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Abstract—Iris recognition systems are increasingly deployed
for large-scale applications such as national ID programs which
continue to acquire millions of iris images to establish identity
among billions. However with the availability of variety of iris
sensors that are deployed for the iris imaging under different
illumination/environment, significant performance degradation is
expected while matching such iris images acquired under two
different domains (either sensor-specific or wavelength-specific).
This paper develops a domain adaptation framework to address
this problem and introduces a new algorithm using Markov
random fields (MRF) model to significantly improve cross-domain
iris recognition. The proposed domain adaptation framework
based on the naive Bayes nearest neighbor classification uses
a real-valued feature representation which is capable of learning
domain knowledge. Our approach to estimate corresponding
visible iris patterns from the synthesis of iris patches in the near
infrared iris images achieves outperforming results for the cross-
spectral iris recognition. In this paper, a new class of bi-spectral
iris recognition system that can simultaneously acquire visible
and near infra-red images with pixel-to-pixel correspondences is
proposed and evaluated. This paper presents experimental results
from three publicly available databases; PolyU cross-spectral iris
image database, IIITD CLI and UND database, and achieve
outperforming results for the cross-sensor and cross-spectral iris
matching.

Index Terms—Biometrics, Iris recognition, Cross-Spectral, iris
recognition, Cross-Sensor iris recognition, Domain adaptation.

I. INTRODUCTION

IRIS recognition [1], [2] plays an important role in uniquely
identifying a person and is based on the uniqueness of

iris texture. As compared to several other biometrics, iris
recognition system is believed to be more reliable, accu-
rate and scalable for person identification. Therefore the iris
recognition system is widely used in large-scale national
ID programs (e.g., Indias Aadhaar program) for processing
over millions/billions of peoples biometric data. However
several challenges emerge when the iris images acquired
in one domain (sensor or illumination) is matched against
the images acquired in different domain. Such cross-domain
iris recognition problem includes the cases when the images
in one domain represent the sensor-specific iris images or
wavelength-specific iris images. This cross-domain iris recog-
nition problem is briefly discussed in two different contexts of
iris cross-comparisons.

The first context is the development of advanced cross-
spectral iris recognition capability. Commonly deployed iris
recognition systems [1], [3] use the iris images acquired from
close distances under near infra-red (NIR) wavelengths. There
have been several efforts [4], [5] to develop visible wavelength
based iris recognition capabilities in order to eliminate the

limitations of the iris recognition systems that require close
range iris imaging under near-infrared illumination which can
be hazardous. The surveillance data is often acquired under
visible wavelengths. Therefore the applications like automated
watch-list identification and surveillance at-a-distance requires
accurate iris matching capability for images acquired under
different wavelengths. In this context, simultaneously acquired
visible iris images should be matched with the iris images
acquired under near infra-red illumination to ascertain cross-
spectral iris recognition accuracy. The experimental observa-
tions presented in section VII-C for such the cross-spectral
iris matching problem also illustrate serious degradation in
matching accuracy.

The other context of cross-domain iris recognition problem
is cross-sensor iris matching problem which requires the data
acquired from two different iris sensors to be accurately
matched. The large-scale national ID programs are known to
offer flexibility (reduce vendor dependence) and permits the
use of iris sensors from multiple vendors in order to reduce the
re-enrollment costs and time. The Aadhaar program certifies
15 different vendors for supplying the iris readers that meet
quality specifications from STQC (Standardization Testing
and Quality Certification) directorate [6]. The performance
degradation when the iris image data acquired from the one
sensor is matched with the iris image data acquired from
the different iris sensor is scientifically known and can be
attributed to the variations in sensor sensitivity, optics or the
employed near infrared illumination.

In this paper, we develop and investigate two approaches
to address the cross-domain iris recognition problem. In the
first approach, we propose a classification framework based
on NBNN domain adaptation in order to improve the match-
ing performance for cross-domain (cross-spectral/cross-sensor)
iris recognition systems. The Naive-Bayes Nearest-Neighbor
(NBNN) [7], [8], [9] classifier uses the image-to-class (I2C)
distance learning. Almost all the domain adaptation algorithms
available today use I2I learning while I2C has only been
attempted in NBNN framework for domain adaptation (DA-
NBNN) [10]. This approach has not yet received attention in
biometrics and has also been explored in this paper for the
challenging problems in iris recognition.

This framework is further investigated and extended to
improve the cross-domain iris matching capability by adopting
the idea of spatial pyramid matching (SPM) [11]. The SPM
based approach adopted in this paper can consider local iris
pixel information at various level and generate localized pixel
similarity measure rather than searching nearest neighbor from
the entire image. The column-wise feature descriptors consider
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localized regions in which SPM helps to reduce adverse
influence of rotational variations. This approach therefore
allows better consideration of local pixels/pattern matching
for superior cross domain matching. A convex optimiza-
tion problem is formulated by introducing the constraints to
minimize the large margin among the intra-class variances
[12]. The extended NBNN-based domain adaptation learns
a Mahalanobis metric for each class in order to classify the
images into different categories. A significant improvement in
the cross-domain iris recognition accuracy is observed from
the experimental results presented in this paper. This method
performs particularly well when the intra-class variations are
significantly higher. It is primarily due to this fact that the
cross-spectral iris recognition using this approach achieves
(section VII-C) better performance when compared to the
cross-sensor iris recognition. We also develop an iris texture
synthesis framework, using multiscale Markov random fields
(MRF) model, to achieve superior cross-domain iris matching
capability.

The key contribution of this paper can be summarized as
follows:

1) A robust and meaningful domain adaptation strategy
requires effective learning of representative features
from the registration or training data. Such learning
can be achieved using real-valued feature representa-
tion, rather than using binary features or iris codes
that are commonly used for iris recognition. This is
the key reason that most of the previous approaches,
like in [13], used Mahalanobis distance metric during
domain adaptation strategy. Therefore, a new similarity
measure based on real-valued representation is proposed
in section III, which performs almost same as those
using popular binarized iris codes for same sensor iris
data, but unlike binary codes the feature representation
can be adopted for the domain adaptation learning.
A classification framework based on NBNN domain
adaptation (section IV) and MRF model (section V-A) is
proposed in this paper for more accurate cross-domain
iris recognition. Our experimental results in section VII
on three publicly available databases suggests significant
performance improvement for matching cross-domain
iris images.

