;.,s;. to transform Te; to Te,, then we use acquired
R;,.t;., s, to transform T';+. The number of similar minutiae
pairs between the transformed T';+ and T'5+ is computed.
These similar pairs are defined by the similarity score 7,
which is computed in Alg. 2 and falls below the prede-
termined threshold ¢,. In this paper, we set t; = 80 and
t, = 12. We repeat the above steps in Alg. 2 within repetition
and select the minutiae matches in T';+, T'5+ with the largest
number d' of similar pairs between transformed T';+ and Tt
as inlier matches T': € R?' 6, T, € R *6 (for 3D template)
or Ty; €RY %4 (for 2D template).

@ = meany/ (MOM)Js4+J5.47 (MTOMT)—2MMT  (9)

We explain the reason for only selecting the candidate
tetrahedron Te; with the average length € longer than ¢;
in Alg. 2. In the experiments, we observe that if the size
of selected tetrahedron is small, a significant error will be
introduced to R;,. We analyze this phenomenon for 3D-3D
matching as an example and for simplification, we assume
that the scale and centroids of M, M have already been
aligned, the Z,, Z, are not considered in computing R;,.
The optimal rotation matrix R;, between rigid transformed
vertices M ,, M}, € R**3 can be computed as follows:

H=MTM,: H 2B UDVT; R},=Vdiag(1,1,det(VUT)UT (10)

We denote the 3D locational ground truth of source
tetrahedron as Mg, and that of target template as
M 410=R g M 441, where R, is for the rotation matrix ground
truth. When we set M, = My and M, = R, M
in Eq. (10), the acquired Rj, should be the same as R,;.
However, in the experiments, we find that the exact lo-
cation of detected 3D minutiae deviates from the ground
truth of location, such deviation § can be modelled using
Gaussian distribution N(0,02) and o, is estimated from

Algorithm 2 Tetrahedron-based Outlier Match Removal

Input: T'1:, Tot,d, to, 4
Output: Inlier minutiae matches T'y:, T'ot
1: Initialize Ty = 0.9 x d, p = 0.99, N = 1000, count = 0
2: Initialize idx=0, maxNum=0, empty list linjier = [ |
3: while count < Nand d > 5 do
4 while True do

5: Randomly select 4 different numbers i1, i2, i3, 14 from
{17 2. d} denote ligx = [21, 22,13, ’L4]
6: Imtlahze M, Z, € 0**3, initialize My, Z, € 0**3
if 3D-3D, initialize M, Z;, € ®4X2 if 3D-2D
7: for row in ljpjier do
8: Mg[row,:|=X i[row,:]|,Za[row,:| =0 [row,:]
9: M[row,:|=X ot [row,:],Zp[row, ] = Oy [row, ]
10: Compute e from M, using Eq. (9)
11: if € > t; then
12: Ter = (Ma, Za), Tea = (My, Z,); break

13: set (Xq,0q) =Te1, (X4, ) = Tea, g=4, compute R,
t;., si. by Eq. (7) if 3D-3D (by Eq. (8) if 3D-2D)

14: Initialize empty list liemp =

15: for i in range(d) do

16: (Xa,Oq) =T11[iy:], (Xb, Op) = Ty i, ]

17: if 3D-3D matching then

18: set g=1, compute v=|X|| r +||®|| » by Eq. (7)
19: if 3D-2D matching then

20: set g=1, compute ﬁzw + @ by Eq. (8)
21: if v < t, then Add 7 to liemp

22: if length of liemp > maxNum then

23: maxNum = length of liemp; idx = count

24: if length of liemp > T then

25: Add liemp to lintier; break

26: 7 = (length of liemp) /d

27: Add ltemp to lintier; count = count + 1

28: N =log(1 —p+1078)/log(1 — 7* +1078)

29: if d < 5 then

30: Tli Tlt, T2¢ Tgi

31: elseif d > 5 then

32: df = length of linier [idx], InP = linier [idX], 046 _, Y AT
33 046 T, for 3D-3D, 09* — Ty, for 3D-2D

34: for i in range(dT) do

35: T1:[i,:] = T+ [inlP[:],:], T:[4,:] = T+ [inlP[7],:]

real databases. We assume that the J in every extracted
3D minutiae template follows the same distribution. When
we set M, =My +06 and My=Rg Mg+ 96 in Eq. (10),
the acquired Rj, deviates from Ry, and we evaluate the
deviation using angle difference Aa by Eq. (11) between R,
and Ry, which is also commonly [54] adopted to evaluate
the difference between rotation matrices.

Aa = |Rf,, Rgi| = arccos((tr(R;.R,;") — 1)/2)  (11)

In the following part, we investigate the various distribu-
tions of error A« introduced to R}, as the size of candidate
tetrahedron Te; in Alg. 2 changes. We propose Theorem 1
to deduce Corollary 1, which ascertains the relationship
between the distribution of vertices of Gaussian-distributed
random tetrahedrons and the distribution of the lengths of
tetrahedrons’ edges.

Theorem 1. We denote the randomly distributed Gaussian points
in k-dimensional space as Xy ~ N(0,07), the Euclidean distances
between Xy, as Ly, the cumulative distribution function (cdf) of
Ly, as P(l, k) = Probability(Ly <), the probability distribution
function (pdf) of Li as f(l,k), the expectation of Ly as E(l, k).
The E(l, k) can be explicitly represented by oy, and the monotonic
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increasing function hy : o, — E(l,k) is a one-to-one correspon-
dence between E(l, k) and oj,. We can write the inverse mapping as
h_ E(l, k) — o, which is also monotonic increasing.

Proof. Inspired by previous studies in [49], we provide cdf P(l, k),
pdf f(1, k) and expectation E(l, k) of Ly, as:

_ D(k/2,1%/407)

P(l,k) = N (12)
0, 1<0
21—k€—l2/40§ (L)k_l
B o
k) = = Pl k) = N )
0, 1<0
oo k41
E(l, k) :/ Lf (1, k)dl = %‘Fr((k;) (14)
oo B

, where I () is gamma function and I (-, -) is the lower incomplete
gamma function. From Eq. (14), we can conclude that both hy (+)
and h,:l (+) are all bijective functions. O

Corollary 1. Based on Theorem 1, we can randomly generate
four three dimensional points followzng the normal distribution of

N(0, h3*(€)) to represent the tetrahedron whose expected average
len@th ofedges is equal to e. In 3D space, ha(x) = 22I'(2)/T'(1.5),

=yl'(1.5)/(21°(2)).

Based on Corollary 1, we can randomly sample 3D
points following normal distribution N(0,07) to simulate
the locational distribution of vertices of tetrahedron whose
average length e of edges is h3(o;). To sample the distri-
bution of Acq, we generate a large number J of random
tetrahedrons M; € N(0,0?), and the respective J random
ground truth rotation matrices Ry, € SO(3) while the
0, of noise § on coordinates of vertices is fixed. We set
M,=M;+6§ My, = Ry, M; + ¢ in Eq. (10) and acquire
the corresponding R;, , the Ao; = |R;}, , Ry, | is computed
from Eq. (11). The samples of distribution of A« can be
represented by A«; (i = 1,2,...,7) and the expectation Aa
can be estimated from the average value of Aq;.

In Fig. 4a, we set o; = 320,160, 80,, 40, respectively
and plot the corresponding distributions of A«. We observe
from Fig. 4a that the error Aa tends to increase as the size
(represented by €) of tetrahedron decreases from h3(320,,)
to h3(4o,). In Fig. 4b, the x-axis represents the magnitude
of h3'(e) = &-T(1.5)/(20,T'(2)), which is proportional to €,
ranging from 2 to 32 with the interval of 2. As € increases,
the expectation A« drops. It can be reasonably concluded
that tetrahedrons with short average lengths of edges will
introduce more significant deviation during the computing
of R;,, therefore, in Alg. 2, we empirically set the threshold
t; = h3(80,) to select candidate tetrahedrons according to
average length of edges to balance the speed of candidate
tetrahedron selection and precise calculation of Ry,.
Computation of Match Score: For 3D-3D (3D-2D) match-
ing, we calculate the final result of optimal transformation
parameters R*,t*, s* between T'1, T, by setting (X ©1)=
Ty:, (X! ,01)=Ts:, q = d in Eq. (7) (in Eq. (8)) and Powell
algorithm [52] is used for optimization. In Figs. 5 and 6,
we visualize the progress for 3D-2D and 3D-3D alignment
in different iterations of the Powell optimizer respectively.
The blue (yellow) minutiae represents the source (target)
template, red (green) lines denote inlier (outlier) match.
The Powell optimizer converges at the 8" and correctly
distinguishes the outlier and inlier matches.
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Fig. 5: Iterative alignment progression between 3D-2D.

We can use R*,t*,s* to transform T; = (X1,0;) and
project the transformed T'; and the original T'; to 2D plane.
This process for the 3D to 3D template matching can be
mathematically represented in Eq. (15).

X? = proj ((s"R* X1 + t*JLm)T), X% = proj (X2)
OF = proj, (R'01)"), O} = proj,(©2)

proj, (X)=X [I2/0]"

projy(©)=© [I2|0]T/\/(@[12IU}T)®(@[I2|0]T)J2,2

, where I, denotes 2 x 2 identity matrix. For 3D-2D minutiae
template matching, we can write this process in Eq. (16).

(15)

XP = (s"R°XT +t°J1m) X2 = X

(16)

©r=(©:1R"")/\/(©:R"T)0 (0. RT) 22,04 = ©,

Finally, the projected 2D templates (X?,©%), (X%, ©%)
are input to 2D minutiae template matcher and the match
score is generated.

5 UNIQUENESS OF 3D MINUTIAE TEMPLATES

The recovery of a 3D minutiae template from a single
2D fingerprint image is expected to significantly enhance
the match accuracy for such 2D fingerprint images. Such
advantage can be quantified from the uniqueness analysis of
recovered 3D fingerprint templates. There has been some ex-
citing work to quantify the individuality of 3D fingerprints
using the probability of false random correspondence. The
assumption of feature independence in [28] can only gener-
ate an estimate on the upper bound as such assumptions are
not reasonable [18], [19], i.e. there does exist some interde-
pendence among 3D fingerprint features, and this should be
empirically estimated [32]. Therefore, our work incorporates
ajoint distribution mixture model for 3D minutiae templates
to determine the extent of correlations between the locations
and orientations of minutiae in 3D space. The probability of
false random correspondences (PRC) can be more accurately
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Fig. 6: Iterative alignment progression between 3D-3D.

estimated using such a model of joint feature distributions
for the 3D minutiae templates.

