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Abstract—Accurate biometric identification under real 

environments is one of the most critical and challenging tasks to 

meet growing demand for higher security. This paper proposes a 

new framework to efficiently and accurately match periocular 

images that are automatically acquired under less-constrained 

environments. Our framework, referred to as semantics-assisted 

convolutional neural networks (SCNN) in this paper, incorporates 

explicit semantic information to automatically recover 

comprehensive periocular features. This strategy enables superior 

matching accuracy with the usage of relatively smaller number of 

training samples which is often an issue with several biometrics. 

Our reproducible experimental results on four different publicly 

available databases suggest that the SCNN based periocular 

recognition approach can achieve outperforming results, both in 

achievable accuracy and matching time, for less-constrained 

periocular matching. Additional experimental results presented in 

this paper also indicate that the effectiveness of proposed SCNN 

architecture is not only limited to periocular recognition but it can 

also be useful for generalized image classification. Without 

increasing the volume of training data, the SCNN is able to 

automatically extract more discriminative features from the input 

data than a single CNN, therefore can consistently improve the 

recognition performance. The experimental results in this paper 

validate such an approach to enable faster and more accurate 

periocular recognition under less constrained environments. 

 
Index Terms—Periocular recognition, deep learning, 

convolution neural network, training data augmentation. 

I. INTRODUCTION 

ERIOCULAR recognition is an emerging biometric 

modality that has attracted noticeable interest in recent 

years and a lot of research effort have been devoted to advance 

accuracy from the automated algorithms. The periocular region 

usually refers to the region around the eye, although there is no 

strict definition or standard from research bodies like NIST [41]. 

Periocular recognition is believed to be useful when accurate 

iris recognition cannot be ensured, such as under visible 

illumination [8], unconstrained environment [9] or when the 

whole face is not available, as illustrated from some real-life 

samples in Figure 1. It has also been shown that the periocular 

region is more resistant to expression variations [10] and aging 

[11] as compared with the face. In addition to serving as an 

independent biometric modality, periocular information can 

also be simultaneously combined with iris [2], [13] and/or face 

[15] to improve the overall recognition performance. However 

matching periocular images, particularly under less constrained 

environment, is a challenging problem as this region itself 

contains less information than the entire face and often 

accompanied by high intra-class variations along with 

occlusions like from glasses, hair, etc. 

In recent years, Convolutional Neural Network (CNN) has 

gained popularity for its strong ability to extract comprehensive 

features from the input data, especially for visual patterns. It 

has demonstrated its robustness to the real-life intra-class 

spatial variations. The CNN has many successful applications 

like hand-written character recognition [6], object detection 

[16], large-scale image classification [17] and face recognition 

[18]-[19], where CNN has significantly outperformed 

traditional methods using handcrafted features or other learning 

based approaches. Therefore we have been motivated to use 

CNN to achieve better performance for the challenging 

periocular recognition problem.  

A. Our Work and Contributions 

Automated periocular recognition under less constrained 

environment has shown promising performance and underlined 

the need for further research. Several databases, acquired under 

visible and near-infrared illuminations, have been introduced in 

the public domain [30], [34]-[36] and it can be observed that 

researchers require/use training samples from respective 

databases, primarily to select or learn best set of parameters. 

The performance achieved on these less-constrained databases 

is encouraging but requires further work. This paper attempts to 

address these two limitations for the automated periocular 

recognition.  

      In addition to successfully investigating the strengths of 

CNN for the less-constrained periocular recognition, this paper 

introduces the Semantics-Assisted CNN (SCNN) architecture 

to fully exploit the discriminative information within limited 

number of training samples. The key contributions of our work 
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Figure 1: Periocular recognition is useful when (a) iris texture is degraded or  

when the faces are covered for (b) protection from environment, (c) during 

sickness or (d) during demonstrations or riots [42]. 
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can be summarized as in the following. 

Our approach for periocular recognition using SCNN does 

not require training samples from target datasets, while 

achieving outperforming results, which is a key advantage over 

state-of-the-art approaches [2] and [10]. In our experiments, the 

SCNN is trained with one database and tested on totally 

independent/separate databases. The testing and training sets 

have mutually exclusive subjects and highly different image 

quality as well as imaging conditions and/or equipment’s. The 

SCNN architecture can also enable recovery of more 

comprehensive periocular features from the limited training 

samples. Another key advantage of  proposed method in this 

paper is its computational simplicity, i.e., our trained model 

requires much less computational time for feature extraction 

and matching compared with other methods. Unlike earlier 

works, the trained models and executable files of our work are 

made publicly available [40] so that other researchers can easily 

reproduce our results or evaluate on new databases. Finally, the 

use of SCNN is not only limited to the periocular recognition 

but can also be useful for general image classification task. By 

attaching branch CNN(s) that are trained with semantic 

supervision from the training data, the SCNN architecture can 

be easily used to extend and improve existing CNN based 

approaches while limiting the general requirement of increase 

in training data for such performance improvement. The SCNN 

enables the deep neural network to fully learn the training data 

in conjunction with the semantical correlation and therefore can 

benefit the final classification task, especially when the size of 

training data is limited to build a very deep network. The 

structure of SCNN is easy to implement, and semantic 

annotation of the training samples is often included with the 

release of many public databases. 

B. Related Work 

In 2009, Park et al. [8] have investigated the feasibility of using 

periocular region for human recognition under various 

conditions. Bharadwaj et al. [22] also support the usefulness of 

periocular recognition when iris recognition fails. There is also 

research work focusing on cross-spectrum periocular matching 

[5], where techniques of neural network have been used. 