2) This paper also proposes and evaluates a new class
of bi-spectral iris recognition system that can simul-
taneously acquire visible and near infra-red images.
Our experimental results presented in this paper on the
data of 280 sufficient classes illustrate that the combi-
nation of simultaneously acquired iris image samples
can significantly improve the matching performance that
may not be possible by conventional NIR-based iris
recognition or visible illumination based iris recognition
alone. Major problem for the bi-spectral imaging is the
lack of pixel correspondence from the images acquired
under two different wavelengths. This paper details on
addressing such challenges and presents outperforming
experimental results from the simultaneously acquired
bi-spectral images.

3) In the best of our knowledge, there is no publicly

available database which has exact pixel correspondence
to study the cross-spectral iris recognition problem. We
describe the development of such cross-spectral iris im-
age database which can enable simultaneous acquisition
of iris images, under the visible and near infra-red
illumination, which can provide more accurate repre-
sentation of cross-spectral iris information. This paper
provides such database of cross-spectral iris images,
acquired from 209 subjects, in the public domain [14]
to further advance research in this area.

A. Related work

The cross-domain iris recognition problem can categorized
into two sub-categories, namely, cross-spectral and cross-
sensor iris recognition. Each of these problems is briefly
reviewed in the following subsections. Table I provides a
summary of related iris recognition algorithms for the cross
domain iris matching problem.

1) Cross-Spectral Iris Recognition: In the cross-spectral iris
recognition, the iris images acquired under visible wavelengths
are matched against the images acquired under near infra-red
wavelengths. There have been recent efforts to develop cross-
spectral iris recognition systems. Reference [17] describes a
framework for accurately segmenting the iris images from face
images acquired at-a-distance under near infra-red or visible
illuminations. Very few efforts have been made to analyze
the multi-spectral iris imaging. Ross et al. [18] proposed the
enhanced iris recognition system by considering the fusion
of multiple spectrum beyond the wavelengths of 900nm.
Recently the cross-spectral periocular matching has been ex-
plored in [19] using trained neural network. An approach
for cross spectral iris matching [15] was proposed using the
predictive NIR image.

2) Cross-Sensor Iris Recognition: Recent studies show that
the iris recognition leads to reduced iris matching performance
[20] when the iris sample acquired from one sensor is matched
against the iris sample acquired from different sensor. For the
first time, Bowyer et al., [20], [21] provided an empirical study
for the sensor mismatch problem. There is limited literature
in cross-sensor iris adaptation algorithms. Pillai et al. [13]
proposed a framework to improve the matching performance
for cross-sensor adaptation using kernel transformation learn-
ing. Xiao et al. [16] investigated an optimization model of
coupled feature selection for comparing cross-sensor iris data.
The optimization problem is formulated to minimize the mis-
classification errors and to improve the sparsity among the
coupled features using l2,1-norm regularization. Connaughton
et al. [21], [22] explored the cross-sensor iris recognition
using the iris data acquired using three different iris cameras.
Arora et al. [23] proposed a pre-processing framework to
classify the iris cameras in order to address the issue of sensor
interoperability. Face images can be directly matched with
periocular images and such attempt is detailed in reference
[24]. Gil Santos et al. [25] introduced a cross-sensor iris
and periocular dataset using 10 different mobile setups for
data acquisition. These authors have suggested combining
the simultaneously acquired iris and periocular information
to address recognition challenges for iris recognition under
mobile imaging environments.2
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TABLE I
SUMMARY OF RELATED WORK ON DIFFERENT CROSS DOMAIN IRIS MATCHING

Ref. Method Iris
comparisons

Employed-database
(# of images / classes)

Feature
extraction

% Recognition
(Non-Adapted)

rate
(Adapted)

[15] A predictive NIR iris image is used
from the color image

Cross-spectral WVU Multi-spectral iris
database (232 images/68
classes)

log-Gabor 100 (FAR=0.1) 100

[13] A sensor adaptation algorithm is pro-
posed for cross-sensor iris recognition
using kernel transformation learning.

Cross-sensor BTAS 2012 Cross-sensor
iris competition database
(UND dataset)

log-Gabor 78.14 (FAR=0.1) 82.89

[16] An optimization model of coupled fea-
ture selection is proposed for compar-
ing cross-sensor iris data

Cross-sensor UND dataset (14000 im-
ages/700 classes)

Ordinal mea-
sures

94 (FAR=0.1) 96

This
paper

NBNN-based domain adaptation be-
tween two different iris sensors’ data

Cross-sensor (a) IIITD Contact Lens Iris
database (1270 images/127
classes)

Real-valued
log-Gabor
phase

84 (FAR=0.1) 89.92

(b) UND dataset (6420 im-
ages/214 classes)

87 (FAR=0.1) 87.7

This
paper

(a) NBNN-based domain adaptation for
cross-spectral iris recognition

Cross-spectral PolyU bi-spectral iris
database (8,400 images/280
classes

Real-valued
log-Gabor
phase

41.88 (FAR=0.1) 58.8

(b) NIR to VIS texture synthesis using
MRF model

41.88 (FAR=0.1) 61.9

B. Domain Adaptation

The domain adaptation generally refers to the mismatch be-
tween the data acquired from two different domains. Recently,
domain adaptation has gained much attention from researchers
[26], [27]. Gopalan et al. [26], [28] proposed the adaptation
algorithm by projecting the samples of both the domains onto
different intermediate subspaces and utilized the Grassmann
manifold, for calcuating a ’shortest’ geodesic path between
such domains. Gong et al. [29], [30] describe unsupervised
learning of a geodesic flow kernel (GFK) and supervised
learning of multiple base GFKs in order to project the domains
onto infinite number of subspaces. In [27], a transformation
learning is applied to map the source to target domain data
using information theoretic learning. Also different novel
adaptation approaches for classification appears in [31]-[32].
Few techniques use spatial pyramid matching for in-domain
classification problems [11], but not for cross-domain prob-
lems.

The rest of the paper is organized as follows: in section
II, the proposed solution for cross-domain iris recognition
is depicted in a simplified block diagrams. In section III, a
real-valued feature extraction method is proposed. In section
IV, the details about NBNN-based domain adaptation and the
extended DA-NBNN classification framework are presented.
The texture synthesis approach for conversion of near infrared
to visible image patches using MRF model is explained
in section V. Iris recognition using Bi-Spectral Imaging is
described in section VI. The proposed algorithms is evaluated
on standard cross-domain iris data in section VII. Finally, key
conclusions from this paper are summarized in section VIII.