The Joint Distribution Mixture Model: We assume that the
distribution of locations of 3D minutiae follows a trivari-
ate normal distribution fgs (5] fig, 3g4) and the distributions
of their orientations can be modeled by Von-Mises-Fisher
(VMF!) distribution f$ (¢'| Ty, k) shown in the Eq. (19) and
can model more complex relationships as compared to those
for the 2D minutiae as used in [18], [19].

S gl 2 % y)T):.q_l(g_ﬁg)
fg (5| Hg,%g) (2 ¥ \/7 - (19)
19 (5| Ty ig) = o™

We assume that the individuality of 3D minutiae tem-
plates is computed from a representative database with
F' contactless fingerprint images, and for each 3D minu-
tiae template, we use a joint distribution mixture model
to estimate the localization and directions of minutiae in
3D space. Such a joint model can estimate the nature of
minutiae distribution and account for clustering tendencies
and interdependence between these features in different
regions of the finger surface, that is to say, for a 3D minutiae
template that is composed of several components, the 3D
locations with orientations follow the same distribution
within the same component while varying between different
components. The distribution of 3D minutiae in any 7
template can be estimated from Eq. (20), while G,, denotes
the optimal number of components of the mixture model of
the n™ (n = 1,2, ..., F') minutiae template, the 7, represents
the weight of the ¢ (¢ = 1,2, ..., G,)) component in the mix-
ture model, the weights of components are independently
distributed with probabilities 7, 75, .. TG, following 7; > 0

and Y57 ;21 75 =1, and E, denotes the unknown parameters
of that mixture model including G,,, 74, iy, Xq, Uy, Kg-

ZTgfg g ‘ ugv

0) X [ (3] Tg, i) (20)

f(s,0|Ey)

1. VMF distribution can model the distribution of random variables
lies on a 3D spherical surface and extended from two-dimensional Von-
Mises distribution which has been used to model the distribution of
randomly distributed 2D minutiae orientations in [18], [19]. Assuming
that & is p-dimensional unit vector, the probability density function is

defined as: i1 i

fo(@ | U, k) = ————e™ 17)
(2m)= 5 ()
(124"
where k > 0, ||0]| = 1, I, (z) = (£)" Zkom When p = 3,
the three-dimensional random variate is distributed on a sphere:
1
F(@|Gm) = —H e T = 7T (1)
4msinh K

(2m)3 11 (x)

When p = 2, VMF distribution reduces to Von-Mises distribution.

To estimate the unknown parameters =, for mixture
model of each 3D minutiae template, we use Expectation
Maximization (EM) algorithm [53] to compute the solution
similar to as in [18], [19], and the optimal number of com-
ponents G, is selected using Bayesian Information Criteria.

After a total of F' joint distribution mixture models are
acquired from the database, we further ascertain the class-
specific phenomenon in the minutiae distribution. Refer-
ence [18] has noted that similar mixture models of 2D
minutiae templates are subject to the same class, there-
fore mixture models belonging to different classes can
vary significantly. We therefore assume that there are a
total of N* classes Ci,C5,...,Cn~ with different propor-
tions |C1],|Cal, ..., |Cn+| for all the mixture models (model
fi(8,012¢,) for i = 1,2,..., F) in the database, and the N*
classes with their mixture models conform to the structure
of hierarchical cluster tree. Therefore, considering the ag-
glomerative hierarchical clustering in [18], a similar process
is adopted to determine the optimal number N* of all the
mixture models. Then we compute the mean mixture distri-
bution f¢, (5,0 | ZE¢,) (abbreviated as f¢,) for each class C;
in Eq. (21).

fe, (3,3 Bo,)= ‘C‘ Zf (5,612, ,n=1,2,...,F (21)

The steps of Computmg the PRC3q4 index of 3D minutiae

templates from the fc, (i = 1,2,..., N*) are detailed in the
following.
Estimation of PRC34q Index: The PRC34 score indicates the
probability of falsely matching a pair of 3D fingerprints from
the different persons. The smaller value for such PRC score
between two templates indicates it is less likely to generate
falsely matched results of a biometrics system which implies
better individuality or the uniqueness of that biometric.

Therefore, defining the criterion for the match between
a pair of arbitrarily selected 3D minutiae templates is im-
portant. Similar to the earlier work [18], the match criterion
between query 3D minutiae template @) and target 3D minu-
tiae template T is that there should be at least w pairs of
matched 3D minutiae between such templates. Two minu-
tiae are considered as matched when respective 3D minutiae
(81,01) and (55, 05) can meet both conditions ||5; — 552 < rg
and arccos (0} - 92) < dy simultaneously, where the 7y and dy
are the empirically defined thresholds. We denote the match
between (51, 51) and (32, 02) as (52,02) € B (51,01).

Reference [18], [19] have systematically explained that
the probability p*(u; C;, C;) (4,5 € 1,2,..., N*) that v minu-
tiae can be matched between query minutiae template with
m minutia from class C; and minutiae template with n
minutia from class C; can be modelled as Poisson distri-
bution as follows:

{ P (u; Cy, Cy) = e MOUCIN(Cy, Cy)* Jul

)\(Cz, CJ) = mnp(C’z, CJ)
where p(C;, C;) is the probability that one randomly se-
lected minutiae following the distribution of fc, matches
one randomly selected minutiae following the distribution
of fc,, and p(Cy, C;) is defined as follows while the numer-
ical estimation of p(C;, C;) is detailed in Appendix F.

(22)

/ / fc, (51,01) fo, (52,02) d52dd2ds1dor  (23)
(52,02)€B(51,01)
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In the experiments, the m is the average number of
minutiae in the overlapping volume of the 3D minutiae
from the whole database. The overlapping volume is the
same as defined in [28], and we set m = n within the same
database. We can adopt the PRCyq index in [18] for the 3D
fingerprint scenario. PRCsq(w | C;,Cj;) is the probability
of observing w or more matches between query template
following distribution fc, and target template following
distribution f¢,. The PRCzq(w | C;,C;) can be defined as
follows:

PRCaq(w | Ci, Cy) = Y p*(u; Gy, Cy)
u>w
The PRC3q value for ¢,j € 1,2, ..., N* is computed using
the weighted combination of p*(w; C;, C;) as follows:
CiHCj"PRC3d(w|CZ‘, Cj)
Cil-|C5]

(24)

Zi,j€{1,2,m71\’*}

PRC34(w) = (25)

Zi,je{l,Q,...,N*}

6 CONTACTLESS FINGERPRINT SYNTHESIS

This section explains the process of generating real-like
contactless 2D fingerprint images and is organized in two
stages. The first stage involves creating a 3D finger model
with synthetically carved ridge valley patterns. This 3D
model is then projected onto a 2D plane to obtain the ridge-
valley skeletons for the contactless fingerprints, along with
their corresponding 3D minutiae ground truths. The realistic
contactless fingerprint images are generated in the second
stage by incorporating the style transfer on these skeletons.
The 3D Finger Generation: The finger surface generation
algorithm in [5] utilizes points sampled on the Bezier sur-
face to fit the shape of real-world fingers. It is important
to ensure the authenticity of ridge-valley patterns on the
synthesized finger surfaces. We have empirically observed
that the distance to the nearest neighbor for any point on
the surface (i.e. the maximum spacing® of all the points)
should be smaller than a specific empirical value: 0.1 X w;.,
where w,,, is the width of ridge-valley pattern on 3D finger
surface. In this work, we empirically set w,, to 0.4 mm
as the height of the 3D finger surface is scaled to 2.5 cm.
The surface generation method in [5] uniformly samples
in the parameter domain of the Bezier surface to obtain
points on the 3D finger surface. This results in a non-
uniform sampling of the surface in the spatial domain.
Consequently, [5] is obliged to sample dense parameters on
Bezier surface to meet the maximum spacing requirement
and ensure realness. However, this leads to a large number
of non-uniformly sampled points and also slows down the
3D-2D texture mapping process in the subsequent steps.

2. The point cloud spacing refers to the average distance between a
point and its adjacent points. If the distribution of points in a region
is sparse, the spacing between two points in that region will be large,
and the ridge-valley pattern in that region will be far from those in
real-world fingerprints.

10

Unlike the method in [5], we propose a new ap-
proach based on VGD [45] to synthesize finger surfaces.
Our method synthesizes surfaces that meet the maximum
spacing requirement using significantly fewer points. The
specifics of this method are outlined in Alg. 3. We employ a
sixteenth-order Bezier surface with 17 x 17 control points
to model the 3D finger surface instead of concatenating
four eight-order Bezier surfaces in [5], which requires that
the respective G continuity conditions must be strictly
followed. Such constraints for GG; continuity require extra
computational resources, which offsets the performance
benefits gained from using concatenated sub-surfaces of a
lower order. In Alg. 3, we denote the control points as
P € R™*™ where m,n represent the numbers for the order
in two directions of Bezier surface, and we set m = n = 16
in this paper. The Bezier surface P; and P,/ are generated
using Eq. (26) where the 3D points of P/ are represented as
(1,22, xer), (Y1, Y2, s Yer ) (21, 22, ..., Z¢r ) Tespectively.

P(u,v) = ZZPMB;L(U)B?L(U);U,/U =

i=0 j=0

L2 (26)

, the B?(t) is the Bernstein polynomial defined in Eq. (27):

B (t) = i!(%ii)!#u — ) 27)

Algorithm 3 Uniform 3D Fingerprint Surface Generation

Input: Controlling points P of Bezier finger surface;
maximum point cloud spacing p;
Output: Uniformed 3D finger surface S
1: Generate Bezier surface P; of { x ¢ points from P, ( is
empirically set to 100 in this paper
2: Compute the maximum point cloud sPaCing pc of P¢
3: Generate Bezier surface P of ¢’ x ¢’ points from P, ¢’ =
B x ¢ x p¢/p, B is empirically set to 4 in this paper
! Tmax, Tmin = Max(x1, Ta, ..., T¢r ), min(z1, T, ..., T¢r)
! Ymax, Ymin = MAX(Y1, Y2, -+, Yo ), MIN(y1, Yz, ..., Yer)
: Zmax, Zmin = Max (21, 22, ..., 2¢/ ), Min(z1, 22, ..., 2¢/
: Compute the dimensions of voxel grid with width of p along
with z, y, z axes:
Nx:(fmax — l'min)/pv Ny:(ymax — ymin)/p7 Nz:(zmax - Zmin)/ﬂ
8: Compute voxel index Z; for each point (x;, yi, z;) in Pcr:
Zi=[(@i=min)/ pH (Yiymin) / pIXNyH (2i—2min) / p ] XN XNy
9: Compute the average coordinates and surface normals of
points with the same voxel index in P and acquire &

Required

NE-NES N

Once the 3D finger surface is generated by the Alg. 3,
the 3D-2D mapping algorithm introduced in [5] is used
to ascertain the relationship between the synthesized 2D
texture of ridge-valley pattern with the uniformed 3D finger
surface, and the ridge-valley pattern are then engraved
on the 3D surface according to this relationship. Such a
mapping algorithm significantly benefits from the proposed
uniform surface generation approach, and the computa-
tional complexity is greatly reduced as now fewer points

7
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Fig. 7: The overview of the experimental evaluation of the developed methods.
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are processed. Then we project the 3D engraved fingers on
2D imaging plane and acquire the ridge valley skeletons
of contactless fingerprints following the camera projection
algorithm similar to as in [5]. During this step, the ground
truths for the respective 3D minutiae templates are simul-
taneously and automatically generated. The details of these
steps are provided in Appendix H.