State-of-the art work for periocular recognition includes [2], 

where good performance is obtained by fusing periocular and 

iris features/scores together. However, DSIFT feature 

extraction and the K-means clustering used by this work for the 

periocular region are highly time consuming. Another 

state-of-the-art approach by Smereka et al. [10] proposes the 

Periocular Probabilistic Deformation Model (PPDM), which is 

a variant of their previous work, and promising performance 

has been reported. The PPDM uses a probabilistic inference 

model to evaluate the matching scores from correlation filters 

on patches of the image pair. However, this patch-based 

matching scheme is sensitive to scale variance among samples, 

which often exists in the challenging forensic and security 

scenarios. More importantly, approaches in both [2] and [10] 

employ some samples in the target dataset for training or 

selection of parameters, while our objective has been to 

develop a more effective approach, that does not require any 

samples from target datasets for training, that can deliver 

outperforming results and is computationally simpler. 

As for the development of CNN, LeCun’s early work [6] for 

handwritten character recognition is one of the most typical 

applications of CNN in computer vision. Gradient based 

learning was used in that work so that CNN can learn from the 

training data effectively. In recent years CNN becomes very 

popular due to its powerful feature extraction ability for visual 

pattern and robustness for challenging scenarios (typically for 

large intra-class variance), and CNN based methods hold 

state-of-the-art performance for many computer vision tasks, 

such as image classification [17], object detection [16], etc. In 

2014, Sun et al. [18] and Taigman et al. [19] have presented 

successful application of CNN on face recognition, which 

showed superior results even compared with human 

performance. Above two approaches have shown great 

potential of using CNN on biometrics, which is the primary 

motivation for us to develop the proposed CNN based method 

for the highly challenging periocular recognition problem. 

However, most of the existing CNN based methods require 

huge amount of data for training, which is the major bottleneck 

for its quick use for many other computer vision tasks. This has 

motivated us to explore alternate strategies to considerably 

compensate lack of large dataset often required for the training. 

II. METHODOLOGY 

As discussed earlier, we were motivated to incorporate CNN 

for the challenging periocular recognition problem due to its 

known ability to extract comprehensive feature from image. In 

this section we will first introduce the theoretical background of 

CNN and the practical architecture of our SCNN model in 

Section II.A, followed by detailing the application for the 

periocular recognition problem in Section II.B and II.C.  

A. Semantics-Assisted Convolution Neural Network (SCNN) 

1) Basic Introduction to CNN 

CNN is a biologically-inspired variants of multilayer 

perceptron (MLP) and well-known as one of typical deep 

learning architectures. CNN has shown strong ability to learn 

effective feature representation from input data especially for 

image/video understanding tasks, such as handwritten character 

recognition [6], large-scale image classification [17], face 

recognition [18]-[19], etc. In the following, we will briefly 

introduce the basic knowledge of a typical CNN architecture 

that is used in our and many other work.  

CNN is usually composed of convolution layers, pooling 

layers and fully connected (FC) layers. At the output of each 

layer, there is often a nonlinear activate function, such as  

sigmoid, ReLU [1], etc. In our work, we adopt the basic CNN 

structure similar to AlexNet [7] and is shown in Figure 2 (say 

the periocular recognition problem as an example). The input 

image is passed through several convolutional units and then a 

few fully connected layers. The output of the last FC layer with 

N (number of classes) nodes would represent probabilistic 

prediction to the class labels. 

Each of the convolution units is composed of three 

components - a convolution layer, a max-pooling layer and a 

ReLU (Rectified Linear Unit) activation function, as shown in 
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Figure 2. For the convolutional layer, each channel of its output 

is computed as: 

 ( ) ( ) ( )( * )i ij ij j

j

 y b k x  (1) 

where 
( )i

y  is the i-th channel of the output map, 
( )j

x  is the j-th 

channel of the input map, 
( )ij

b  is called the bias term, 
( )ij

k  is 

the convolution kernel between 
( )i

y  and 
( )j

x , and * denotes 

the 2D convolution operation. 
( )ij

b  and 
( )ij

k  will be learned by 

back-propagation so that the convolution kernels are trained to 

extract most useful features that are discriminative among 

different subjects. 

The pooling layer extracts one maximum or average value 

from each patch of the input channel. In our application, we use 

max-pooling with non-overlapping patches. As a result, the 

input maps, after convolution, are down-sampled with a scale 

determined by the pooling kernel. The pooling operation 

aggregates low-level features from the input to high-level 

representation and thus could achieve spatial invariance among 

different samples.  

At the output of each pooling layer and the first FC layer (e.g., 

L7 in Figure 2), we choose the ReLU (Rectified Linear Unit) [1] 

as the activation function: 

 max( ,0)i iy y    (2) 

The ReLU activation ensures the nonlinearity of the feature 

extraction process and is more efficient for training, compared 

with the traditional activation functions like sigmoid or tanh 

employed in other approaches [14]. 

The FC layers process the input as in conventional neural 

networks: 

 
i i j ij

j

y b x w     (3) 

where jx  is the j-th element of the vectorized input map to the 

current layer, 
iy  is the i-th element of the output map, which is 

also a vector. 
ib  and ijw  are elements of the bias and weights 

to be learned through training. The last FC layer, as usually 

configured in classification problem, is not followed by ReLU 

but a softmax function: 
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 (4) 

The use of softmax function in the final output of the network 

results in a 1 N  vector with positive elements which are 

summed up to one. Each element then is treated as the 

probabilistic prediction of the class label. The cross-entropy 

loss function is to be minimized, which is formulated as: 

 ( ) log tL y  y   (5) 

where t is the ground truth label of the training sample. The loss 

function is minimized via back-propagation so that the 

predictions of the ground truth class of the training samples will 

approach to unity.  