II. BLOCK DIAGRAM OF PROPOSED SOLUTION

A simplified block diagram of the proposed iris classification
framework investigated in this paper is illustrated in Figure 1.
The framework accepts the respective cross-domain iris image

data either from cross-spectral or from cross-sensor iris data
acquisition. The iris segmentation, normalization and template
extraction are performed for both iris images of two domains
using the algorithm in [33]. The segmentation parameters
of the NIR iris image is applied on visible (R-channel) iris
image in order to segment the iris region. The binary iris
code is extracted and converted to real-valued local feature
descriptor which is proposed in this paper. A classification
framework based on the NBNN-based domain adaptation is
then applied to achieve superior matching performance for the
cross-spectral as well as cross-sensor iris recognition problem.

III. REAL-VALUED FEATURE REPRESENTATION FOR IRIS
SIMILARITY MEASURE

A robust and meaningful domain adaptation strategy requires
effective learning of representative features from the reg-
istration or training data. Such learning can be effectively
achieved using real-valued feature representation, rather than
using binary features or iris codes that are commonly used
for iris recognition. This is the key reason that some of most
promising approaches, like in [13], used Mahalanobis distance
metric during domain adaptation strategy.

Therefore, a new similarity measure based on real-valued
representation of log-Gabor filter responses is investigated in
this paper. This measure performs almost same as those using
popular binarized iris codes while matching same sensor iris
data, but unlike binary codes the proposed feature representa-
tion can be adopted for domain adaptation learning. We firstly
define the notations used in this paper.

a) Notations: Let Θi be the set of local feature descrip-
tors extracted from the normalized iris image i having width
w and height h.

Θi = {θi1 , θi2 , ..., θiP }, ∀θip ∈ Rd (1)

where p = {1, 2, ...P} and d is the length of feature descriptor.
When there is no noise (e.g., occlusions, shadows, etc...)
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Fig. 1. Block-diagram of the proposed DA-NBNN-based iris classification framework

in the unwrapped iris image, then P = w and d = h.
In presence of noise from real life iris images, the number
of local feature descriptors (P ) becomes (w − n), where n
represents the number of noisy feature descriptors. The noisy
feature descriptors are expected to be ignored during the
adaptation. The feature descriptor, θw can be represented as
[r1w, r2w, r3w, ..., rhw]>.

The similarity measure between two iris images Θi and Θj

is defined as Ed(Θi,Θj) and can be computed as:

Ed(Θi,Θj) =

∑(w−nij)
p=1

||θip−θjp ||
2

h

(w − nij)
(2)

where nij is the number of all the noisy feature descriptors
from both the respective normalized iris images, i and j. The
equation 2 can be written as follows:

Ed(Θi,Θj) =

∑P
p=1

√
diag((θip−θjp )M(θip−θjp )>)

h

P
(3)

where P=(w − nij) and diag(.) is the operator to trace
diagonal elements of the matrix. If the Mahalanobis distance
metric, M ∈ Rd×d, is an identity matrix, then the similarity
measure, Dist(Θi,Θj) can be computed using the average of
the Euclidean distances between all the corresponding valid
feature descriptors.

In this work, like most of other work in the literature [13],
[5], the feature descriptor for iris recognition is computed us-
ing the 1D log-Gabor filter response. The frequency response
of the filter can be defined as follows:

G(x) = e−
1
2 (log(

x
x0

)/(log( σx0
))2 (4)

where x0, σ are the centre frequency and bandwidth of
the filter, respectively. The 1D log-Gabor filter is convolved
with each row of normalized iris image (i) which generates
the complex response (a + jb) for each pixel in i. The
real (a) and imaginary (b) values of the complex number is
typically quantized into either 0 or 1 based on sign of the
response values. However, in our approach this complex value
is converted into real value as follows:

Fig. 2. Real-valued feature extraction from normalized iris image using 1D
log-Gabor filter, θw = [r1w, r2w, r3w, ..., rhw]>

a+ jb ⇐⇒ sgn(a) ∗ 2 + sgn(b) (5)

where sgn(.) operator generates either 1 (if value is positive)
or 0 (if value is negative). The feature descriptor is constructed
using such real values considered column-wise to form a
vector of size, h× 1. This procedure is graphically illustrated
as shown in Figure 2.

IV. NBNN-BASED DOMAIN ADAPTATION

This section provides a brief review on the NBNN framework
for defining domain adaptation using the optimization prob-
lem formulated in equation 10. We then describe the metric
learning which is used for solving the optimization problem in
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Fig. 3. NBNN classification framework using the I2C distance and the learned
Per-Class metric (Mahalanobis distance). Circles and rectangles represent the
class labels and images, respectively. Local feature descriptors are illustrated
as green colored points.

DA-NBNN framework. Let the source iris samples available
be denoted by S = {(Θ1, y1), (Θ2, y2), ..., (ΘL, yL)} and yl
are the labeled classes where, l = {1, ...L}. Also the target
iris samples with unlabeled classes are available as target set
T = {Θu}Uu=1.

As shown in Figure 3, the NBNN classifier uses image-to-
class (I2C) distance based on learned Mahalanobis distance
metric for each class. The I2C distance between the image Θi

and the class c can be defined as follows:

I2C(Θi, c) =

∑P
p=1

||θip−θ
c
ip
||2

h

P
(6)

where θcip is the local feature descriptor which is close to θip
among all the feature descriptors in class c. For each descriptor
of the image looks for the closest of all the feature descriptors
of all members of that particular class. Therefore each input
image considers all members for finding the closest feature
descriptor for this class. The metric learning of Mahalanobis
distance, Mc ∈ Rd×d will be explained in section IV-A. The
learned I2C distance can be expressed as:

I2C(Θi, c) =

∑P
p=1

√
diag((θip−θcip )M

c(θip−θcip )
>)

h

P
(7)

For notational simplicity the I2C distance can be written as
follows:

I2C(Θi, c) = Dist(4ΘicMc 4Θ>ic) (8)

where 4Θic = [(θi1 − θci1)>(θi2 − θci2)>...(θip − θcip)>]> and
Dist(.) is the function of Euclidean distance. The image class
labels can be identified using the positive I2C distance which
can be calculated as:

p = argmin
c

I2C(Θi, c) (9)

All the distances to other classes can be considered as negative
I2C distances, n.