Motivated by [38] that adopts CycleGAN [17] in gen-
erating real-like contact-based fingerprint impressions from
the ridge-valley skeleton of 2D contact-based fingerprints,
generating realistic contactless fingerprint images in our
approach also use CycleGAN architecture. During training,
the ridge-valley skeleton images are considered the source
domain, while the real fingerprint images are regarded as
the target domain. We use Nested UNet [8] as the genera-
tor’s backbone, replacing all deconvolution modules with
up-sampling modules followed by a convolutional layer.
This modification, recommended in [7], helps to alleviate the
unwanted artifacts of checkerboard pattern in the generated
fingerprint images. We use the pre-trained generator from
the source domain to the target domain for inference. Ridge-
valley skeleton images serve as the input for generating a
large database of realistic contactless fingerprints.

7 EXPERIMENTS AND RESULTS

The overview of our experimental evaluation of the devel-
oped methods is presented in Fig. 7.

7.1 Databases and Protocols

This section provides brief details on the databases and
protocols used in our experimentation. We use the same
pre-processing steps as [5], including ROI detection, seg-
mentation, and re-scaling on fingerprint images. All the
fingerprint images are re-scaled except in the FVC database
to ensure that the average ridge distances remain about 8
pixels for such 480 x 480 images. We further adopt contrast-
limited adaptive histogram equalization for contactless fin-
gerprint images to enhance the image quality.

FVC Database: FVC2002 [40] and FVC2004 [41] are utilized
for training and evaluating the FingerYolo2D. We follow the
same protocol as in [23], [27] and use the FVC database that
provides 2D minutiae ground truth labels from fingerprint
experts [39]. It contains four sub-databases: FVC2002-DB1A4,
FVC2002-DB3A, FVC2004-DB1A, and FVC2004-DB3A. As in
[23], half of the subjects are randomly selected for training
in each sub-database and another half are used for the
evaluation. The size of fingerprint images is not re-scaled.
CFPose Database [20]: The 200 images from the last 20
fingers in this database are used to train the style transfer
model of fingerprint synthesis. The 1200 images from the
first 120 fingers are used to evaluate the matching per-
formance (CL2CL) of framework (FingerYolo3D + PTCM)
using the same protocol as in [5], [20].

PolyU C2CL Database [16]: The FingerYolo2D is trained
using the same protocol as in [4], [23] i.e. using the contact-
less fingerprints in session 1 and session 2 whose identity
numbers range from 1 to 136 (total 1440 images). To generate
the ground truth labels, the minutiae templates are firstly
extracted using VeriFinger and then we manually refine

the labels, i.e. remove the spurious minutiae, and label the
missing minutiae. The remaining 1200 impressions from 200
identities in session 1 are used to evaluate match perfor-
mance (CL2CB) using FingerYolo2D with the same protocol
as in [4] where 200 genuine and 39800 imposter pairs are
generated. We follow the same protocol in [4], [23] where
3000 genuine and 19900 imposter pairs are generated to
evaluate match performance (CL2CL) from FingerYolo2D.

PolyU 3D Database [21]: We generate the ground truths for
3D minutiae templates from this database by: i) extract the
2D minutiae templates using VeriFinger, ii) manually refine
the acquired templates, iii) compute the surface normal from
depth ground truth and generate the 3D ground truth (z and
¢) from the depth and surface normal. There are 1920 (160
identities, 6 images in session-1 and 6 images in session-2 for
each identity) contactless fingerprints with ground truths of
3D minutiae templates and 1920 contact-based fingerprints
with ground truths of 2D minutiae templates that exist
in both session 1 and session 2, we refer to these data
as PolyU3D-cross. There are 1056 (176 identities, 6 images
in session-1 for each identity) contactless fingerprints with
ground truths of 3D minutiae templates and 1056 contact-
based fingerprints with ground truths of 2D minutiae tem-
plates that only exist in session 1, we refer to these data
as PolyU3D-single. All the contactless fingerprints with 3D
minutiae ground truths in PolyU3D-cross are selected to
train FingerYolo3D. The performance of PTCM on the real
database is evaluated using PolyU3D-cross and more details
are provided in Sec. 7.3. We evaluate the minutia detection
accuracy (evaluated by the mean F1 score) from FingerY-
0lo3D using PolyU3D-single database.

ZJU Database [22]: We follow the same protocol in [23] to
use this database for training FingerYolo2D. This database is
also used to evaluate match performance (both CL2CB and
CL2CL) using (FingerYolo3D + PTCM) framework with the
same protocol in [5].

ISPFDv2 Database [14]: This database is used to evaluate
match performance (both CL2CB and CL2CL) for (FingerY-
0lo3D+PTCM) framework with the same protocol in [5].

UWA Database: The 600 contactless fingerprint images from
the first 100 identities in this database are used to train style
transfer model of fingerprint synthesis. We use the same
protocol as in [4], [23] to train and evaluate FingerYolo2D.
This database is also used to evaluate match performance
(for both CL2CB and CL2CL) from (FingerYolo3D+PTCM)
framework with the same protocol as used in [5].

The IIIT-D Multi-Sensor (MOLF) Database [44]: This
database is used to train FingerYolo2D and more details are
provided in Appendix C.

Synthesized Contact-based Database [42]: This database is
used to train FingerYolo2D and more details can be found
in Appendix C.

Synthesized Contactless Database (Sec. 6): The synthesized
images from the proposed method, with the 3D minutiae
ground truths of this database, are used to train FingerY-
0lo3D. The 3D minutiae ground truths from this database
are also used to train the GNN model for the PTCM. More
details on this database are provided in Appendix C.
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7.2 Detection of 2D Minutiae and Matching

We can visualize representative samples for detecting 2D
minutiae on contactless fingerprint images in Fig. 8, where
three different 2D minutiae detection methods are utilized.
All the detected minutia are shown in red, while the ground
truths are marked in blue color. The green rectangle identi-
fies the missing minutiae, and the green ellipse shows the
falsely detected minutiae. It can be observed from Fig. 8b,
that the VeriFinger detector is prone to generate falsely
detected minutia as compared with the other two methods,
and our proposed FingerYolo2D can more robustly detect
2D minutiae with the least number of missing and spu-
riously detected minutiae as compared to those from the
VeriFinger [6] and CMNet [4].

(b) COTS [6]

Fig. 8: Minutiae detection results from different methods.

(a) ours (c) CMNet [4]

Tab. 1 presents comparative analysis on the accuracy of
detecting 2D minutiae templates using the FingerYolo2D
where the respective ground truth minutiae were manu-
ally labeled by the experts in the four sub-databases of
FVC database. The accuracy of detecting the minutiae is
evaluated from the mean F1 scores of the correctly detected
minutia. Similar to as in [23], [27], we also evaluate the
detection accuracy of these methods using the stated cri-
terion to predict the minutia within the 12 pixels spatial and
20° of orientation tolerance to the respective ground truth
minutia. Following [23], we adopt a stricter criterion for
the tolerance that the distance between predicted minutia
and the ground truth should be within 6 pixels while the
orientation difference is within 10° to be considered a correct
match. It can be observed from such results in Tab. 1 that the
proposed FingerYolo2D method can achieve superior minu-
tiae detection performance under both criteria compared to
the methods in [23], [27].

TABLE 1: Comparative 2D Minutiae Extraction Accuracy.

Database Method 271" [23]' [23]% Proposed1 l’roposed2
FVC02-DB1A 0.879 0.910 0.880 0.927 0.908
FVC02-DB3A 0.854 0.868 0.853 0.877 0.865
FVC04-DB1A 0.845 0.878 0.829 0.894 0.849
FVC04-DB3A 0.821 0.833 0.818 0.856 0.830

Average (above) 0.849 0.875 0.839 0.889 0.862

! using default criterion (412 pixels and £20°)
2 using stricter criterion (46 pixels and £10°)

TABLE 2: Comparative 2D minutiae extraction (CL2CB).

Method Database AUC EER | Database AUC EER
mindtct [24] 57.58% 43.62% 77.69% 28.26%
MinutiaeNet [26] PolvU 50.78% 50.00% 56.23% 45.87%
VeriFinger [6] ngL 84.78% 22.32% | UWA  86.43% 20.32%
CMNet [4] 90.91% 14.60% 93.90% 11.64%
FingerYolo2D 97.39% 5.86% 95.20% 9.93%

TABLE 3: Comparative 2D minutiae extraction (CL2CL).

Method Database AUC EER | Database AUC EER
mindtct [24] 58.91% 36.85% 81.84% 4.28%
MinutiaeNet [26] 93.03% 13.35% 79.74% 26.34%
VeriFinger [6] PolyU 98.16% 2.99% UWA 95.44%  9.02%
CMNet [4] C2CL  99.33% 1.94% 98.24% 4.28%
Extractor [23] 99.25%  1.90% 98.91% 3.89%
FingerYolo2D 99.81% 0.70% 99.26% 1.69%

The minutiae-based fingerprint verification (for both
CL2CB and CL2CL) performance using the 2D minutiae
templates extracted by FingerYolo2D and other 2D minutiae
extraction methods is also presented. We use the MCC
[1] to match the extracted 2D minutiae templates, Such
comparative performance presented in Tabs. 2 and 3 for both
CL2CB and CL2CL matching indicate that our proposed
model can offer superior performance than previous 2D
minutiae template extraction methods.

7.3 Detection of 3D Minutiae and Matching

The visualization of an estimated 3D minutiae template,
along with the respective contactless fingerprint image,
appears in Fig. 9. This figure presents such visualization
from four different view angles. The estimated 3D minutia
are shown using the blue pyramids while the projected
2D minutia on the contactless fingerprint image appear
in red, and the projection relationship is annotated using
the dotted lines. The 3D minutia are connected using De-
launay triangulation for better visualization in 3D space,
such triangulated mesh coarsely consists of a surface that
approximates the shape of the finger.