2) Limitation of Contemporary CNN Based Approach 

In order to achieve superior performance using CNN based 

methods, a common way is to add more layers to make the 

network deeper and more comprehensive, and/or devote more 

labeled training data because CNN is usually trained in a 

supervised manner. For instance, the famous CNN architecture 

GoogLeNet [17] has 22 layers and later comes the Microsoft’s 

deep network with 152 layers [21]. Apparently, common 

researchers or companies could hardly afford to train such deep 

networks due to the lack of enough computational power. Also, 

as the network goes deeper, the need for training data grows 

accordingly, while in many research areas, it is difficult to 

acquire enough labeled training samples like ImageNet [23]. 

Table 1 provides examples of several typical deep learning 

based approaches and their employed training data. In reference 

[18] in Table 1, for instance, where the developed CNN is not 

very deep (nine layers), a total of ~200,000 face images from 

more than 10,000 people were used for training to achieve 
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Figure 2: Structure of the employed deep convolutional neuron network. 

 

 

 

Table 1: Examples of several deep learning based approaches and their required 
number of training images. 

Approach Task 
Size of Training Data 

No. of Classes No. of Samples 

CVPR [17] Image classification 1,000 1,281,167 

ICML [24]  
Handwritten digits 

recognition 
10 60,000 

T-PAMI [25]  Object detection 200 456,567 

CVPR [18] Face recognition 10,177 202,599 

CVPR [19] Face recognition 4,030 ~ 4,400,000 
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superior performance. However for other popular biometrics 

modalities like iris or periocular, in the best of our knowledge, 

there is currently no single public database with that many 

images.  

Therefore, we are motivated to improve the performance of 

existing CNN based architecture in another way - to enhance 

CNN with supervision from explicit semantic information. 

When human recognizes objects, for example while 

recognizing a face image, one would analyze not only the 

overall visual pattern but also the semantic information, such as 

gender, ethnicity, age, etc., to judge whether the face image 

belongs to a certain known person. Therefore, it is reasonable to 

believe that semantic information is helpful for the visual 

identification task. For a CNN that is trained with the identity 

label only, it is possible that the network is already capable of 

acquiring semantic information. For instance, for the 

well-known deep learning model for face recognition, 

DeepID2+, researchers discovered that although the network 

was trained using subject identities, certain neurons turn out to 

exhibit selectiveness to attributes like gender, ethnicity, age, etc. 

These semantic attributes contribute to discriminating identities 

[43]. However, such useful semantic information is expected to 

be implicitly learned by the CNN. It is not easy to answer the 

following questions: 

(1) How many types of semantic information can be acquired? 

Since the discriminative capacity of a certain CNN is 

limited, we cannot guarantee that all the semantic 

information we prefer to have has already been included. 

(2) To what extent the semantic information can be analyzed by 

the trained CNN? Does it really help in the final 

identification task, or could it be further improved? 

Above problems arise due to the nature of training popularly 

employed for the CNN, i.e., the loss function is usually only 

related to the class labels, therefore it is hard to reveal how the 

semantic information can be implicitly acquired. In order to 

address this issue, we propose to empower the CNN with the 

ability to analyze semantic information explicitly. The idea is 

very simple and illustrated in Figure 3.  

3) Semantics-Assisted CNN 

As illustrated in Figure 3, we simply add a branch, which is also 

a CNN, to the existing CNN. The attached CNN is not trained 

using the identity of the training data but the semantic groups. 

For example, we could train CNN2 using the gender 

information of the training sample, i.e., let the CNN2 be able to 

estimate the gender instead of identity, and train CNN3 using 

the ethnicity information. After the CNNs are trained, we can 

combine the output of each CNN in the way of feature fusion. 

We refer to such extended structure of the CNN as 

Semantics-Assisted CNN (SCNN for short). Despite the 

simplicity of this idea, it can inherently improve the original 

CNN by adding more discriminative power to it, which has 

been shown from the experiments described in Section 3. 

Theoretically, the SCNN has the following benefits: 

 Instead of letting the semantic information be learned 

from the identities by the CNN in an unpredictable and 

uncontrollable way, SCNN allows us to explicitly recover 

the preferred semantic information that can be helpful for 

the identification task. As a result, the feature 

representation from the SCNN is accompanied by more 

reliable semantic information that is closer to mechanism 

in human visual system.  

 The training scheme for SCNN can reuse the same set of 

training data but just labeled in another way than the 

simple identities. Since the labeling scheme is variable, 

the branches of SCNN learn the training data from 

different points of view, which is equivalent to increasing 

the data volume without really adding the number of 

training samples. This can relax the constraints on the 

requirements of enormous training data for deep neural 

networks to some extent, i.e., instead of pursuing for 

superior performance from a single CNN, we enhance the 

joint performance of branches of CNNs with fewer 

amounts of training data. 

 The SCNN architecture and training scheme is naturally 

compatible for most of the existing CNN based 

approaches. What we need is just to train some 

independent CNNs with semantic grouping labels and 

judiciously combine the features from multiple CNNs to 

benefit from such training, as the semantic annotations of 

training samples are also available for many public 

databases. In addition, the architecture of SCNN is highly 

friendly for parallel computing platforms. 

B. Application for Periocular Recognition 

As discussed earlier, CNN has been successfully used for the 

face recognition in several state-of-the-art approaches [18]-[19]. 

Considering that the periocular region is actually a part of face 

and also presents some structural information (eyebrow, 

eyelids, eyeball, etc.), it is reasonable to expect that CNN can 

be effective for the periocular recognition problem. However, 

as compared with such related work, we are constrained by lack 

of large-scale periocular databases that are usually required to 

sufficiently train a deep neural network. Therefore we 

developed and investigated SCNN for the periocular 

recognition problem. 