A. DA-NBNN Metric Learning

The large variations in iris similarity scores from the cross-
domain iris matching can be attributed to the mismatch of
imaging wavelengths, illumination, and optical lens. Even
under such frequently observed variations in the cross-domain
iris images, the local feature descriptors across the two do-
mains are expected to be correlated and such similarity can
be further improved by domain adaptive NBNN (DA-NBNN)
framework. Keeping these aspects in mind, we can formulate
an optimization problem using the methods described in [8],
[10]. This convex optimization problem can be formulated
with respect to two iris imaging domains, namely, source s
and target t as follows:

min
M1,M2,...,Mc

O(M1,M2, ...,Mc)
k = (10)

γks

(1− λs)
∑
l,p→l

Dist(∆ΘlpMp∆ΘT
lp) + λs

n→l∑
l,p→l

ξlpn

k +

γkt

[
(1− λt)

∑
u,p→u

Dist(∆ΘupMp∆ΘT
up) + λt

n→u∑
u,p→u

ξupn

]k
s.t.∀{l, p, n}s : n− p > 1− ξlpn, ξlpn > 0

and ∀{u, p, n}t : n− p > 1− ξupn, ξupn > 0

and ∀c : Mc � 0

where λs and λt are the two trade-off parameters to regularize
the given constraints for minimizing the positive distances
between the source and target, respectively. Mc is said to be
positive semi-definite. γks and γkt are the relative weights given
at each iteration, k. The solution for this optimization problem
can be obtained in a similar manner as described in [10]. After
learning the Mahalanobis metrics for each class, the NBNN
classifier is used to classify the images across two different
domains.

B. Extended DA-NBNN Framework

In this framework, the DA-NBNN is extended to improve the
cross-domain iris matching capability by adopting the idea
of spatial pyramid match (SPM)[11]. The solution may not
be suitable for the standard testbed used for visual domain
adaptation methods, because the region of interest in the
source image can be significantly different from the image
in target domain. But this formulation is more suitable for
the cross-domain iris mismatch problem, as such variations
among the spatial coordinates for local iris feature descriptors
are expected to be small as the iris normalization steps helps
to limit such variations. However, there are other challenges
due to noise introduced by the specular reflections, eyelashes
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and pupil dilation and contractions. These challenges can be
handled while normalizing the iris images.

The SPM divides the image into different blocks at different
levels of fine resolution and finds the similarity between the
corresponding blocks in candidate class rather than searching
the NN from the whole image of that particular class. The
column-wise feature descriptors consider localized regions in
which SPM helps to reduce adverse influence of rotational
variations. The proposed framework uses the level-1 blocks
from which the local feature descriptors are extracted. The
noisy blocks are discarded and rest of the blocks are consid-
ered for the domain adaptive NBNN with SPM, also named
as Extended DA-NBNN framework.

The steps involved in extended DA-NBNN algorithm are
summarized in Algorithm 1. The sample local feature descrip-
tors are considered from two different iris domains to define
the source and target sets, Sk and Tk, respectively. These sets
are split into Q subsets. For each subset the source and target
samples are defined as Sbk and T bk . At each iteration k, the
labels for all the samples will be predicted by minimizing the
image-to-class distance. Mahalanobis matrices M c

bk+1
and the

sample data sets, Sk+1, Tk+1 and Uk+1 will be updated block-
wise by solving the optimization problem defined in equation
(10). Finally, the target labels are calculated by considering
the mode of block-wise class labels.

Algorithm 1: Extended DA-NBNN
Input: S = {(Θ1, y1), (Θ2, y2), ..., (ΘL, yL)},

Sb = {(Θlb , ylb)}Ll=1, b = {1, ...Q}
T = {Θ1,Θ2, ...,ΘU}
T b = {Θub}Uu=1, b = {1, ...Q}

Output: yu,∀u ∈ T

for each block, b=1 to Q do
Initialize Sb0 = Sb, T b0 = ∅, U b0 = T b, M c

0b = I
for iteration, k=1 to K do

Solve ∀ub ∈ U bk , yub = argmin
c

I2C(Θub , c);

with θcubp ∈ (Sbk + T bk),∀p ∈ {1, ..., Pub}
Calculate ∀lb ∈ Sbk, I2C(Θlb , c)
with θclbp ∈ (Sbk + T bk − l),∀p ∈ {1, ..., Plb}
Update Sbk+1, T

b
k+1, U

b
k+1

Solve the optimization problem given in
equation (10), for finding M c

bk+1

Find the target labels, yu

V. NEAR INFRARED TO VISIBLE IRIS SYNTHESIS

All the iris images from near infrared and visible wavelengths
are aligned during the imaging in such a way that the spatial
locations of the corresponding pixels in both near infrared and
visible iris images are same. The normalized iris image region
is divided into blocks with overlapping neighboring patches.
For each patch on the input near infrared normalized iris
image, the patch in the corresponding visible normalized iris
image is estimated. In order to estimate the visible iris image
patch θvisj of the input near infrared iris image patch θnirj ; K

Fig. 4. Markov network for infra-red and visible iris image patches where
θnir = yij and θvis = xij , xij means the ith row and jth column of
visible iris image patches and yij means the ith row and jth column of near
infra-red iris image patches.

candidate visible normalized iris image patches
{

¯θvisj
l
}K
l=1

are acquired from the training set. The synthesized visible iris
image should closely match the input near infrared iris image
in appearance and be smooth in the meanwhile. In order to
achieve this objective, a Markov network is used to model the
process of visible iris texture synthesis.

A. Cross-Spectral Iris Recognition using MRF model

The graphical model of Markov network can be constructed
for generalized low-level vision problems [34], [35], [36].
Such model is shown in Figure 4 and can be used to identify
solutions in two key phases, namely, learning and inference.
In learning phase, the network parameters will be trained
until some optional solution is reached, whereas in inference
phase, the patches for the visible iris image are estimated.

The joint probability of visible (Θvis) and near infra-red
(Θnir) iris image patches for a Markov random field can be
defined as follows:

P (Θvis,Θnir)
= P (θvis1 , θvis2 , ..., θvisN , θnir1 , θnir2 , ..., θnirN )

=
∏
(i,j)

Ψ(θvisi , θvisj )
∏
k

Φ(xk, θ
nir
k )

(11)

where θvisi has K possible states which are determined from
the candidate visible iris image patches. The compatibility
function between visible iris image patches can be computed
as,

Ψ(θvis.lk , θvis.mj ) = e−|d
l
jk−d

m
kj |

2/2σ2
vis (12)

where k and j are two neighboring visible iris image
patches with a region of overlapping and dljk, d

m
kj represent

the intensity values of the overlapping region between the
lth and mth candidate visible iris image patches. The σvis
represents the covariance of Gaussian noise which is employed
to differentiate the training data of visible iris images from the
ideal training data.
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The local evidence can be computed as follows:

Φ(θvis.lk , θnirk ) = e−|θ
nir.l
k −θnirk |2/2σ2

nir (13)

σnir is the Gaussian noise of covariance used to differ
training data of near infra-red iris images from the ideal
training data and θvis.lk represent lth candidate visible iris
image patch.