Fig. 9: Multiple views for a predicted 3D minutiae template.

Detection Accuracy for 3D Minutiae: The 3D minutiae
detection accuracy using the proposed FingerYolo3D detec-
tor is estimated by comparing the extracted 3D minutiae
templates with the 3D minutiae ground truths of all the
1056 contactless fingerprints in PolyU3D-single of PolyU 3D
database [21] and this accuracy is quantified using the mean
F1 score. The criterion for the correct match between the
predicted 3D minutiae and the ground truth is defined using
the tolerance i.e. whenever the predicted minutia is within
12 pixels of the respective ground truth minutia and the
orientational difference in 3D space is within 20°. The mean
F1 score from such evaluation using PolyU3D-single is 0.816.
PTCM Evaluation: Fig. 10a presents a sample visualization
of a pair of original 3D-3D minutiae templates and it is
visualized using its 2D projection. In Fig. 10b we use PTCM
to align the same 3D-3D templates and project to 2D. It can
be observed that with the use of PTCM, the respective match
score generated by VeriFinger increases from 84 to 149. We
especially highlight challenging (cross-view) regions with
red and green boxes in Fig. 10a and present in Fig. 10c
the corresponding visualization of minutia from these two
regions using the same red and green color. Fig. 10d shows



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, PP. 7812-7831, VOL. 47, SEP. 2025 13

the compensated minutiae matches from Fig. 10b, where the
minutiae are better aligned as compared to those in Fig. 10c.
Similar visualization for a pair of 3D-2D minutiae templates
(3D template is visualized in 2D) is shown in Fig. 10e. The
minutiae templates in Fig. 10f are compensated from Fig. 10e
using PTCM and the respective match score by VeriFinger
increases from 238 to 363. We enlarge the respective regions
in black rectangles in Fig. 10e and project the 3D minutiae
on the corresponding contact-based fingerprint in Fig. 10g.
We perform same steps for pair in Fig. 10f and generate
Fig. 10h. It can be observed from Fig. 10h that CL2CB
minutiae correspondences are better aligned than Fig. 10g.

: (f) score=363 (8) (h)

(e) score=238
Fig. 10: Visualization for effectiveness of the PTCM

The quantitative analysis for PTCM using the compar-
ative ROC curves is presented Fig. 11 and respective EER,
and TAR@FAR=10"* values are summarized in Tab. 4. These
experiments were performed to ascertain the effectiveness
of PTCM for the 3D minutiae template matching using
the PolyU3D-cross dataset. Two off-the-shelf 2D minutiae
template matchers (MCC [1], VeriFinger [6]) and one 3D-
3D minutiae template matcher (tetrahedron based matcher
[21]) are selected as the baseline for the for comparisons. It
is worth noting that the tetrahedron-based method [21] can
only be used for 3D-3D matching since this method is not
able to match 3D to 2D templates. For the MCC and VeriFin-
ger matcher, if the template pair is matched without PTCM,
we retain only 2D information for such templates and input
the acquired 2D templates to the matcher for computing
the match scores. If the PTCM is used for matching, we
recover the projected 2D minutiae templates from the input
template pair as detailed in Sec. 4, and input such templates
to compute the match scores. The evaluation protocol can
be summarized as follows.

e 3D-2D one-session matching: we perform all-to-all 3D to
2D template matching using session-1 of PolyU3D-cross
dataset. Therefore, we generate 5760 (160*(6*6)) genuine
and 915840 ((160*159)*(6*6)) imposter match scores.

o 3D-3D one-session matching: we perform 3D to 3D tem-
plate matching under all-to-all protocols using session-
1 of PolyU3D-cross dataset. Therefore 2400 (160*(6*5)/2)
genuine and 457920 ((160*159/2)*(6¥6)) imposter match
scores are generated.

« 3D-2D two-session matching: we perform all-to-all match-
ing between 3D template of session-1 and 2D template
of session-2 using PolyU3D-cross dataset. Therefore 5760
(160*(6*6)) genuine and 915840 ((160*159)*(6*6)) imposter

match scores are generated.

« 3D-3D two-session matching: we perform all-to-all 3D to
3D template matching between session-1 and session-2 of
PolyU3D-cross dataset. We generate 5760 (160*(6%6)) gen-
uine and 915840 ((160*159)*(6*6)) imposter match scores.

ROC for one-session, 3D-2D match ROC for one-session, 3D-3D match
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Fig. 11: Comparative results for real 3D minutiae templates.

TABLE 4: Performance of PTCM on PolyU3D-cross.

scenario PTCM matcher EER TAR@FAR
one-session, 3D-2D v MCC [1] 1.875%  90.521%
one-session, 3D-2D v VeriFinger [6]  1.925%  93.698%
one-session, 3D-2D X MCC [1] 3.119%  86.267%
one-session, 3D-2D X VeriFinger [6]  2.636%  91.510%
one-session, 3D-3D v MCC [1] 0.316%  99.542%
one-session, 3D-3D v VeriFinger [6]  0.352%  99.542%
one-session, 3D-3D X MCC [1] 0.316%  99.375%
one-session, 3D-3D X VeriFinger [6]  0.352%  99.500%
one-session, 3D-3D - tetrahedron [21] 1.256%  98.625%
two-session, 3D-2D 4 MCC [1] 2.345%  89.861%
two-session, 3D-2D v VeriFinger [6]  2.609%  92.604%
two-session, 3D-2D X MCC [1] 3.735%  82.656%
two-session, 3D-2D X VeriFinger [6] 2.609%  88.906%
two-session, 3D-3D v MCC [1] 2.133%  89.965%
two-session, 3D-3D v VeriFinger [6] 1.709%  93.524%
two-session, 3D-3D X MCC [1] 3.025%  87.535%
two-session, 3D-3D X VeriFinger [6]  2.186%  92.361%
two-session, 3D-3D - tetrahedron [21] 6.093%  84.740%

The comparative results presented in this section indi-
cate that the PTCM can help to enhance the performance
of the 3D-3D and 3D-2D minutiae template matching, for
both intra-session and cross-session tasks, and its ability to
utilize the 3D information of minutiae is significantly better
than those using the tetrahedron-based matcher [21].
Evaluation for (FingerYolo3D+PTCM): To evaluate the
performance of FingerYolo3D and PTCM framework on
databases without the known ground truth for 3D minutiae,
(FingerYolo3D + PTCM) framework is considered to recover
3D minutiae templates from the monocular contactless fin-
gerprints followed by PTCM to compute the match score
from such recovered 3D minutiae templates. The perfor-
mance evaluation using (FingerYolo3D + PTCM) for CL2CB
matching performance on three databases is presented in
Tab. 5 and Fig. 12. The ROC, CMC, and FPIR-FNIR plots,
along with the EER, TAR@FAR=10"* and Rank-1 accuracy,
are reported. For comparisons, we provide the performance
from other frameworks that use different minutiae extrac-
tion and template matching methods. Such experiments are
organized under four groups: Ay, Az, A3, A4, and explained
here. In group A;, VeriFinger extracts 2D templates from
the contactless fingerprints. In group A,, the 3D informa-
tion of templates extracted from contactless fingerprints by
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FingerYolo3D is removed, and resulting 2D templates are
used for contactless fingerprint matching. In group As, 3D
information of templates extracted from contactless finger-
prints by FingerYolo3D is firstly removed. The 3D ellipsoid
modeling [20] is then used to recover respective 3D minutiae
features, followed by the compensation method in [20] to
acquire the compensated minutiae templates projected on
2D plane for the matching. In group A4, FingerYolo3D
is used to extract 3D minutiae templates, and then our
PTCM is employed to acquire the compensated minutiae
templates that are projected to 2D. In groups A;, Az, A3,
and A4, VeriFinger extracts 2D templates from contact-based
fingerprints, and VeriFinger matches the CL2CB templates.

TABLE 5: Comparative Results of CL2CB Matching (in %).

Database Index A, A, A, A,
EER 4.008 2.900 2.435 2.196
ZJu TAR@FAR | 86.002 90.085 90.530  92.094
Rank-1 91.566  94.023  94.519  95.581
EER 5.421 2.802 2.384 1.771
ISPFDv2 TAR@FAR | 83.146 88423 89.513 91.356
Rank-1 91.810 94381 95.238  96.762
EER 11906 18586 11.869  10.479
UWA TAR@FAR 56.76 58.927  61.488  66.282
Rank-1 67.704  69.679 72523  75.736
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Fig. 12: Comparative results for the CL2CB matching.

The CL2CL match performance from (FingerYolo3D +
PTCM) is evaluated on four databases. These results are
presented in Fig. 13 and summarized in Tab. 6, which
also provides the performance of other frameworks that
use different minutiae extraction and template matching
methods. The CL2CL match experiments are organized into
five groups, i.e., By, Bs, B3, By, and Bs. The contactless
fingerprint matching methods in groups B, Bs, B3, and Bs
are the same as those in groups A;, Ay, Az, and Ay, respec-
tively. In group B4, we use FingerYolo3D for 3D minutiae
template extraction, and the tetrahedron-based matcher [21]
is used to compute match scores of extracted 3D templates.
The VeriFinger is used to compute the match score for the
templates in groups By, B2, B3, and Bs.

To evaluate the effectiveness of the CL2CB and CL2CL
matching, we can compare the performance from A, vs. A3
vs. Ay and B vs. B3 vs. Bs. It can be observed that both the
3D recovery method in [20] and our proposed FingerYolo3D

0675

102 10- Too
FPIR

TABLE 6: Comparative Results for CL2CL Matching (in %).

