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Abstract

This paper addresses two key challenges in detecting
diffusion-generated videos: generalization to unseen but
sophisticated video synthesizers and threats from the mul-
timodal manipulations where the deepfakes combine the
text prompts and visual synthesis to create realistic forg-
eries. We propose a novel multimodal framework built
on a transformer-based architecture, which was origi-
nally designed for image forgery detection. Our frame-
work extends this architecture by integrating two com-
plementary components: (i) spatio-temporal feature ex-
traction and (ii) a text-guided enrichment module which
uses a frozen Vision Language Models (VLMs) text en-
coder when prompts are available and a small set of
learnable default embeddings when no prompt is provided.
Trained on our self-curated dataset comprising KlingAl and
StableDiffusion Samples, we present cross-dataset perfor-
mance from unseen but hyper-realistic fake video gener-
ators comprising Sora, Luma, Pika, and Runway. Our
model can achieve high accuracy and outperformance re-
sults, which demonstrate cross-model generalization for de-
tecting hyper-realistic Al-generated videos.

1. Introduction

Recent advances in diffusion models have revolution-
ized video generation, enabling text-to-video and image-to-
video synthesis with unprecedented realism [33, 7]. Com-
mercial platforms like OpenAl’s Sora [35], Luma Dream
Machine [31], and Stability AI’s Stable Video Diffusion
(SVD-XT) [43] have democratized high-quality video cre-
ation, but simultaneously pose significant threats to infor-
mation integrity and media authenticity. Current video
forgery detection methods face two critical limitations.
First, [17] mentioned [3, 30, 48, 49] still struggle with cross-
model generalization—detectors trained on one generator
often fail when confronted with videos from unseen, so-
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Figure 1. Overview of our approach to consolidate the spatial fea-
ture and the dual-path text-guided feature modules.

phisticated synthesizers [57]. This limitation stems from
their reliance on generator-specific artifacts rather than fun-
damental forgery patterns. Second, existing multimodal ap-
proaches neither leverage the full generation context [34]
nor address scenarios where no text prompt [27, 42, 49]
is provided. Modern video synthesis is inherently multi-
modal [22, 41], guided by text prompts that provide seman-
tic context for generation, yet purely visual detection meth-
ods overlook this crucial information [32, 45].

These limitations are particularly problematic in real-
world applications where: (1) new generators emerge faster
than detection methods can adapt, and (2) generated con-
tent lacks accessible prompt information during detection.
Current multimodal detection approaches [42, 27, 49] either
require prompts at inference time or cannot handle prompt-
absent scenarios effectively.

1.1. Our Work

Inspired by contrastive language-image learning [40],
these works [34, 18, 20, 54, 56] employ a frozen pre-trained
model paradigm with an attached classifier for forgery de-
tection by aligning the vision features with the language fea-
tures in the multimodal space. Followed by [42, 27, 49],



they utilize the language to guide the model during train-
ing. Besides the spatial information of image, the fre-
quency domain [19, 12] information also can enhance the
performance of fake detection. Therefore, to address these
gaps, we introduce a novel multimodal framework (see
overview in Fig. 1) that unifies spatio-temporal feature ex-
traction with text-guided feature enrichment. Our approach
builds upon a transformer-based architecture originally de-
signed for image forgery detection [27], extending it with
two key innovations: (a) Spatio-Temporal Feature Extrac-
tion: We adapt the forgery-aware visual encoder to process
video sequences, capturing frame-level artifacts through
transformer-based temporal modeling. (b) Text-Guided
Feature Enrichment: We introduce a dual-path semantic
module that processes text prompts via a frozen CLIP [40]
text encoder when available, while falling back to learn-
able default embeddings when text prompts are not avail-
able. These embeddings are initialized randomly and opti-
mized end-to-end to capture semantic patterns distinguish-
ing real from generated content. After training, each set
of learnable embeddings becomes a semantic fingerprint.
Therefore, these embeddings are able to capture meaning-
ful semantic patterns that aid in detecting fake videos, even
though they originate from random noise.

The framework introduced in this paper can achieve
strong cross-dataset generalization by learning semantic
representations that are not influenced by artifacts specific
to individual generators. We train and test on text-to-video
(KlingAl [22]) and image-to-video (SVD-XT [43]) dataset
samples as within-generator performance, then evaluate on
four unseen (or unknown) generators: Sora [35], Luma
[31], Pika [38], and Runway [4 1] as cross-generator perfor-
mance. Our comparative experimental results in this paper
achieve outperforming results over state-of-the-art (SOTA)
methods, across unseen generators, and validate the merit
of our approach in detecting hyper-realistic fake videos.