In the learning phase of Markov network, unknown pa-
rameters can be computed from the solution of the following
problem:

ˆθvisj MAP = argmax
θvisj

max
all θvisi ,i6=j

P (θvis1 , θvis2 , ..., θvisN , θnir1 , θnir2 , ..., θnirN )
(14)

where ˆθvisj MAP is the MAP estimate for computing max-
imum of marginal probabilities of all visible image patches.

In the inference phase, belief propagation [36] is used
to achieve optimal solution for the Markov network. Such
propagation is achieved with the passing of local messages
between the neighboring patches (or network nodes) in order
to compute the MAP estimate. The MAP estimate for visible
iris image patches can be rewritten as follows:

ˆθvisj MAP = argmax
θvisj

Φ(θvisj , θnirj )
∏
k

Mk
j (15)

Belief in patch j, is defined as the product of all local
evidences from visible iris image patches and the messages
entering into that jth visible iris image patch. The message
passes from node k to j can be represented as follows:

Mk
j = max

[θvisk ]
Ψ(θvisj , θvisk )Φ(θvisk , θnirk )

∏
l 6=j

M̂ l
k (16)

The propagation rules in equation 16 are applied in order
to get the optimal solution of Markov random fields. The
network is trained using equation 14 and the updated unknown
parameters are employed to recover corresponding patches
from near infrared image patches to synthesize visible patches
for the matching.

VI. IRIS RECOGNITION USING BI-SPECTRAL IMAGING

Iris images are believed to be highly unique [1], [2] and reveal
different information when viewed under different illumina-
tion or wavelengths. Several studies [37], [38], [4] on iris
recognition under visible wavelengths have shown promising
results. Therefore one of our objective in this work has been
to evaluate simultaneous recovery and matching of iris images
under visible and near-infrared illumination to achieve higher
accuracy that may not be possible by any of these approach
individual. We developed a low-cost imaging setup that can
simultaneously acquire near-infrared and visible wavelength
iris images in single shot. Figure 5 illustrates block diagram of
such simultaneous imaging which can not only develops more
accurate iris imaging but also develop a unique dataset with
exact pixel correspondence which is required by the biometrics

TABLE II
IMAGING PARAMETERS FOR THE VISIBLE AND NEAR INFRA-RED

CHANNELS

Variable Near infra-
red channel

Visible
channel

Exposure limit value (δe) 15 150
Gain limit value (δg) -80 75
Illumination intensity (EIR) (W/m2) 2.6 2.123
Illumination angle (degrees) 60 45

community to study cross-spectral iris recognition capabilities.
The setup detailed in Figure 5 simultaneously acquires iris
images under both visible and near-infrared wavelengths. The
mechanism for the precise separation of visible and near
infrared images of the spectrum is also illustrated in Figure 5.
In order to meet the requirement, bi-spectral imaging approach
is selected which utilizes a dichroic prism that can accurately
segregate incoming images for the visible sensor and the
other one for the near infrared sensor/camera. Acquired visible
and near infrared images are of same size, i.e., 640 × 480
pixels. Selecting appropriate illumination sources for both
the spectrum is significant for high quality of visible and
near infrared imaging. In order to acquire the good quality
iris images, the factors like exposure, gain and illumination
intensity are independently considered for both the channels.

The camera specifies that the exposure limits (δe) ranges
from 0 to 792 and the gain limits (δg) ranges from -89 to
593. After analyzing different exposure and gain combinations,
the settings for both the channels are finalized empirically as
shown in Table II. In visible channel, the exposure and gain
settings are fixed as 150 and 75, respectively. The illumination
source used for the visible channel is a professional video light
(VL-S04) whose illumination intensity is 1450Lux and the
illumination angle is 45 degrees. In similar way, the exposure
and gain parameters were fixed as 15 and -80, respectively, for
the near infra-red channel. The near infra-red illumination can
cause damage to the eye if its intensity exceeds some limit.
In order to alleviate near infra-red radiation hazard, a ring
illuminator is specifically designed which is suitable for the
proposed acquisition environment. The total IR illumination
intensity of 2.6W is used at a distance of 10 cm from ring
illuminator to the eye. The setup can simultaneously acquire
iris images from both the channels and store the images as
well as the sequence of different images at an interval of
0.5 seconds for further investigation. The sample iris images
acquired as bi-spectral imaging for both right and left eyes
using the proposed acquisition setup are illustrated in Figure
6.

VII. EXPERIMENTS AND RESULTS

In this section, we firstly describe the databases for performing
the experiments to validate the approach detailed in section
IV-B. Then the proposed domain adaptation algorithm is eval-
uated using the real-valued feature descriptors extracted from
these datasets. Iris recognition using simultaneous imaging
of iris using two domains is also evaluated and discussed in
section VII-F.
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Fig. 5. Simultaneous iris imaging under near infrared and visible illumination

Fig. 6. Simultaneously acquired sample iris images under near infrared and visible wavelengths with full pixel correspondences

A. Datasets

The cross-domain experiments are firstly performed using two
publicly available cross-sensor iris datasets, namely, IIIT-D
CLI database [39], [40], ND Cross sensor 2012 iris database
[41] and the PolyU cross-spectral iris database[14]. We briefly
describe these datasets in the following:

1) IIIT-D Contact Lens Iris (CLI) database: IIIT-D CLI
database has iris images acquired using two different iris sen-
sors, namely, Cogent dual iris sensor (CIS 202) and VistaFA2E
single iris sensor. The iris samples are captured from 101
subjects, both left and right iris images. Although this database
was developed for the evaluation of iris recognition perfor-
mance using contact lenses, it also provides images without
contact lenses that are acquired from different iris sensors.
Therefore this publicly available dataset can also be used for
the cross-domain iris recognition performance and used in our
experiments. There are 1270 properly segmented iris images
from 127 classes with 5 instances, each from both the iris
sensors.

2) ND Cross-Sensor Iris 2012 dataset: The university of
Notre Dame cross-sensor iris dataset was acquired at Notre
Dame and firstly used for BTAS 2012 competition [41].
Two sensors, namely LG4000 and LG2200, were used to
acquire the iris image database. There are 676 unique subjects

participated across 27 sessions with total number of 29,939 iris
images with LG4000 and 117,503 iris images with LG2200.
Due to the limited computational resources, only 214 differ-
ent classes are chosen randomly with each class having 15
instances from both the sensors.