Database Index B, B, B, B, B

EER 5077 2901 2738 3443  2.053

CFPose | TAR@FAR | 86.481 88.037 89.611 82.167 92.574
Rank-1 92130 93.148 93.889 90.833 97.037

EER 0876  0.798 0.644 1770  0.502

ZJju TAR@FAR | 97.968 98.382 98.678 92.992 98.974
Rank-1 99.404 99.173 99.592 96.547 99.735

EER 2937 209 2147 3139  1.556

ISPFDv2 | TAR@FAR | 95302 96.603 96.698 92.317 97.492
Rank-1 98.111 98.889 98.889 97.667 99.444

EER 21.156 23.141 26.471 29.585 19.950

UWA TAR@FAR | 28.782 36.647 39.558 22.021 43.842
Rank-1 62.851 68.624 74.096 59.739 77.159

ROC for CFPose Database

0.95 008 025
X 0.20 F——.
0.96
«
. 2015
Group B; 0.94 Group By & Group B;
—— Group B;

— Group B, 0.10{ — Group 8,
— Group B — Group8s
075 Group Ba Group B
Group Bs Group B \

CMC for CFPose Database FPIR-FNIR, CFPose Database

Genuine Accept Rate
Recognition Accuracy

— Group B;
Group By 0.05
Group Bs

1057167 10 102 10 10° 10 102 10T 00
False Accept Rate
ROC for ZJU Database

23456780910

Rank FPIR
CMC for ZJU Database 5 FPIR-FNIR, ZJU Database

Group By
—— Group B,
— Group B;
Group By
Group B5

1

0.9975

0.995 > % oo
Zo.0050

S 09925 0.03

°
8
8
g

0.985 £ 0.9900
Group B; 2

0.980] — Group B

— Group B

0.975 Group By

Group Bs Group B

o 3 o o

To 167 163 102 107 10° 2345678910 102 102 07 100
False Accept Rate

ROC for ISPFDv2 Database

FNIR

2 Group By
£0.98751 __ Group B,
§ 0.98501 — Group B3
= Group By

0.02

Genuine Accept Rate

0.01
0.9825

FPIR
FPIR-FNIR, ISPFDv2 Databas

Group B,
— Group B,
0.06 — Group 85
Group B4
Group Bs

Rank
CMC for ISPFDv2 Database

o.
0.07

005
«
0.985 2004
Group By &
0.980 — GroupB;
— Group B, 002
Group Bs
Group B —

Group B;
—— Group B,
— Group B;
0.90 Group B4 0.975
Group Bs

Genuine Accept Rate
Recognition Accuracy

10° 107 100 102 100 10°
False Accept Rate
ROC for UWA Database

23456780910 102 102 107 100

Rank
CMC for UWA Database
— Group B3

>
Zoso 07

Group B, Zors 06

0.6 Group Bs < z05
5070 H —

04 2 Group B Zoa

- goss —— Group s 03

g 0.60 — GroupB;

= Group Ba

Group Bs

o o o

0 10¢ 10° 16° 100 10° 2345678 510 T 102 0 10°
Rank FPIR

FPIR
FPIR-FNIR, UWA Database

Group B;
—— Group B,

Group 8,
—— Group B;
— Group B;
Group By
Group Bs

Genuine Accept Rate

False Accept Rate

Fig. 13: Comparative results for the CL2CL matching.

can improve the matching performance. Therefore, in both
cases, the 3D information recovered by these two methods
is effective, and the proposed framework to recover 3D
information and compensate 3D templates (with PTCM)
outperforms the framework introduced in [20]. Further, the
3D information is recovered similarly for B4 and Bs, while
exploited by two different matching methods. The perfor-
mance of the tetrahedron-based matcher lags far behind
our proposed PTCM mechanism. It can be observed that
the performance for group B, is even below B;, where
the 3D information is discarded, and [21] has not provided
comparisons with the other 2D minutiae matchers, such as
MCC [1] or the VeriFinger [6]. Due to space constraints,
performance comparisons with other methods [2], [33] are
provided in Appendix A and Appendix B, respectively.

7.4

The inference time for the different minutiae extraction
models is presented in Tab. 7. It can be observed from
Tab. 7 that even with the use of GTX1050 mobile, which
is quite outdated than the currently popular GPU cards
used in other deep learning-based algorithms, our algorithm
still reaches the fastest speed. In addition, our model offers

Inference Speed for FingerYolo3D Model
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superior performance over a popular COTS when evaluated
on the same CPU, which further validates the extremely
high speed of our proposed model.

TABLE 7: Comparative Analysis for the Inference Speed.

Method Device Test Database Time (s)
VeriFinger [6] i9-10850K FVC2004 1.07
Proposed 19-10850K FVC2004 0.00625
MinutiaeNet [26] GTX1060 FVC2004 1.2 [27]
FME [27] GTX1060 FVC2004 0.03 [27]
Extractor [23] GTX1050Ti(Mobile) FvC2004 0.025 [23]
Proposed GTX1050(Mobile) FVC2004 0.0115
VeriFinger [6] 19-10850K UWA 1.11
Proposed 19-10850K UWA 0.00698
MinutiaeNet [26] TITAN Xp UWA 12 (4]
CMNet [4] TITAN Xp UWA 0.86 [4]
Extractor [23] GTX1050Ti(Mobile) UWA 0.083 [23]
Proposed GTX1050(Mobile) UWA 0.0122

7.5 Comparative Analysis for Fingerprint Synthesis

Tab. 8 presents comparative analysis from generating the
finger surfaces using the method in [5] and from the pro-
posed method while ensuring that the maximum point
cloud spacing between these two methods remains the same
and is 64, 32, 16, and 8um (micrometer), respectively. To
ensure fair comparison, the height of 3D finger model is
re-scaled to 2.5 cm. We compare the number of points, the
speed of surface generation, and the speed of 3D-2D ridge-
valley pattern mapping of finger surfaces generated by these
two methods under the same maximum point cloud spac-
ing. This analysis indicates that when the maximum point
cloud spacing is the same, our proposed method generates
fewer points on the surface using slightly more time than
[5]. However, it saves more time in the following step for
the 3D-2D mapping algorithm than using [5] and therefore
benefits the total time required for the 3D finger synthesis.

TABLE 8: Comparison for 3D Finger Generation Methods.

Method [5] This Paper

max. point spacing | 64pum | 32um | 16pum | 8um | 64pm | 32um | 16um | Sum
number of points |y 5| 501 119519 (9863 | 25 | 100 | 31.93 | 1082
on surface (x10°)

speed of surface 1 1 | 005 | 0.087 | 0.438 | 0.018 | 0.052 | 0.185 | 0.667
generation (seconds)

speed of D-2D 1y 40 4 4y | 1396 2741 070 | 1.03 | 3.06 | 9.03
mapping (seconds)

The first-row images in Fig. 14 are the samples from the
profile-view, top-view, and frontal view of the 3D finger
surface generated using the method in [5] and contains 3600
points. The 3D finger surface generated by the proposed
method is also shown in Figs. 14e to 14g and also contains
3600 points. Although the number of points of the meshgrid
displayed in the first row and the second row of Fig. 14
are the same, the maximum point cloud spacing for the
first finger surface is much larger than the second finger
surface since the points in the first surface are unevenly
distributed as highlighted in Fig. 14d and the points in the
second surface are evenly distributed as shown in Fig. 14h.

7.6

This section presents experimental results for comparative
individuality analysis, using PRC,4 index for the contactless
2D minutiae templates and the PRCsz4 index for respective
3D minutiae templates recovered from the contactless 2D

Individuality Analysis using PRC
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Fig. 14: Comparative visualization of results from original
Bezier surface and uniform Bezier 3D finger surface modeling.

fingerprints. The PRCy4 index and PRC3q4 index, using the
ISPFDv2 database and with m = n = 52 setting, are respec-
tively summarized in Tab. 9a and 9b; we fix the threshold w
to 12 and change the values of 7y and dy. The threshold 7
ranges from 8 to 15 in steps of 1, and dy ranges from 15.3°
to 21.6° in steps of 0.9°; with a larger ry and larger dy, we
use more relaxed conditions for considering two minutiae as
matched. It can be observed from Tabs. 9a and 9b that when
the match conditions are relaxed, the probability of falsely
matching two randomly generated minutiae temglates in-
creases. We compute the order of magnitude of ngij and
denote this number in red on the lower right in Tab. 9b. It
can be observed that with the reduction in r¢ and dy, i.e.
when the matching criterion gets stricter, the ratio of PRC2d
to PRC3d increases. Tab. 9c provides the PRCyq and PRCzq
scores from ISPFDv2 database, and with the increase in w
while fixing the values of ry and dy. This trend also indicated
that as the matching criterion gets stricter, the value of
gggij increases. This can explain the theoretical advantage
of 3D minutiae templates over 2D minutiae templates, us-
ing enhanced fingerprint uniqueness, especially when the
matching criteria are more stringent, which is the case for
most high-security deployment applications.

The comparative results for the PRCy4 and PRCsq4 scores
using five different fingerprint databases are presented in
Tab. 10. These comparisons on the estimated uniqueness of
2D and 3D minutiae templates are also presented using the
prior method in [28]. It can be observed from Tab. 10 that the
recovered 3D minutiae templates can offer superior unique-
ness over 2D templates as (z,y,z,0,¢) has two higher
degrees of freedom than (z,y,#), which can significantly
lower the possibility p(C;,C;) of occurring a false match
between two randomly selected minutia. The degradation
of p(C;, C;) further leads to the decrease in the parameter
X(C;, C5) for the Poisson distribution which exponentially
influences the final PRC score. Here, we use the same
criterion as in [28] with the setting of o = 15, dy = 21.6° to
compute the PRCyq and PRCjq, respectively, for the 2D and
3D minutiae templates. The overestimated results in Tab. 10
reveal that [28] ignored the interdependence between the
features, and the model in our work has estimated the
correlation between the distribution of minutiae location
and orientation in 3D space, leading to a more precise
estimation of the 3D fingerprint uniqueness.
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TABLE 9: Individuality Analysis Using Comparative PRC Scores between 2D and Recovered 3D Minutiae Template
(a) PRCyq Score for ISPFDv2 Database (m = n = 52, w = 12)