1) Network Structure and Supervision Information 

The detailed SCNN structure used for the periocular 

recognition is shown in Figure 4. In order to examine the 

CNN n – Trained by Semantic Information

CNN 2 – Trained by Semantic Information

CNN 1 – Trained by Identity

Joint 
Feature or 
Prediction...

 
 
Figure 3: Structure of the proposed Semantics-Assisted CNN (SCNN). While 

first branch is trained by the label of the intended tasks, other branch CNNs 

are trained using different semantic information, then the branches are joint in 
the end to get a comprehensive feature representation or perform score fusion. 
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impact of adding branch to an existing CNN, we simply 

designed one branch that is trained with semantic information, 

denoted as CNN2 in Figure 4. While CNN1 is like the ones 

commonly trained with the subject identities from the training 

samples, CNN2 is designated to be trained with the side (left or 

right) and the gender information. More specifically, we 

labeled the training data as follows, also shown in Figure 5:  





 

0 - Left and Male, 

1 - Right and Male, 

2 - Left and Female, 

3 - Right and Female. 

The reason for using left/right and gender information is that 

humans also tend to incorporate such judgment by visually 

inspecting the presented periocular images, although such 

accuracy may not reach cent percent level. Therefore there is 

some scientific basis to believe that CNN can learn to 

distinguish above semantic information from the periocular 

patterns and assist in the identification task. Another reason for 

using gender information is that the genders of subjects are 

often included in the metadata of many publicly available 

datasets, such as UBIpr [36]. Therefore we can directly use 

those labels to train CNN2. Other possible and useful semantic 

information include iris color (light/dark), ethnicity, shape of 

eyebrow, etc.  

 Using such additional semantic information to supervise the 

network makes the overall architecture and learning process of 

SCNN similar to multi-label learning [44] to some extent. 

However, the principal difference is that, the introduction of 

semantic labeling in our model aims to assist/supplement the 

prediction of subject identity labels, i.e., they are inequally 

important, while in traditional multi-label learning, the multiple 

labels are usually in equal positions. In addition, the learning 

processes of identities and other semantic information are 

separately undertaken to maximally ensure the explicitness of 

semantic learning and compatibility to other CNN based model, 

while in general multi-label learning, features are usually 

jointly learned for predicting different lables. Nevertheless, in 

spite of the diffrentiation between the identity labels and other 

supportive labels, the  semantic learning process (e.g., CNN2 

itself) can also be conducted in the manner of multi-label 

learning alternatively. 

2) Training Protocol and Data Augmentation 

Among the original training samples, the last sample of each 

subject is selected to form the validation set, which is tested in 

every certain amount of iterations to observe whether the 

training process is converging in a right direction or not.  

Furthermore, it is observed that the periocular images from 

the training set are well aligned and scaled to a similar level, 

while the samples from independent test datasets and real 

applications may have misalignments and scale variations. 

Such inconsistency can also be observed from the image 

samples in Figure 6.  

If the deep network is trained with the well aligned and 

scaled images, it may not be effectively generalized to other 

datasets or data acquired by real applications. In order to 

address such problems, we firstly augmented the training data 

with a different scale to simulate scale inconsistency in the test 

environment. Then we applied random cropping during the 

training process to ensure that the network can accommodate 

spatial variations among the periocular images. The scale 

augmentation and random cropping process is also illustrated in 

Figure 7. As illustrated in this, each original of the image in 
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Figure 4: Structure of the employed SCNN for the periocular recognition. 
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Figure 5: Semantical labeling used in our implantation to train CNN2. 
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training set is automatically cropped from its center with a size 

of 0.6 0.6w h , where w and h are its original width and height 

respectively. The original images and its cropped patch are 

resized to 300 240 , then padded with symmetric edges filled 

with zeroes to a size of 300 300 . So far one original 

periocular image could generate two training samples. As a 

result, we have 6,270 samples for training and 448 samples for 

validation while training for each side of the periocular images. 

Furthermore, during the training process, each training sample 

would be cropped by a 240 240  window randomly placed 

within the image region before entering the first layer of the 

network. Such randomized cropping process from one training 

sample could produce abundant samples that have randomized 

misalignments with others. In this way, the network can be 

enforced to learn to extract features that are robust to the 

misalignments.  

3) Visualization of Trained SCNN 

Once the networks have been trained, CNN1 is expected to 

lock-into features that are directly relevant to the subject 

identities, while CNN2 is expected to analyze the features that 

are more related to side and the gender difference. In order to 

observe the difference among features extracted by the two 

CNNs, we have visualized the filter kernels from the first two 

convolutional layers of trained CNN1 and CNN2 in Figure 8.  

We can visually observe from Figure 8 that: 1) Overall both 

CNNs were not trained sufficiently. Compared with 

convolutional kernels trained with large amount of samples 

(e.g., those in [7]), a number of kernels here remain flat or noisy, 

for which it is less likely to extract useful information. 

Insufficiently trained network parameters usually results in 

certain levels of over-fitting. 2) Despite the over-fitting concern, 

the convolutional filter kernels of CNN1 and CNN2 are quite 

different. Critical kernels in CNN2 are sharper and present 

more visual salience, therefore might be more sensitive to small 

texture, edges or corners than the filters in CNN1. This 

indicates CNN2 can provide complementary information that 

CNN1 was not able to learn due to lack of sufficient training 

data. Although the features extracted by CNN2 are not directly 

related to the subject identities, it is reasonable to expect that 

those visual features could assist CNN1 to form a more 

comprehensive visual representation of the periocular image, 

therefore help to distinguish different subjects finally. 