3) PolyU Cross-Spectral Iris Database: This is a unique
bi-spectral iris image dataset developed to study cross-spectral
iris recognition and is made publicly available, see [14]. This
database of iris images has been acquired under simultaneous
bi-spectral imaging, from both right and left eyes, using the
acquisition setup that is being developed as illustrated in
Figure 5. This database consists of total 12,540 iris images
(209 × 2 × 2 × 15) which are acquired with 15 instances
from 209 different subjects. Each of the iris images are of
640 × 480 pixels size and with pixel correspondences in both
the near-infrared and visible iris images.

B. Cross-Sensor Iris Recognition using DA-NBNN

In order to evaluate the cross-sensor iris recognition perfor-
mance, first two databases described in above section were
used. The experimental results using IIIT-D database are
presented on 1270 iris images which are properly segmented
from 127 classes with 5 instances each from both the iris
sensors. Similar to as in [13], we also employed 214 classes

8
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TABLE III
CROSS-SENSOR IRIS RECOGNITION PERFORMANCE USING IIITD CLI

DATABASE

Iris comparisons EER Recognition
rate (%) at 0.1 FAR

Cogent vs. Vista (Non-Adapted) 14.39 84
Cogent vs. Vista (Adapted) 10.02 89.92

TABLE IV
CROSS-SENSOR IRIS RECOGNITION PERFORMANCE USING ND DATABASE

Iris comparisons EER Recognition
rate (%) at 0.01 FAR

Non-Adapted 8.6 79.13
Adapted 7.9 83.83

from UND dataset and each of these classes have 15 instances
from both the iris sensors.

1) IIITD CLI database: The cross-sensor iris recognition
performance is evaluated using DA-NBNN framework. We
present the ROC curves for cross-sensor iris recognition on
IIITD CLI database as shown in Figure 7(a). The equal error
rate (EER) and the genuine acceptance rate at FAR of 0.1 are
provided in Table III. The CMC curves for cross-sensor iris
recognition on IIITD CLI database are shown in Figure 7(b).
The experimental results illustrate significant improvement in
the cross-sensor iris recognition performance over baseline
performance.

(a) (b)

Fig. 7. IIITD CLI database (a) ROC curve for iris cross-comparisons using
DA-NBNN, (b) CMC curve for iris cross-comparisons using DA-NBNN

2) ND cross-sensor iris 2012 dataset: In this section, we
present the ROC curves for cross-sensor iris recognition on
ND dataset as shown in Figure 8(a). Table IV illustrates the
comparative EER and the genuine acceptance rate at 0.01% of
FAR The CMC curves for cross-sensor iris recognition on ND
dataset are shown in Figure 8(b). These results demonstrate
that there is significant improvement in the cross-sensor iris
recognition performance.

C. Cross-Spectral Iris Recognition using DA-NBNN

Iris images from all the subjects in PolyU cross-spectral
database were utilized for the feature extraction and evaluation.

(a) (b)

Fig. 8. ND database (a) ROC curve for iris cross-comparisons using DA-
NBNN, (b) CMC curve for iris cross-comparisons using DA-NBNN

The iris segmentation, normalization and image enhancement
are performed for both NIR and VIS images (see Figure 9)
using the algorithm in [33]. The segmentation parameters of
the NIR iris image are directly used to segment corresponding
iris region images from the visible (R-channel) spectrum iris
images. This set of experiments were performed on iris images
from 280 different classes (a total of 8400 images) which
were properly segmented in visible and nearinfrared channels.
The binary iris code extracted from normalized iris image is
converted to real-valued feature vector as detailed in section
III.

Fig. 9. Preprocessing steps for cross spectral iris recognition

The matching accuracy for the cross-spectral iris matching
is ascertained from the equal error rate and the receiver
operating curve. The total number of genuine and imposter
comparisons are 2800 and 1953000, respectively. From Figure
10, it can be observed that even though the cross comparisons
in near infra-red and visible channels are independently quite
accurate, the performance of cross-spectral iris matching has
significantly gone degraded. The equal error rate (EER) for
near infra-red iris comparisons is 3.97% and for visible

9
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iris comparisons is 6.56%. Where as, for cross-spectral iris
comparisons, it is observed that the EER increased by 33.89%.
After applying domain adaptation, the cross-spectral iris recog-
nition performance is improved by 58.8% as shown in Table
V. The EERs for all experiments on cross-sensor and cross-
spectral iris databases using proposed adaptation strategies are
shown in Table VI.

Fig. 10. The ROC curve for cross-spectral iris recognition (NIR-to-NIR;
VIS-to-VIS and NIR-to-VIS comparisons)

The cross-spectral iris recognition performance is evaluated
using DA-NBNN framework. The ROC curves for cross-
spectral iris recognition on PolyU database are shown in Fig-
ure 11(a). The CMC curves for cross-spectral iris recognition
on PolyU database are shown in Figure 11(b). The results
clearly depicted significant improvement in the cross-spectral
iris recognition performance.

(a) (b)

Fig. 11. PolyU cross-spectral iris database (a) ROC curve for iris cross-
comparisons using DA-NBNN, (b) CMC curve for iris cross-comparisons
using DA-NBNN

D. Cross-Spectral Iris Recognition using MRF

The domain adaptation method utilizes the final match score
distributions of both the near infrared and visible spectrums. It
may not be certain in all times that all the genuine scores have
true accepts and similarly all true rejects in imposter scores.
Therefore, as detailed in section V-A, more reliable approach
for cross-spectral iris recognition system based on multi-
scale Markov random fields was also investigated. The ROC
curves for cross-spectral iris recognition on PolyU database
using this approach are shown in Figure 12. The results
demonstrate that there is significant improvement in the cross-
spectral iris recognition performance, (61.9%) when compared
to the performance from DANBNN framework (the rank-one
recognition rate is 58.8% as shown in Figure 11(a)).