do = 15.3° dy = 16.2° do = 17.1° dy = 18.0° do = 18.9° dy = 19.8° do = 20.7° do = 21.6°
ro=8 | 5.60x 1077 6.11 x 107° 837x10°° 1.29x 10°° 1.84x 10°° 4.74x 10°° 6.78 x 105 1.27 x 10~ "
ro=9 | 5.64x107% 6.80x107% 1.75x 1077 244 x1077 3.77x 1077 599x 1077 7.47x 1077 852x 1077
ro=10 | 3.58 x 1077 9.75x 1077 1.10x 107¢ 2.13x107% 255x107% 3.37x107°% 5.27x107% 8.62 x 107°¢
ro=11 ] 1.91 x107% 477 x107% 7.06 x 107 9.02x107%® 1.70x107° 1.99x107° 3.01 x 107° 3.83 x 107°
ro =12 | 1.07x 107° 3.14x107° 3.77x107° 7.31x107° 9.88x107° 1.09x 107* 1.25x10"* 2.38x 107*
ro=13 | 574 x 107° 1.05 x 107* 1.66 x 107* 2.34 x 10”* 2.62x 10* 4.22x10"* 5.04x10"* 6.15x 107*
ro=14 | 235 x 107* 3.60x 107* 5.95x107* 7.18x107* 859 x107* 1.68x107° 2.11x10"% 3.00x 107?
ro=15 | 746 x 10°* 1.32x10°% 1.564x10°% 221x10°% 3.30x10°° 4.01x10"° 5.05x10"° 6.86x10"°
(b) PRC3q4(y,) Score for ISPFDv2 (m=n=>52, w=12), red number (1) on lower right denotes order of magnitude of gggii
do =15.3° do =16.2° do =17.1° do = 18.0° do =18.9° do =19.8° do =20.7° do =21.6°
—21 —21 —20 —19 —19 —19 —19 —18
ro =8 [3.03x107,3) 550 x 10,3) 2.64 x 10,7] 1.22x 10} 4.74 x 1075 847 x 10,,0] 9.55 x 107, 5.74 x 10}
—19 —19 —18 —18 —18 =« —17 ~ 9n —17 —16
ro =9 | 210 x 10,37 1.72x 10,3 119 x 1035 1.90 x 10,35 7.50 x 10,5 3.01 x 10,7 6.36 x 10,,,] 5.89 x 10,
—17 —17 —17 —17 —16 —16 —16 —15
ro =10 | 1.44 x 107,57 3.21 x 10,1 5.46 x 10| 7.64 x 10,07 1.57 x 10 3.38 x 10,)® 8.72 x 105} 1.20 x 107,}°
_ —17 —17 —16 —16 —15 —15 —14 —14
ro =11 | 7.68 x 1077 9.03 x 107} 2.72x 107, 6.27 x 107,] 142 x 107,] 6.15 x 107,}° 1.03 x 105} 1.93 x 107
_ —16 —15 —15 —14 —14 —14 —14 —13
ro =12 | 156 x 107§ 1.31 x 10,17 7.91 x 10,)° 1.23 x 107" 4.39 x 10,)* 6.01 x 10;;7* 9.46 x 10,,)" 2.89 x 10
_ —15 —14 —13 —13 —13 —13 —12 —12
ro =13 | 3.51 x 107, 5.08 x 107" 1.03 x 10} 3.52 x 10" 6.36 x 10;)* 9.48 x 10,)° 1.18 x 10} 4.51 x 10
_ —13 —13 —13 —12 —12 —12 —11 —11
ro =14 | 272 x 107 3.18 x 10,)® 5.53 x 10)% 1.33 x 10,)* 5.81 x 10,)? 8.70 x 10)* 1.11x 10} 3.84 x 107
_ —13 —12 —12 —12 —11 —11 —11 —10
ro=15[7.72x 10,7 3.15x 10" 6.88x 10,)% 849 x 10,% 2.71x 10, )" 3.26 x 107" 5.23 x 10" 1.67 x 107
(c) PRCyq and PRCzq4 Scores for ISPFDv2 Database for Different w Thresholds (m = n = 52,79 = 15,dp = 21.6°)
w 10 12 14 16 18 20 22 24
PRCyq [3.88 x 1072 6.86 x 1073 124 x 103 1.03x 10~* 2.15x 1075 1.64x10"6 643 x10~% 534 x 10~9
PRC3q | 6.64 x 1078 1.67 x 10710 1.29 x 10712 1.76 x 10~'* 3.72x 10~'7 1.01 x 10~8 3.39 x 10722 1.06 x 10—23

TABLE 10: Comparative PRC,q and PRCsq Scores from
Different Contactless Fingerprint Databases (rg = 15,dy =
21.6°,w = 12)

to train FingerYolo3D. These experimental results indicate
that our synthesized fingerprint database can enhance the
performance of the proposed architecture to recover 2D and

Database | m,n  PRCyq [18] PRCsq (ours) PRCy [28] PRCy [28] 3D minutiae for the CL2CB and CL2CL matching tasks.
CFPose [20] |55,55 8.33x107° 4.59x 10710 2.46x10~% 3.56x10" 6 ) ) )
PolyU 3D [21] | 47,47 6.56x 1073 5.28x107'° 4.38x 107 1.02x10~'° TABLE 11: Effectiveness of Synthetlc Data for FmgerYoloZD
ZJU[22] ]63,63 1.15x10”% 2.40x10~*' 3.95x107% 4.55x107'¢
ISPFDv2 [14] | 52,52 6.86x10™% 1.67x 10710 4.98x10~¢ 2.35x 10! Index Task w/syn. w/osyn. Task w/syn. w/osyn.
s 13 _s 18 AUC UWA( 96.22% 9520% UWA( 99.43%  99.26%
UWA 9] |42,42 7.01x107" 3.46x10 = 1.42x107 3.43x10 EER CL2CB) 9.16%  9.93% CL2CL) 147%  1.69%

8 ABLATION STUDY

The ablation studies can help to further validate and un-
derstand the contributions from the synthesized fingerprint
database, the introduction of the dynamic bounding box,
and 3D orientation loss during the network training of our
3D /2D minutiae extraction architecture.

Synthesized Contactless Fingerprints: We performed ex-
periments to ascertain the contribution from our synthe-
sized database for the extraction of 2D minutiae, and these
results are summarized in Tab. 11. In this table, the baseline
results in the group “w/o syn.” are from Tabs. 2 and 3,
where the synthesized database was not used to train Fin-
gerYolo2D, and we added the synthesized database, besides
the training dataset, on the baseline to train FingerYolo2D
in the group “w/ syn.”. Similarly, Tab. 12 summarizes the
experimental results performed to evaluate the contribution
of our synthesized database for the 3D minutiae extraction.
For the results of Tab. 12, we only used the PolyU 3D
database [21] to train FingerYolo3D in the group “w/o syn.”
and this represented the baseline results. In the group "w/
syn.”, the performance on ISPFDv2 and CFPose database
is respectively from Tabs. 5 and 6, where both the syn-
thesized database and PolyU 3D database [21] are used

TABLE 12: Effectiveness of Synthetic Data for FingerYolo3D

Task CL2CB task (ISPFDv2) CL2CL task (CFPose)

Index EER TAR@FAR Rank-1 | EER TAR@FAR Rank-1
w/syn. | 1.771% 91.356%  96.762% | 2.053%  92.574%  97.037%
w/osyn. | 2.722% 88.304%  94.286% | 2.615% 89.481%  94.259%

Dynamic Bounding Box for Minutiae Detection: To evalu-
ate the effectiveness of the dynamic bounding box approach
for the FingerYolo2D and FingerYolo3D, we summarize the
comparative results in Tab. 13 using the detection accuracy
(evaluated by mean F1 score) of FingerYolo2D and FingerY-
0lo3D. These two detectors were trained with the proposed
dynamic bounding box and other three scenarios where
the width w of the ground truth bounding box is fixed at
0.75xlyy, 1.0x1py, 1.25x1,,, where [, denotes the average
length between ridge and valley. These results indicate that
the performance of the proposed dynamic bounding box
is superior to the other approach where the width of such
bounding box remains fixed.

3D orientation loss L,: Since this loss function is designed
to accurately predict the 3D minutiae orientations from
FingerYolo3D, we compare the 3D minutiae template de-
tection accuracy for the PolyU3D-single database when the
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TABLE 13: Ablation Study for Dynamic Bounding Box.

Model Method | 1y amic 0.75x0ry 1.0x1py 1.25x0r0
Database

FVC02-DB1A 0.927 0.904 0.915 0.918

FVC02-DB3A 0.877 0.875 0.870 0.872

FingerYolo2D FVC04-DB1A 0.894 0.871 0.873 0.880

FVC04-DB3A 0.856 0.839 0.851 0.845

Average (above) 0.889 0.872 0.878 0.880

FingerYolo3D | PolyU3D-single 0.818 0.789 0.801 0.804

FingerYolo3D trained by the proposed L, with the scenario
when the FingerYolo3D trained by other orientation loss
functions. The mean F1 scores from the proposed loss, L,
loss, chord loss, and cosine loss are, respectively, 0.818, 0.794,
0.783, and 0.767. These results indicate the effectiveness of
the proposed loss function.

9 CONCLUSIONS AND FURTHER WORK

This paper® has introduced the first attempt to recover a 3D
minutiae template from a single contactless fingerprint im-
age. We propose a neural model with lightweight architec-
ture (FingerYolo3D) to recover such 3D minutiae templates.
This model can simultaneously predict 3D coordinates, 3D
orientations, and the type of respective minutia. To this end,
this paper also proposes a dynamic bounding box scheme
to enable the model to automatically learn the size of the
effective region at the respective minutiae point. In addition,
the newly introduced orientation loss can help the model
predict the azimuthal and elevational orientations of the
3D minutiae more accurately. Our extensive experimental
presented in Sec. 7 of this paper indicates that such an ar-
chitecture can also accurately extract 2D minutiae templates
(FingerYolo2D) and achieve SOTA performance.

The approach introduced in Sec. 6 to synthesize com-
pletely contactless 3D fingerprint images can generate more
realistic finger surface texture and their 3D minutiae ground
truths, including respective coordinates and directions. Ex-
perimental results presented in Sec. 8 reveal that the ex-
tensive synthetic contactless fingerprint database generated
following the proposed method benefits the minutiae ex-
traction model, and experimental results in Sec. 7 show
that the 3D information prediction model trained by such
synthesized database can help to enhance the minutiae
matching performance.

This paper has also presented the first attempt to si-
multaneously address the problem of 3D to 3D and 3D to
2D fingerprint minutiae template matching, whose success
is critical for the broader adoption of 3D fingerprint tech-
nologies. To fully avail the potential from 3D information,
we introduced pose invariant PTCM to compensate for the
perspective transformation of the 3D minutiae templates,
yielding a discernible performance surge of 3D minutiae
template matching. Comparative evaluation of the proposed
PTCM in Sec. 7 with prior 3D to 3D minutiae template
matching method [21] using a real 3D minutiae template
database indicates superior match performance from PTCM.
It was also observed that the use of the FingerYolo3D to

3. Algorithm(s) detailed in this paper are part of US Patent No.
63/774,168.

recover 3D minutiae templates from contactless fingerprints
first and then followed by PTCM to match the extracted 3D
templates can offer much better performance than directly
matching the 2D minutiae templates extracted from con-
tactless fingerprints. This observation can help establish our
framework’s merit (FingerYolo3D+PTCM) in fully utilizing
the recovered 3D information from the monocular contact-
less 2D fingerprints.

We also evaluated the uniqueness of the recovered 3D
minutiae templates using their probability of false random
correspondences. A statistical model was developed in this
paper to more precisely compute such PRCzq scores from
the observed distribution of minutiae templates in the avail-
able 3D space. Experimental results presented in Sec. 5
reveal that the probability of falsely matching 3D minutiae
templates is several orders of magnitude lower than that
of 2D minutiae templates. This observation can theoretically
validate the merit of our approach for contactless fingerprint
matching and also generate a more realistic upper bound on
the uniqueness of 3D fingerprints.