Original Image

w

h

0.6w

0.6h

300

300

240

300 240

Bi-scaling

240

240

240

240

Training

Training

Pre-processed In real-time

Random cropping
 

Figure 7: Illustration of scale augmentation and random cropping. Each 

original image is augmented to two samples with different scales, and each 

augmented sample would be cropped by a smaller window that is randomly 
placed before entering the network for each epoch of the training process. 

 

   
(a) UBIpr (training) 

   

(b) UBIRIS.v2 (testing) 

   
(c) FRGC (testing) 

   
(d) FOCS (training and testing) 

   
(e) CASIA.v4-distance (testing) 

Figure 6: Sample images from the databases we used in the experiments. 
Scale variance and misalignment are common in the testing environment. 

 

CNN1: 

First convolutional layer (L1) Second convolutional layer (L3) 

 

 
 

CNN2: 

First convolutional layer (L1) Second convolutional layer (L3) 

 

 
 
Figure 8: Visualization of the filter kernels from the first two convolutional 

layers of trained CNN1 and CNN2 respectively. 
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C. Feature Vector and Verification Score Generation 

The CNNs we use are trained in a classification protocol, i.e., 

the category or identity of the input data is known and fixed. 

Therefore this network can be directly used in some 

classification or identification tasks. However, in biometrics, 

one-to-one matching for probably unseen subjects is the key 

problem and needs to be evaluated. Therefore, we need to 

generalize the trained model to separated subjects that are not 

included in the training set, and formulate one-to-one matching 

scheme.  

Similar to [18], we use the output of second last layer (L7 in 

CNN1 and L5 in CNN2) as the feature representation of the 

input data. While the last layer represents the class prediction 

during the training process, the second last layer should contain 

the most relevant and aggregated information that can 

contribute to distinguishing the classes or identities. Therefore, 

it is reasonable to use the output of the second last layer as the 

feature representation and generalize the model to unseen 

subjects. Once we get the layer output vectors, we first 

normalize them by l
2
 norm, then apply PCA to reduce the 

dimensionality of the vector. For the SCNN architecture, we 

simply concatenate the two independently normalized output 

vectors to form a longer vector before PCA. In our experiments, 

the dimension of output vectors after PCA is set to 80, for both 

the single CNN and SCNN cases. Then the joint Bayesian 

scheme [33] is utilized to predict the similarity between a pair 

of feature vectors. The joint Bayesian is primarily designed for 

face verification, in which a face (equivalent to the periocular 

feature vector here) is represented by: 

 f = μ+ ε  (6) 

where f  is the observation, in this paper the feature vector 

after PCA, μ  is the identity of the subject, ε  is the intra-class 

variation. μ  and ε  are assumed to be two independent 

Gaussian variables following ( , )N 0 S  and ( , )N 0 S  

respectively, then the covariance of two observation is: 

 
1 2 1 2 1 2cov( , ) cov( , ) cov( , ) f f μ μ ε ε  (7) 

The joint distribution of a pair of observations 1 2{ , }f f  is 

considered. Let 
IH  denote the intra-person hypothesis 

indicating that two observations are from the same person, and 

EH  the extra-person hypothesis. Under IH , since 1μ  and 2μ  

are the same, 1ε and 2ε  are independent, the covariance matrix 

of the distribution 1 2( , | )IP Hf f  is: 

 
+

+I

  

  

 
  
 

S S S
Σ

S S S
 (8) 

On the other hand, under EH , 1μ  and 2μ  are also independent, 

therefore the covariance matrix has become: 

 
+

+I
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 With above conditional joint probabilities, the log likelihood 

ratio which tells the difference between intra- and extra-person 

probabilities can be obtained in a closed form: 

 T T T1 2

1 2 1 1 2 2 1 2

1 2

( , | )
( , ) 2

( , | )

I

E

P H
r

P H
   

f f
f f f Αf f Αf f Gf

f f
 (10) 

where 

 ( ) ( )    Α S S F G  (11) 

 

1

  

  


   

       

S S SF G G

S S SG F G
 (12) 

 The covariance matrix S  and S  can be estimated using 

an EM based algorithm as detailed in [33], and the log 

likelihood ratio 
1 2( , )r f f  is used as the similarity score in our 

one-to-one matching scenario. 

III. EXPERIMENTS AND RESULTS 

In this section we provide the details on the experiments and 

analyze the results. The experimental details on the periocular 

identification are firstly provided and this is followed by details 

on supporting experiments for the image classification.  

A. Periocular Recognition 

1) Training and Testing Datasets and Protocol 

We use following publicly available databases for the 

experiments. Two different databases were employed for 

training the deep neural networks and three separate databases 

were employed for the testing. 
 

 UBIpr [36] - for training 

We employed UBIpr periocular database [26] for training the 

SCNN for the visible spectrum. This database originally 

contains 5,126 images for each of left and right perioculars 

from 344 subjects. However, we are also employing a subset of 

UBIRIS.v2 database [4] for separate test experiments, which 

has some overlapping subjects with the UBIpr database. In 

order to ensure that subjects of training set and testing set are 

mutually exclusive, we removed these overlapping subjects 

from UBIpr database before we perform training on the 

network. As a result, we only have 3359 periocular images 

from each of the two sides of 224 subjects. Such a scale is 

relatively small as compared with those in the training 

protocols in other typical deep learning work like ImageNet [27] 

or LFW [28]. Therefore, the application scenario is good for 

validating the ability of SCNN for learning comprehensive 

information from limited size of training data. 
 

 UBIRIS.v2 [4] 

The UBIRIS.v2 database is primarily released for evaluation of 

at-a-distance iris segmentation and recognition algorithms 

under visible illumination and challenging imaging 

environment. Since the eye images in this database contain 

surrounding regions of the eye, it is possible to perform 

periocular recognition on the UBIRIS.v2 database. Similar to 

as in [2], we use a subset of 1,000 images from this database 
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that is released in NICE.I competition [29]. This subset 

contains left and right eye images together from 161 subjects 

that are captured from 3m to 8m, bringing serious scale 

inconsistency. Some images only contain the eye region 

without eyebrow and other surrounding texture which makes 

the task of periocular recognition highly challenging. Some 

sample images are shown in Figure 6(b). 