Fig. 12. The ROC curve for cross-spectral iris recognition using MRF model

E. Comparison with Other Competing Feature Extraction
Methods

In order to comparatively evaluate the proposed approach for
recovering iris features for the cross-spectral iris recognition, a
range of competing feature extractors were selected. Therefore,
the segmented iris images from above three databases were
comparatively evaluated on each of these feature extractors.
The proposed real-valued feature representation approach is
compared with the following methods of extracting real-valued
feature descriptors in order to evaluate its performance.

a) Log-Gabor filter based phase response: The real-
valued features [13] are extracted using the phase of the
1D log-Gabor features which can be obtained from Masek’s
implementation [33]. The equal error rate (EER) for sensor-
1 (CIS 202) iris comparisons is 9.84% and for sensor-2
(VistaFA2E) comparisons is 17.04%. Whereas, for cross-
sensor iris comparisons, it is observed that the EER increased
to 32.17%. The ROC curve for these comparisons is shown in
Figure 13(c).

b) Even symmetric Gabor filter: In this section, the
experiments are conducted using the real-valued features ex-
tracted with even symmetric Gabor filter [42]. The equal
error rate (EER) for sensor-1 (CIS 202) iris comparisons is
10.09% and for sensor-2 (VistaFA2E) comparisons is 13.11%.
Whereas, for cross-sensor iris comparisons, it is observed
that the EER increased to 29.59%. The ROC curve for these
comparisons is shown in Figure 13(d).

c) Wavelet packet decomposition (WPD): The features
under this scheme are extracted from the normalized iris image
which is divided into 16 equal sized blocks. Each block of
the image is decomposed into three levels using Daubechies-
4 (db4) wavelet decomposition. As explained in paper [43],
the most effective texture information is observed from the
five sub-band images ( LL1, HL3, LH3, HL2 and HL1LL),
where LL, HL, LH and HH represent horizontal low - vertical
low, horizontal high - vertical low, horizontal low - vertical
high and horizontal high - vertical high frequency information,
respectively. After obtaining these components SVD (Singular
Valued Decomposition) is employed to recover five SV vectors
from the respective 5 sub-band images. The equal error rate
(EER) for sensor-1 (CIS 202) iris comparisons is 19.47% and
for sensor-2 (VistaFA2E) comparisons is 16.47%. Whereas,
for cross-sensor iris comparisons, it is observed that the EER
increased to 39.33%. The ROC curve for these comparisons
is shown in Figure 13(e).
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TABLE V
CROSS-SPECTRAL IRIS RECOGNITION PERFORMANCE USING POLYU DATABASE

GAR (%) at 0.1 FAR
Iris comparisons EER (Non-Adapted) (Adapted) (MRF Model)

NIR-NIR 3.97 97.82 – –
VIS-VIS 6.56 94.79 – –
NIR-VIS 33.89 41.88 58.8 61.9

TABLE VI
COMPARATIVE EERS FOR THE CROSS-SENSOR AND CROSS-SPECTRAL IRIS RECOGNITION USING PROPOSED ADAPTATION STRATEGIES

Cross-Sensor Cross-Spectral

(IIITD) (IIITD) (ND) (ND) (PolyU) (PolyU) (PolyU)
(Non-Adapted) (Adapted) (Non-Adapted) (Adapted) (Non-Adapted) (Adapted) (MRF)

EER 14.39 10.02 8.6 7.9 33.89 26.68 23.87

(a) (b)

(c) (d)

(e)

Fig. 13. ROC Curves for iris cross-comparisons: (a) SURF features (IIITD
CLI), (b) SURF features (ND dataset), (c) 1D log-Gabor phase information
(IIITD CLI), (d) even symmetric Gabor filter (IIITD CLI), (e) Wavelet packet
decomposition (IIITD CLI).

d) SURF features: The features are extracted from the
normalized iris image using SURF descriptors. SURF detects

key-points in normalized iris image in which a circular window
is constructed to estimate orientation using Haar wavelet
responses in order to achieve rotation invariance. All the key-
points with each key-point of length 64, forms a feature vector,
say Θi. The equal error rate (EER) for sensor-1 (CIS 202) iris
comparisons is 12.36% and for sensor-2 (VistaFA2E) compar-
isons is 20.85%. Whereas, for cross-sensor iris comparisons,
it is observed that the EER increased to 34.75%.

Another possible competing approach for cross-sensor iris
recognition is to use binary features as used in [13]. However
reference [13] doesn’t provide adequate details to reproduce1

the results. All implemented codes for this work are made
available via reference [44]. Please see more details in Ap-
pendix A.

e) Real-valued feature extraction: The purpose of the
experiments in this section is to ascertain the performance
degradation when the real-valued features employed for do-
main learning are used for iris recognition from the same
sensor. Therefore, the performance of cross-sensor iris recog-
nition using the proposed approach of extracting real-valued
features from the normalized iris image was also compared
with conventional iriscode scheme employed for same sensor
iris recognition. The equal error rate (EER) for sensor-1 (CIS
202) iris comparisons is 0.67% and for sensor-2 (VistaFA2E)
comparisons is 1.94%. Whereas, for cross-sensor iris com-
parisons, it is observed that the EER increased to 3.29%.
The comparison between the performance of binary vs. real-
valued features descriptors is presented in Table VII. The
ROC curves for conventional approach using iriscode and
our approach using real-valued features are comparatively
illustrated in Figure 14. There are 4498, 2941, 3344 genuine
and 994444, 644306, 800963, impostor scores for sensor-1
(CIS 202), sensor-2 (VistaFA2E) and cross-sensor compar-
isons, respectively. These results suggest that the proposed
real-valued feature representation performs almost as good as
the binary iris codes while performance from other real-valued
approaches. The iris comparisons are made for same-sensor

1The reproducibility of our experimental results is assured from the
availability of implementation codes via reference [44].
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TABLE VII
COMPARATIVE PERFORMANCE EVALUATION FOR CROSS-SENSOR IRIS

RECOGNITION USING IRIS CODES AND OUR APPROACH

Iris comparisons EER EER
(Iriscode) (Ours)

Cogent vs. Cogent 0.39 0.67
Vista vs. Vista 1.43 1.94
Cogent vs. Vista 2.96 3.29

data as well as cross-sensor iris data using IIIT-D CLI database
as shown in Table VIII. The genuine acceptance rate at false
acceptance rate of 0.1% is comparatively summarized in Table
IX.

Fig. 14. Comparative ROC curves from Iriscode and Our approach

F. Iris Recognition using Bi-Spectral Imaging
In this section, we report experimental results from the si-
multaneous imaging of iris under visible and near infrared
illumination using the setup as detailed in section VI. The
iris images from 280 different classes generated 2800 genuine
and 1953000 imposter matching scores each for the visible
and near infrared images. The distribution of these genuine
and imposter scores from the visible and near infra-red iris
images is illustrated in Figure 15(b). Each point in the scores
distribution represent the match score either from genuine
or imposter. The x-coordinate value of the point represents
the match score in NIR region, whereas the y-coordinate
value of the same point indicates the match score in VIS
region. Out of the four classes of depicting genuine and
imposter distribution from visible and near-infrared images,
two classes for spectra are depicted on x-y axis, and other
two classes of genuine and impostor scores are shown using
two different colors. The combination of these matching scores
from two different spectra is expected to further improve the
iris recognition accuracy. Figure 15(a) illustrates the ROC
curve for different score-level weighted combinations of scores
from visible and near infra-red iris images. The equal error
rates for NIR and Visible (VIS) iris comparisons are 3.97 and
6.56, respectively. The weighted fusion of matching scores
improved the EER to 2.86 for the weights, wNIR = 0.6
and wV IS = 0.4 or (1 − wNIR), from near infra-red and
visible iris images, respectively. The weighted fusion can be
computed as, wNIR ∗ ScoreNIR + (1 − wNIR) ∗ ScoreV IS .
Our experimental results in Figure 15(a) and Table X suggest
that the combination of simultaneously acquired iris images
can offer significant performance improvement over the con-
ventional near infrared imaging based iris recognition.