Further enhancement of this work should attempt to
introduce more realistic rendering algorithms, such as in
[37], to render the finger skin of the synthesized 3D finger
mesh grids to provide a more realistic illumination profile
for contactless fingerprint images. A controllable diffusion
model can be designed to accurately control the appear-
ances of the synthesized contactless fingerprints follow-
ing the style transfer steps. Further efforts to enhance the
framework’s speed (FingerYolo3D+PTCM) can help meet
stringent requirements for the large-scale deployment of
contactless fingerprint technologies.
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APPENDIX A
COMPARATIVE PERFORMANCE WITH [22]

The method in [22] recovers the 3D information from the
monocular contactless 2D fingerprints and correspondingly
unwarps images. These unwarped fingerprint images, in-
stead of minutiae templates, are fed into VeriFinger to com-
pute the match score, adopting a totally different framework
as compared to the method in this paper. Despite these
differences, we still performed comparative performance
evaluation since both of the methods recover 3D informa-
tion from single 2D image. These results are summarized
in Tab. S1 using the EER index for the CL2CB and CL2CL
matching. In order to ensure fair comparisons, we adhere to
the same matching protocol as in [22] during such experi-
ments.

Table S1: Comparative performance of our method with [22].

Method Raw  Unwarp [22] Ours
CL2CB 5.44% 5.00% 0.20%
CL2CL 7.77% 5.95% 3.15%

It is important to note that the reconstructed 3D infor-
mation in [22] can only be fully exploited when the pose
rotation is provided as ground truth. When the evaluation
dataset, such as PolyU C2CL, does not include information
on the finger poses, their unwarping algorithm only shows
incremental improvement for the fingerprint identification
task. In contrast, our proposed framework does not require
the finger pose, as the PTCM module provides accurate
pose alignment for given template pairs. This is one of the
significant advantage of our method and is also the reason
for superior results in Tab. S1.

APPENDIX B
COMPARATIVE PERFORMANCE WITH [33]

The study [33] employs an iterative process to traverse
each point of a 3D minutiae template, generating a minu-
tiae cylinder code that is topologically aligned for each
minutiae point. These codes are then amalgamated to form
the extracted representation of 3D minutiae template. This
method is quite impressive, but it can be considered as an
incremental enhancement of the 2D MCC [5] representation
incorporating the 3D information. Despite its failure to in-
corporate 3D information in template matching, we present
comparisons with [33] to demonstrate the superior perfor-
mance of our 3D minutiae template matching algorithm.

Table S2: Comparative Performance of our method with [33].

Performance EER TAR@FAR=10—% Rank-1 Acc
Method [33] 0.68% 98.3% 97.6%
Ours 0.36% 99.4% 99.2%
APPENDIX C

ADDITIONAL DETAILS ON DATABASES AND PROTOCOLS

The IIIT-D Multi-Sensor (MOLF) Database [44]: Following
[23], the first 200 fingerprint images from the first 5 subjects

1

are used for training and the ground truths are first detected
by VeriFinger and then manually checked for any needed
correction.

Synthesized Contact-based Database [42]: Same as in [23],
we use the 50048 synthetic fingerprint images provided in
the released code [43] for paper [42]. To generate minutiae
ground truths, we detect the minutia by VeriFinger and
remove those spurious minutiae points whose quality scores
are under a fixed threshold value.

Synthesized Contactless Database (Our Method in Section
6): Following the method detailed in Section 6 of this paper,
we generated 1000 different fingerprint identities of 3D
finger model. For each 3D finger model, we generate 10
skeletons of contactless fingerprint images as observed from
-45° to +45° along the y-axis with a step of 10°. The 3D
minutiae ground truths are generated along with the skele-
tons (ridge structures) of contactless fingerprint images.
Therefore, there are a total of 10,000 skeletons of contactless
fingerprint images with 3D minutiae ground truths that
belong to 1000 different identities. For the 5000 skeletons of
contactless fingerprint images with identities ranging from
1 to 500, we generate 5000 realistic contactless fingerprint
images in CFPose database style by style transferring model
introduced in this paper. For the 5000 skeletons of contact-
less fingerprint images with identities ranging from 501 to
1000, we generate 5000 realistic contactless fingerprint im-
ages in UWA database style by the style transfer using sim-
ilar approach. These 10,000 synthesized fingerprint images,
paired with 3D minutiae ground truths, are used to train the
3D minutiae detection model FingerYolo3D. To ensure fair
comparison, we follow the same training protocol as in [23]
to train the FingerYolo2D and therefore we don’t use this
synthesized database to train FingerYolo2D.

For training the GNN model which extracts the feature
from the graph of minutiae template in the proposed PTCM,
we use all the generated 10,000 3D minutiae ground truths
belonging to 1000 identities in this synthesized database.
We automatically generate a total of 45000(1000 x 10 x 9/2)
pairs of the ground truth of genuine matching correspon-
dence from the synthesized database to train the GNN. In
order to enhance the robustness of the GNN model, we
introduce noise to the 3D minutiae templates by randomly
adding spurious 3D minutiae points, removing 10% ~
40% 3D minutiae points, applying random transformation,
adding Gaussian noise to the locations of 3D minutiae,
adding noises which follows Von-Mises-Fisher distribution
to the orientations of 3D minutiae.

APPENDIX D
MORE DETAILS OF INFERENCE SPEED

We evaluated the inference speed of the proposed Fin-
gerYolo3D model implemented using Pytorch running on
a GTX1050 Mobile GPU (2GB memory). We convert the
Pytorch model into ONNX format to compare the inference
speed of the our FingerYolo3D with the VeriFinger on i9-
10850K CPU. When we use the CPU to run our model,
the running time for FVC2004 database is 6.25ms (5.9ms
for inference and 0.35ms for non-max suppression), the
running time for UWA database is 6.98ms (6.6ms for in-
ference and 0.38ms for non-max suppression). When we use
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GTX1050 Mobile to run our proposed model, the running
time for FVC2004 database is 11.5ms (7.9ms for inference
and 3.6ms for non-max suppression), the running time for
UWA database is 12.2ms (8.3ms for inference and 3.9ms for
non-max suppression).

APPENDIX E
ANGULAR CONVERSION

In section 4 of the paper, to facilitate computations in 3D
space, we used (z,v, z,0z,0y,0,) representation for the
typical notations of 3D minutiae (x,y, 2,0, ¢,t) in many
references. This transformation for equivalent representa-
tion used in this paper can be achieved Eq. (S1) and the
illustration for such angular conversion is illustrated in
Fig. S1.

0z = cosfcosp; oy = sinfcosg; o, = sing. (S1)

APPENDIX F
COMPUTING p(C;,C;) FOR INDUVIDUALITY MODEL

Algorithm S1 Calculation of p(Cj, Cj)

Input: fCi (§7 o | ECL), fC] (57 2 | EC])
Output: p(C;, Cy)

. Generate the T'o, € RV following fc, (
: Generate the T'¢, € RNV %6 following fc, (
initialize num =0

: for k in range(\N) do

(8.5 0k,) = T, [k, :]; (S, 0k,) = T, [k, <]

if (5%,,0k,) € B(5k,, 0k,) then num = num + 1

2 p(C, Cy) = =5

5,0| E
§’5|ECJ)

We describe the numerical method to compute p(C;, Cj)
in this section. In Alg. S1, given the minutiae distribution
of class C; denoted as fc¢, (5,0 | E¢,), where Z¢, includes
Ge, and {714, fig, By, Ug, kg} (9 = 1,2,...,Gc,), we
sample a large number ' = 107 of 3D minutiae points
following f(5,0 | E¢,), the sampled minutiae points are
denoted as T¢, € RVN*6. We use Box-Muller Transform
algorithm to sample N X 74 3D coordinates of minutiae
denoted as X¢, € RN*7)X3 following trivariate nor-
mal distribution N(fg4,X4). We use the method [47] to
sample N x 74 3D orientations of minutiae denoted as
e < RW*79)%3 following Von-Mises-Fisher distribution

Table S3: Details of minutiae extraction backbone.

index from n params module arguments
0 -1 1 3520 Conv [3,32,6,2,2]
1 -1 1 18560 Conv [32,64,3,2,0]
2 -1 1 18816 C3 [64, 64,1]
3 -1 1 73984 Conv [64, 128, 3,2, 0]
4 -1 2 115712 C3 [128,128, 2]
5 -1 1 295424 Conv [128, 256, 3, 2, 0]
6 -1 3 625152 C3 [256, 256, 3]
7 -1 1 1180672 Conv [256, 512, 3,2, 0]
8 -1 1 1182720 C3 [512,512,1]
9 -1 1 656896 SPPF [512,512]
10 -1 1 131584 Conv [512,256,1,1,0]
11 -1 1 0 Upsample [2, ‘'nearest’]
12 [-1,6] 1 0 Concat [1]
13 -1 1 361984 C3 [512, 256, 1, 0]
14 -1 1 33024 Conv [256,128,1,1]
15 -1 1 0 Upsample [2, ‘'nearest’]
16 [-1,4] 1 0 Concat [1]
17 -1 1 90880 C3 [256, 128, 1, 0]
18 [171 1 11610 Detect described in paper

VMEF (¥, kg). We horizontally concatenate the X¢, and ©¢,
to acquire T¢, € RN*70)X6 then we vertically concatenate
T? (9=1,2,..,Gc,) to acquire Tc, € RV X6,

We follow the same steps to sample A 3D minutiae
points following f(5,6 | E¢;) and acquire T'¢;, € RN %6,
Then we compute p(C;, C;) using Alg. S1.

APPENDIX G
ADDITIONAL DETAILS ON NEURAL NET-
WORK TRAINING

G.1

Backbone Design: In Tab. S3, we provide a comprehensive
summary of the parameter details for each layer of the
minutiae extraction network presented in this paper. The
‘index” column identifies the layer’s index, while a value of
’-1” in the "from’ column indicates that the layer is connected
to the preceding one. We also specify the number of blocks
and parameters for each layer. For the Conv module, the
arguments listed correspond to the input channels, output
channels, kernel size, stride, and padding, respectively. In
the case of the ‘C3’ module (a CSP bottleneck with three
convolutional layers), the arguments denote the input chan-
nels, output channels, and the repetition count of the hidden
layers within the Bottleneck implementation. Regarding the
SPPF module, its arguments indicate the input and output
channels. Lastly, for the Upsample operation, the arguments
provided represent the upsampling scale factor and the
method employed for upsampling.