 

 FRGC [30] 

The dataset of Face Recognition Grand Challenge (FRGC) is 

released by the National Institute of Standards and Technology 

(NIST) and has been primarily for the evaluation of new 

algorithms for the automated face recognition. Similar to as in 

[2], we automatically extracted the periocular region from the 

original face images of FRGC using publicly available face and 

eye detector [31]-[32]. A subset of 540 right eye images from 

163 subjects, same as also the ones used in [2], were employed 

in the experiments. Some sample images are reproduced in 

Figure 6(c).  

 

 FOCS [34] - for training and testing 

The Face and Ocular Challenge Series (FOCS) dataset is also 

released by NIST and contains face, ocular images and videos. 

We employed the “OcularStillChallenge1” section, which 

consists of 4,792 left and 4,789 right periocular images from 

136 subjects that are cropped from face video clips acquired 

under near-infrared (NIR) spectrum. The periocular samples 

from this dataset, as shown in Figure 6, suffer from serious 

illumination inconsistency and misalignments, therefore this 

dataset is considered as highly challenging.  We used 3,262 left 

and 3,259 right periocular images of the first 80 subjects to train 

the CNNs and used the remaining images from 56 subjects for 

testing. Again, such a scale of training samples and subjects is 

small compared with other typical deep learning tasks. 

 

 CASIA.v4-distance [35] 

CASIA.v4 is the first publicly available long-range iris and face 

database acquired under NIR illumination, which is released by 

the Center for Biometrics and Security Research (CBSR) from 

the Chinese Academy of Sciences (CASIA). The full database 

contains 2,567 images from 142 subjects in single session. The 

standoff distance of the subjects to the camera is from 3 meters 

away. Similar to FRGC, we used publicly available eye 

detector [31]-[32] to automatically segment left periocular 

images which are used in our experiments. The first eight 

samples of each subject, excluding a few badly segmented 

images, were used for the periocular matching experiment.  

Above datasets were selected for evaluation because of the 

availability of periocular images acquired under less 

constrained environments that are close to real world scenarios. 

The selected subsets from FRGC and UBIRIS.v2 contain 

multi-session data and exhibit obvious scale/illumunation 

variation. Samples in FOCS database suffer from significant 

illumination degradation and misalignment. Images from 

CASIA.v4-distance are more consistent than the other three 

databases, but were acquired at a distance and some contain 

artifacts like glasses and/or hair, therefore also represent less 

constrained scenarios. In addition, networks for visible and 

NIR spectrums were trained separately due to the significant 

difference between the image properties. 

It is important to clarify that during our (reproducible [40]) 

experiments, the SCNN is tested in totally cross-database 

manner, i.e., not only the subjects from the training and test set 

sets are totally separated, the databases themselves are 

independent from training for three sets of experiments. 

However, the methods we are going to compare with, [2] and 

[10], both require some samples of the target databases for the 

training. In order to compare with the best performance of [2] 

and [10] as well as to ensure the fairness in such comparison, 

we still divide the target datasets into training and testing sets, 

as summarized in Table 2. For example, 96 samples of the first 

19 subjects in UBIRIS.v2 were used to train the models [2] and 

[10], the remaining were used for test as in [2], [10] and also for 

our method. Such a configuration is highly disadvantageous to 

our methods because the inter-database variance is always a 

key factor for the performance of all learning based methods. 

However, our method has still been able to achieve 

outperforming results as detailed later. 

We perform periocular matching using the all-to-all protocol, 

i.e., every image is matched to all the other images in the testing 

set, and all the generated matching scores are taken into 

calculation of the receiver operating characteristic (ROC) curve.  

Such a protocol is considered to be highly challenging because 

one bad sample may result in several poor genuine scores, 

which drops the overall matching performance. 

2) Effectiveness of SCNN 

We firstly examine the impact of the added branch that has been 

trained with the semantic information. We have compared the 

performance of a single CNN, i.e., only CNN1 in Figure 3, with 

the performance of the extended SCNN. The results from the 

verification experiments are illustrated in Figure 9.  

We can observe from Figure 9 that the SCNN consistently 

achieves better performance than that of original or single CNN. 

This observation suggests that the newly added CNN2 which is 

trained with semantic supervision has been successful in 

contributing to some useful information that is not reinforced in 

CNN1, and therefore improving the overall discriminative 

Table 2: Summary of the employed databases for training and testing. 

Spectrum Visible Near Infrared (NIR) 

Division Training set Testing set Training set Testing set 

Dataset UBIpr UBIRIS.v2 FRGC FOCS FOCS CASIA.v4-distance 

Standoff distance 4 – 8m 3 - 8m N/A N/A N/A ≥3m 

No. of subjects* 224 171(19/152) 163 (13/150) 80 56 141 (10/131) 

No. of images* 
left: 3,359 

right: 3,359 
1,000 (96/904) 540 (40/500) 

left: 3,262 

right: 3,259 
1,530 1,077 (79/998) 

* In the bracket (a/b) means a subjects or images were used for training for methods [2] and [10] (not for our method), remaining b subjects or images were 

used for testing. 
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power of the network. In theory, we can add more branches that 

are trained with different semantic information (e.g., iris color) 

to further improve the final recognition accuracy. However, the 

need for computational power would also increase and the 

trade-off may need to be made according to the applications. In 

our example, since CNN2 shown in Figure 4 has a relatively 

simplified structure, the additional training cost is minor.  