(a) (b)

Fig. 15. (a) ROC curves from simultaneous visible and near infrared iris
imaging, (b) Distribution of iris match scores from two different spectra

VIII. CONCLUSIONS AND FUTURE WORK

This paper has investigated cross-domain iris recognition prob-
lem and presented a new approach to accurately match iris
images acquired under different domains. We developed an
EDA-NBNN based classification framework for cross-domain
iris matching. The effectiveness of the proposed approach was
evaluated for cross-sensor iris matching using two publicly
available databases (UND Cross-sensor iris database and IIITD
CL1 iris database). This approach was also evaluated for the
cross-spectral iris recognition using publicly available PolyU
cross-spectral iris database. The experimental results presented
in section VII-B and VII-C are outperforming and validate
the cross-domain iris recognition proposed in this paper. The
proposed adaptation method for cross-spectral iris recognition
is capable of benefiting from the final match score distributions
of both the domains, i.e. all the genuine scores that have true
accepts and similarly all true rejects in imposter scores. This
is the key reason for the success of proposed cross-spectral
iris recognition approach based on the multi-scale Markov
random fields. It can also be observed that the performance
improvement for the cross-spectral iris recognition is signifi-
cantly higher as compared to the performance from the cross-
sensor iris recognition. Therefore it is reasonable to conclude
that the proposed method can particularly perform very well
when the intra-class variations among matched cross-domain
iris images are high.

This paper also develops and proposes simultaneous acqui-
sition of visible and near infrared iris images to significantly
improve the iris recognition accuracy. Our experimental results
presented in section VII-F validates this approach and suggests
that such an approach can be used to achieve a performance
that is not possible either by use of red single visible or
near-infrared images alone. This paper also provides first
cross-spectral iris images database [14] which has pixel-to-
pixel correspondences between visible and near-infrared iris
images. Availability of such database in public domain will
help to advance further research and development in cross-
spectral iris recognition with several emerging applications in
areas like human surveillance. However, further research is
required to simultaneously recover discriminant features from
the periocular region that can help to further improve matching
accuracy for cross-spectral iris recognition.
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TABLE VIII
EERS USING IIITD CLI DATABASE FROM VARIOUS REAL-VALUED FEATURE DESCRIPTORS

Sensor SURF WPD (db4+svd) Even symmetric Gabor 1D log-Gabor phase Ours
S1 12.36 19.47 10.09 9.84 0.67
S2 20.85 16.47 13.11 17.04 1.94
S1 vs. S2 34.75 39.33 29.59 32.17 3.29

TABLE IX
GAR AT 0.1% FAR USING IIITD CLI DATABASE FROM VARIOUS REAL-VALUED FEATURE DESCRIPTORS

Sensor SURF WPD (db4+svd) Even symmetric Gabor 1D log-Gabor phase Ours
S1 86 73.09 90.02 90.16 99.9
S2 67.76 77.14 85.35 79.27 99.1
S1 vs. S2 38.39 24.43 49.2 47.71 97.7

TABLE X
COMBINED PERFORMANCE FROM SIMULTANEOUSLY ACQUIRED IRIS IMAGES USING OUR SETUP

NIR VIS Weighted NIR-VIS Weighted NIR-VIS Weighted NIR-VIS Weighted NIR-VIS
(Near InfraRed) (Visible) (wNIR=0.7, (wNIR=0.6, (wNIR=0.4, (wNIR=0.5,

wV IS=0.3) wV IS=0.4) wV IS=0.6) wV IS=0.5)

EER (%) 3.97 6.56 3.05 2.86 3.10 3.02
Recognition (%) at 0.1 FAR 97.82 94.79 98.55 98.60 98.42 98.55
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APPENDIX A
CROSS-SENSOR IRIS RECOGNITION USING IRISCODES

Authors in [13] proposed a promising framework to improve
the matching performance for cross-sensor adaptation in two
different phases using conventional iris codes. In the first
phase, few training samples are selected from two different iris
readers. These samples are used to learn the adaptation param-
eters from optimized kernel matrix using the initial kernel ma-
trix calculated with similarity measures of all selected samples.
A convex optimization problem is formulated to minimize the
logDet divergence [45] between the initial kernel matrix and
adapted kernel matrix. The sensor adaptation parameters are
calculated by imposing the distance preserving constraints [46]
and application-specific constraints. The distance constraints
are chosen as 20th percentile of similar class distances and
85th percentile of dissimilar class distances. In the second
phase, these parameters are incorporated while iris matching
in transformed domain. The performance of cross-sensor iris
recognition is summarized in Table XI for the UND dataset.

It can be observed from the results presented in Table XI, the
matching accuracy has been improved by 3.48% (in the entire
dataset) whereas it was only 1.6% improvement (in properly
segmented iris images from subset data).The algorithm is
expected to perform better with well-segmented iris images
rather than data with error in iris segmentation. The results
reported in [13] can not be reproduced, because of some
ambiguity in Section 6.3 (Equation 20), when we perform
verification between a test sample (θt) with enrolled sample.

TABLE XI
PERFORMANCE DEGRADATION FOR CROSS-SENSOR IRIS MATCHING: EER

AND VERIFICATION RATE ON UND DATASET

Comparisons EER (%)
(Entire
dataset)

TAR (%)
at FRR=0.1
(Entire dataset)

TAR (%)
at FRR=0.1
(UND Subset)

LG2200 6.06 86.74 93.53
LG4000 5.22 91.39 97.61
Cross-sensor 7.19 84.34 91.93
Adapted 6.09 87.82 93.78

It is mentioned that the squared Euclidean distance in the
transformed domain is computed based on the training samples
∀θ. One more ambiguity in this paper is that the sensor specific
constraints are not included in the final optimization problem.
We tried to reproduce the results with the assumptions that
the Equation 20 (in section 6.3) means the verification should
perform between a test sample with all enrolled samples.
However these results were quite poor even after applying
adaptation using kernel transformation learning.
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