Training Strategy: We utilize SGD for optimization, setting
the learning rate to 1 x 10~%. The batch size is configured to
32. The initial three epochs serve as warm-up epochs, during
which the learning rate is set to 0.1. The network is trained
over 150 epochs, and optimal checkpoints are selected based
on the lowest loss achieved on the training dataset. For data
augmentation during training, we apply random rotations
within the range of -30° to 30°, random rescaling from 0.75
to 1.25, random pixel shifts ranging from -50 to 50 pixels,
and adjustments to brightness and contrast.

Minutiae Detecting Task
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Anchor Box Settings: As in [10], during the network train-
ing, anchor boxes consist of a set of predefined boxes with
fixed height and width, which are used to capture the scale
and aspect ratio of the object to be detected. The shape
and size of anchor boxes are always selected by clustering
algorithms according to the sizes of objects in the training
dataset. Different from popular Yolo architectures such as
Yolov5, which provides nine different anchor templates for
objects in various scales and shapes, we only provide three
squared sizes of anchor templates in our experiments to fit
the context of minutiae templates: 6 x 6, 9 x 9 and 12 x 12
pixels. During training, we assigned the anchor box, which
is the most similar size to the current minutiae ground
truth, as the one responsible for predicting the respective
minutiae’s 2D location and width.

Details on Loss Functions: In the total loss function, the
Aobjs Abows Acls, Az, Ao are set to 1.0, 0.05, 0.25, 0.15, and 0.15
respectively for all the experiments in this paper. We define
the lopj, lers and lyo, following the same definition as in
Yolov5 [10], the l,5; and [ are BCE loss, the lyo, is CIOU
loss. For 3D features prediction, the . is BCE loss, and we
set wg, we and § to 1.5, 0.5 and 0.2 for I, since we observed
during the network training that the weight of § should be
larger to help the convergence.

G.2 GNN for Correspondence Finding

In Tab. S4, we list the parameters of the developed GNN for
finding the minutiae correspondence.

Table S4: Details of GNN Backbone.

Layer Description Configuration

mlpl_1 Sequential MLP  FC(4, 128) , BN(128) , ReLU(),
FC(128, 196) , BN(196) , ReLU() ,
FC(196, 196)

mlpl_2 Sequential MLP  FC(196, 196) , BN(196) , ReLU() ,
FC(196, 256) , BN(256) , ReLU(),
FC(256, 256)

convl PPFConv local_nn=mlp1_1, global_nn=mlp1_2

mlp2_1 Sequential MLP  FC(260, 256) , BN(256) , ReLU() ,
FC(256, 256) , BN(256) , ReLU(),
FC(256, 256)

mlp2_2 Sequential MLP  FC(256, 256) , BN(256) , ReLU() ,
FC(256, 256) , BN(256) , ReLU() ,
FC(256, 256)

conv2 PPFConv local_nn=mlp2_1, global_nn=mlp2_2

mlp3_1 Sequential MLP  FC(260, 256) , BN(256) , ReLU() ,
FC(256, 256) , BN(256) , ReLU() ,
FC(256, 256)

conv3 PPFConv local_nn=mlp3_1, global_nn=None

SAGElayer0 SageConv SAGEConv(256, 256)

bn0 BatchNorm1d BN(256)

SAGElayerl SageConv SAGEConv(256, 256)

bnl BatchNorm1d BN(256)

We employ SGD to optimize the training of this archi-
tecture. Specifically, the learning rate, weight decay, and
momentum are configured to 1 x 1073, 1 x 1074, and 0.9,
respectively. The batch size is set to 64 with a total of 20
epochs, while the optimal checkpoints are selected based on
the minimal loss observed on the training dataset. For data
augmentation, our methodology includes applying random
rotations within a range of -30° to 30° and random rescaling
factors from 0.75 to 1.25. Additionally, to further enhance

3

model robustness, we randomly eliminate up to 30% of
the matching correspondences from the ground truths and
introduce random shifts to the coordinates of the template’s
minutiae points.

APPENDIX H
ADDITIONAL DETAILS ON FINGERPRINT
DATABASE SYNTHESIS

This section provides additional details on the method for
synthesizing realistic contactless 3D fingerprint images with
their minutiae ground truths. These details are summarized
in the following Sec. H.1 to Sec. H.5.

H.1 Generating Controlling Points from Real 3D Finger
Surface

Given real finger surfaces, we initially label the control
points of a Bezier surface to approximate these surfaces
using an iterative brute-force global search algorithm. This
process ensures that the points on the generated Bezier sur-
face achieve the minimum Chamfer Distance (CD) relative
to the points on the real finger surface.

Given that the brute-force search method is computa-
tionally intensive, we introduce a neural network, denoted
as w consisting of three MLP layers to predict the optimal
controlling points P of the given point cloud. We sample
20 finger surfaces from the PolyU3D database [R8] and use
the brute-force search method described above to label the
ground truth control points for these samples. We sample
20 finger surfaces from the PolyU3D database [R8] and
use the brute-force search method described above to la-
bel the ground truth control points for these samples. To
generate a larger dataset of controlling points, we apply
principal component analysis (PCA) to the 20 sets of con-
trolling points and compute the most representative basis
of controlling points, then linear combination of the basis
of controlling points is adopted to acquire a large num-
ber of diverse controlling points. We denote the generated
control points as { Py¢, , Pyt,, - . - }. The corresponding Bezier
surfaces {B1,Bz,...} are generated from {Pgy:,, Pyt,,...}.
For each set of control points, we sample 1024 points from
the corresponding Bezier surface (if the number of points of
the given point cloud is less than 1024, up-sample the point
cloud to acquire 1024 points). The sampled point clouds are
denoted as {X4¢,, Xgt,, .. }. To ensure the robustness of
the model w, random Gaussian noise € is added to the point
clouds’ locations, generating X g¢, +— X g¢, + €.

The controlling points prediction model takes data with
the shape of R**'92* as input, and it outputs the pre-
dicted 3D locations of controlling points with the shape
of 3 x 17 x 17. We input the Xy, into the model and
acquire the predicted controlling points P} = w(X g¢,). We
feed {(Xg4t,, Pgt,), (X gt,, Pyt,), - - - } into the model w and
optimize the model using the square loss to minimize the
l2 distance between the {Py¢,, Pyt,, ...} and the predicted
controlling points {P[, Ps, ... }.

After the parameters w is acquired, we use this
pre-trained model w to compute the controlling points
{Preal, s Preal,, - - -  from the point clouds {Sea,, Sreal,, - - - }
of finger surfaces sampled from the real 3D finger database.
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Figure S2: Visualization for the fingerprints following style transfer.

H.2 Generating Bezier Surface from P

Given a set of control points P, the Bezier surface is gener-
ated as follows:

M N
P(u,v) =Y > BM(u)B (v)Pyj;u € 0,1],0 € [0,1],
i=0j

=0
(52)
where BE(t) = mt“(l — 1)’

The surface normal N (u, v) for the Bezier surface P(u,v)
is computed using the following Egs. (S3) to (S5). These are
utilized during the steps (in H4 discussed below) of 3D
ridge engraving and the computation for the 3D minutiae
ground truth.

N(u,v) = norm( 0 P(u v) X 0 P(u v)), (S3)
where norm(77) = %
M
2 plu =35 B W g,
=0 j=0
oBM(u) M » (54)
gu A =) {zu 'a—uw)™
+(=Du' (M = i)(1 =)™
2 plu) =33 B w2 W,
1=035=0
8B§V(v) N! - —j (S5)
oo N =Y 1-)”
H1 (N = j)(1 =)V TNy

H.3 3D-2D Textural Mapping

We use the interpolated Bezier ISOMAP [1] to compute the
3D-2D textural mapping relationship for uniform Bezier sur-
face, and the steps for such computations are summarized
in in Alg. S2. The variable P in this algorithm represents the
control points to generate the Bezier surface. The psparse
and pgense denote the required maximum point cloud spac-
ing, respectively, for the sparse and dense Bezier surfaces,
where psparse > pdense. The dense point cloud of 3D
finger surface S5, and its projected 2D points S35, are

acquired. Each row of S35,,. and S32,,. has a one-to-one
correspondence for 3D-to-2D textural mapping. The surface
normal of S22, is denoted as N32 ., in this algorithm.

Algorithm S2 Bezier 3D Finger Surface Synthesis

InPUt P, pSp(l’I‘SE/ Pdense
Output Sdense/ Sgeetse
1: Generate sparse uniformed point cloud of finger surface
Sfparse from P, psparse using Alg. 1 in this paper
2: Generate dense uniformed point cloud of finger surface
S3b . from P, pdense using Alg. 1 in this paper
3: Input Sspwse, S3b . to mterpolated Bezier ISOMAP
algorithm in [1] and acquire s2b .

H.4 3D Ridge Engraving

The ridge-valley patterns on the acquired 3D finger surface
S3D  are engraved similarly to those in [1]. First, we
align the S32.,. with the 2D ridge-valley pattern image
of the synthesized contact-based ﬁngerprint. After align-
ment, we generate the boolean matrix g of the same size
as Sdense. if the 2D coordinate (Sdense[ ][]Sdense[ ][])
is aligned with a pixel that belongs to a ridge, we set
the corresponding (¢'[0][i],¢'[1][i],9'[2][i])=(1,1,1), else if
the coordinate (S35,..[0][i],S3i5hsc[1][i]) is aligned with a
pixel that belongs to a valley, we set the corresponding
(¢'[0][4],9" [1][2],¢' [2][i])=(0, 0, 0). Then, the ridge engraving is
implemented using Eq. (56) to generate the engraved point
cloud Seng for the respective 3D finger surface.

Seng = SSeDnse + NgeDnse X g/ X n (86)

where 7 controls the depth of engraved patterns and is
empirically set to 2 x 107°.

H.5 Synthesis of Contactless Fingerprint Image with
Respective Minutiae Ground Truth

The ground truth labels of the 3D minutiae for the syn-
thesized 3D finger surfaces are generated using the same
method as detailed in section III of [1]. We simulate the
multiple views of the acquired finger surface Seng in 3D
space by rotating it from -45° to +45° along the y-axis
with a step of 10°, and the 3D ground truth of minutiae
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is also rotated simultaneously. For each of the view angles,
the 3D finger surface from the world coordinate system
is projected onto the camera coordinate system to acquire
the skeleton image of the contactless fingerprint. For each
of the skeleton images, we use the style transfer model
discussed in section 6 of this paper to generate a more
realistic contactless fingerprint image. Therefore, there are

5

ten realistic contactless fingerprints with minutiae ground
truths for each of the 3D finger surfaces.

Fig. 52 shows several samples of these images. The first
row displays the synthesized skeletons, while the second
row presents the corresponding contactless fingerprint im-
ages following the style transfer.
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