3) Comparison with Earlier Work on Periocular Recognition 

We also compared the performance of our approach with 

state-of-the-art approaches [2], [10] on the periocular 

recognition problem. While [2] is our previous work, we have 

carefully implemented the methods in [10] with the help of the 

original authors. The test protocols were kept exactly the same 

for different approaches during the experimental process and 

therefore the comparisons of ROC/CMC curves are fair. 

However several factors can be firstly clarified here to ensure 

clarity in understanding the experimental comparisons.  

1) For UBIRIS.v2, we use the 1,000 image set that was 

employed for the NICE.I competition. This subset is the same 

as was used in [2] but different from the one in [10]. In [10], test 

images were gathered from the full dataset, but only those 

acquired from 6-8 meters were used, while the 1,000 image set 

in [2] included samples acquired from 3-8 meters. Due to the 

relatively consistent imaging distance, the subset used in [10] 

involves much less scale variance than those in [2] and also in 

this paper. As a result, the performance from our experiment 

using exact method in [10] is not reproduced as good as what 

appears to be in [10] and this is reasonable due to the difference 

in selection of images as explained above. 

2) For FRGC, we also used the same subset as in [2] but 

different from the one used in [10]. As described before, the 

subset we used contains 540 periocular images which were 

automatically segmented from the original face images and 

therefore may suffer from some misalignment. Moreover, 

images in this subset were acquired from various sessions with 

certain time lapse and different imaging environments, which 

increases the difficulty for accurate recognition. However, the 

  

(a) UBIRIS.v2                                                                                 (b) FRGC 

 

(c) FOCS                                                                           (d) CASIA.v4-distance 

Figure 9: ROC curves of the periocular verification using SCNN and comparison with single CNN and other state-of-the-art methods for different databases. 
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subset used in [10] only consists of images captured in 

consistent illumination and background in single session, and 

the periocular regions were manually segmented. Therefore, it 

is also a reasonable explanation for the drop in performance in 

our reproduced results, over the ones shown in [10] using 

manual segmentation.  

3) For FOCS, we used fixed division of training and testing sets 

as shown in Table 2, while the original setup in [10] used 5-fold 

cross validation for the entire dataset. Although the subsets 

used in our experiment and their original experiment are not 

exactly the same, the quality of images is observed to be quite 

similar. Therefore our reproduced result is very close to those 

appearing in reference [10]. 

The verification results (ROC) for above comparisons are 

also shown in Figure 9, while the identification results (CMC) 

are shown in Figure 10. It can be observed from the 

experimental results in these two figures that the proposed 

approach using SCNN consistently outperforms the two 

state-of-the-art approaches.  

In order to ascertain statistical significance of the 

improvements, we have conducted the significance test for the 

ROC curves using the method described in [12], which judges 

Table 3: Results of significance test for comparison of ROCs using method [12]. 

p-value indicates the probability of the null hypothesis that two methods have no 
difference statistically. 

Comparison 

p-value 

UBIRIS.v2 FRGC 
CASIA.v4

-distance 
FOCS 

SCNN & TIP’13 [2] < 1e-4 < 1e-4 < 1e-4 < 1e-4 

SCNN & TIFS’15 [10] < 1e-4 < 1e-4 < 1e-4 < 1e-4 

*  The computed z-statistics are too large that the corresponding p-values 

exceed double precision, therefore expressed as < 1e-4. 

 
 

 

 

 

Table 4: Comparison of time required to match two periocular images by 

different approaches, from Matlab implementation running on a computer with 
Linux OS, 16 GB RAM, 3.4 GHz Intel i7-4770 CPU (4 cores) and NVIDIA 

GeForce GTX 670 GPU. 

Approach 
Major Time Consuming 

Operations 

Matching Time (s) 

GPU CPU 

proposed 
convolution, matrix 

multiplication 
0.013 0.183 

TIP’13 [2] 
DSIFT feature extraction, 

K-means clustering 
/ 15.478 

TIFS’15 

[10] 
Gabor feature extraction, 

correlation filter matching 
/ 1.441 

 
 

 

 

 

 

(a) UBIRIS.v2                                                                                 (b) FRGC 

 

(c) FOCS                                                                            (d) CASIA.v4-distance 

Figure 10: CMC curves of the periocular verification using SCNN and comparison with state-of-the-art methods for different databases. 
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from the area under the curve (AUC). Table 3 shows the 

significance level (p-value) of the difference of the SCNN 

based method over the comparative methods [2] and [10]. The 

results indicate that, by the commonly used confidence level of 

95%, our approach significantly outperforms these two 

methods (p-value < 0.05) on all the employed datasets. 

It may be noted that [10] performed poorly on the 

UBIRIS.v2 set because it adopts the patch based matching 

scheme while, as explained above, the 1,000-image set of 

UBIRIS.v2 used in our experiment suffers from serious scale 

variations among the samples, which results in significant loss 

of patch correspondence. The approach from [2] which uses 

DSIFT features is more robust to scale variance, however the 

extraction of DSIFT feature is especially time consuming. In 

contrast, our approach not only performs better than both of the 

baseline approaches on different databases, but is also 

computationally simpler for the deployment using the trained 

network. Table 4 presents the summary of the average time 

required for the feature extraction for the considered 

state-of-art approaches. These tests were performed using the 

Matlab wrapper and C++ implementation running on a 

computer with Linux OS, 16 GB RAM, 3.4 GHz Intel® Core™ 

i7-4770 CPU (4 cores) and NVIDIA®  GeForce GTX 670 GPU. 

It can be observed that the proposed approach is much faster 

due to the straightforward architecture and the use of GPU 

could further reduce the computational time.  

B. Image Classification 

In order to examine that the proposed SCNN architecture is not 

only effective for the periocular recognition but can also be 

useful for more general problems, we performed experiment for 

image classification on the CIFAR-10 dataset [37].  

The CIFAR-10 dataset contains 60,000 32×32 color images 

from 10 classes. Among these images, 50,000 images are for 

training and 10,000 are for testing. Figure 11 shows some 

randomly selected samples from each class. As we can see from  

Figure 11, although the number of classes is not large, the 

intra-class variation is significant and the resolution is also 

smaller, which brings certain challenge for classifying those 

images. The CIFAR-10 has therefore emerged as a popular 

dataset for evaluating image classification algorithms along 

with others like ImageNet and CIFAR-100, etc.  

Since the SCNN is developed to enhance existing CNN 

based approaches, we select a baseline CNN to ascertain the 

improvement. We adopt the CNN originated from 

Krizhevsky’s cuda-convnet [38], re-implemented and 

introduced in the Caffe tutorial [39]. Although the selected 

CNN is not the state-of-the-art for CIFAR-10 in terms of 

performance, we chose it because this model is publicly 

available under Caffe, the deep learning framework employed 

in the paper, and it is also quick to train. For simple annotation, 

we refer to this network as cuda-convnet. By following the 

tutorial, we can quickly get an accuracy of about 75% on the 

CIFAR-10 test set. Then we trained a branch CNN to learn the 

semantic features of the images in CIFAR-10 in order to build 

the SCNN architecture. We define one possible groups of 

semantic information for the classes in the CIFAR-10 dataset as 

follows, also shown in Figure 12. 





 

artificial   
rectangular, has wheel: (automobile, truck) 

no/invisible wheel: (airplane, ship) 

Natural   
round, short: (cat, dog, bird, frog) 

slim, long: (deer, horse) 

 

With above division, the entire dataset is grouped into four 

semantical classes. It may be noted that this is not the unique or 

the optimal division, but it is an easy-to-understand scheme to 

start with.  In order to obtain a branch CNN that was trained to 

acquire above semantic features, we simply duplicate the 

structure of the base cuda-convnet but replace the last fully 

connected layer having 10 neurons with a new fully connected 

layer with four neurons, since the task now is to recognize the 

four semantic groups. We then just repeat, as described in Caffe 

tutorial, but train the new network with newly labeled data. We 

refer to this new CNN as cuda-convnet-s. Again, above 

configuration is made because of the ease to execute and one 

airplane 

 

auto- 

mobile 

bird 

cat 

deer 

dog 

frog 

horse 

ship 

truck 

 
Figure 11: Sample images from each class of CIFAR-10 dataset. 

 
Semantical Annotation

Artificial Natural

Retangular,
Has wheel

No/invisible
wheel

Round, 
Short

Slim, 
Long

Label: 0                       1                       2                       3
 

Figure 12: The semantical group labeling used in our experiment to train 
cuda-convnet-s. 
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has many choices for actual applications. We then built an 

SCNN with the architecture as in  

Figure 13. As shown in this figure, we combine the branch CNN 

and the original one to obtain an extended structure. The 

components highlighted in red are retrained after the 

combination to aggregate the long concatenated features, and 

this process can be considered as a kind of finetuning. Since the 

number of layers to be retrained is small, the finetuning is very 

fast.  Table 5 shows the classification results on the test set 

using the original cuda-convnet and the extended SCNN.  

 We can observe from the results that the proposed SCNN can 

achieve an improvement of 2.11% over the original result. 

Although this may not be considered as a very large 

improvement, the achieved results reinforce the motivation for 

SCNN is to make solid and consistent enhancement on existing 

CNN based approaches, especially for the scenario when  the 

training data may not be enough to feed a complex network. In 

the CIFAR-10 dataset, the number of images per class is 

actually quite large and therefore the effect of SCNN is not 

significant, but it still offers a noticable improvement with 

minor addition in the complexity. Moreover, as discussd above, 

the experimental setup is reproducible and made to execute in a  

straightforward manner. Therefore  it is reasonable to expect 

certain space for further improvement.  

IV. CONCLUSIONS 

This paper has presented automated periocular recognition 

using CNN with outperforming results and significantly 

smaller complexity. In particular, we proposed a robust and 

more accurate framework for the periocular recognition using 

the semantics-assisted convolutional neural network (SCNN). 

By training one or more branches of CNNs with semantical 

information corresponding to training data, the SCNN is 

capable of recovering more comprehensive features from the 

images and therefore achieve superior performance. Our 

experimental results on four publicly available databases 

suggest that the proposed approach can achieve outperforming 

results while requiring much smaller computational time for the 

matching process. The SCNN architecture can also be 

generalized for other image classification tasks, which can 

improve the performance over the single CNN based 

approaches. The source and executable files of our approach 

are made publicly available [40] to encourage other researchers 

to easily reproduce our results and further advance research on 

accurate periocular recognition. 

 It may be noted that at the current stage, we decouple the 

identity supervision and other semantic supervision, in order to 

ensure high level of explicitness of semantic learning and 

compatibility to existing CNN based approaches. However, it is 

believed that a well-designed network structure may explicitly 

incorporate semantic information itself and facilitate efficient 

training in an end-to-end training manner. It will be our future 

work to investigate improved architecture which enables joint 

learning of semantic information explicitly as well as 

preserving the network integrity. 
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Figure 13: The structure of SCNN used in the experiment for CIFAR-10 

dataset. The cuda-convnet is from the original Caffe tutorial, and the 
cuda-convnet-s is newly trained by the semantic information. 

 

 

 

Table 5: Results of classification on the CIFAR-10 testing set using original 
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cuda-convnet-SCNN 77.06% 
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