2. Related Work

Visual Forgery Detection: To efficiency detect the fake
images or fake videos, many recent works are proposed to
detect the forgery based on the image-based [23, 48, 55]
and frequency-based [13, 19, 10, 15, 37, 44, 50, 12]. More-
over, the video-level forgery detection task also has been ex-
plored in the literature [9, 6, 21, 25, 53]. [39] introduced the
frequency analysis into the detection framework, by utiliz-
ing decomposed high-frequency components. [22, 43, 35,
, 31, 41] can now generate fake videos more easily. For
detecting the diffusion-based video, the most recent work
[42] proposed the MM-Det model by using the Large Multi-
modal Models (LMMs) with In-and-Across Frame Atten-
tion (IAFA) mechanism.
Cross-model Generalization: To enhance generalization,
[47] adopt various data augmentations and large-scale GAN

images to improve the generalization to unseen testing data.
The self-supervised learning methods [16, 36] can be used
to improve the model generalization by learning more ro-
bust features. Recent efforts [51] have improved general-
ization to unseen forgery techniques. Li et al. [26] intro-
duce KID, a multi-task learning approach that injects “real-
data” prior into ViT-based backbones. Yermakov et al. [4]
propose Human Action CLIPS, leveraging the CLIP’s ViT-
L/14 visual encoder [40] for cross-dataset robustness. Liu
et al. [29] develop LAVID, employing LVLMs through an
agentic framework to adapt reasoning for novel artifacts.
DIVID [28] uses a CNN + LSTM architecture to capture the
temporal features and dynamic variations between frames
of out-of-domain videos. These methods underscore the
value of semantic signals but remain limited when prompt
information is unavailable at test time and do not provide a
comparison with the state-of-the-art FatFormer [27].
Multimodal Detection Frameworks: Inspired by the con-
trastive language-image pre-training [40], many works [ 18,

, 54, 56, 5] have used the pre-trained paradigm by freez-
ing the pre-trained weights and adopting an attached classi-
fier for forgery detection. The UniFD [34] explores the po-
tential of (vision-language models) VLMs, i.e., CLIP [40],
for synthetic image detection. Furthermore, the FatFormer
[27] presents a novel forgery-aware adaptive transformer
approach based on the CLIP [40]. Prior work has begun to
combine vision and language for video forgery: (1) Some
approaches [42, 27, 49] append prompt embeddings to vi-
sual features but require prompt access at inference. (2)
Others [34, 18, 20, 54, 56] train separate text and image
pipelines without a unified consolidation strategy. How-
ever, there is no effort to learn a fallback embedding for the
no-prompt setting or jointly optimize semantic and visual
streams in a single transformer-based architecture.

3. Our Framework

The block diagram of our framework is shown Fig. 2,
and the key task is to achieve binary classification on un-
known input videos v. Each video input undergoes are
firstly preprocessed and represented as tensors of shape
[B,T,C, H,W], where B is the batch size, T is the num-
ber of uniformly sampled frames, C' represents number of
channels (RGB), while H x W represents the spatial dimen-
sions of each of the video frames. Since our backbone vi-
sual encoder operates on individual frames, we reshape the
5D video tensor to [B x T, C, H, W] for efficient batch pro-
cessing. After feature extraction, we reorganize the outputs
to [B, T, D], where D represents the feature vector dimen-
sion for subsequent temporal modeling.

3.1. Visual Feature Extraction and Representation
3.1.1 Visual Feature Extraction

Each frame I; is processed by a CLIP ViT-L/14 [40] visual
encoder ¢(-) with weights inherited from a transformer-
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Figure 2. Our framework to accurately detect hyper-realistic fake videos.

based image forensics model [

1K

f, = o(I,),f, € R10* ()

, where f; represents the 1024-dimensional feature vector
for the frame ¢, and ¢(-) denotes the visual encoder func-
tion. We preserve the full 1024-dimensional space to un-
cover subtle diffusion artifacts. To mitigate domain shifts
across generator sources d, we incorporate learned layer
normalization:

f, = LayerNorm,(f;), f, € R10% 2)

, where LayerNorm ,(-) represents dataset-specific normal-
ization parameters, and ﬂ denotes the normalized frame fea-
tures. This step generates features, which are used to build
a composite sequence {ﬂ, f2,..., f:[}

3.1.2 Dual-Path Text-Guided Feature Enrichment

Our key innovation lies in the dual-path semantic enrich-
ment module that maintains text or semantic guidance even
in the absence of text prompts or descriptions. Our approach
can handle two real-world scenarios.

Path 1: Prompt-Available Scenario: When text prompts
p are available with unknown videos, we extract semantic

embeddings s using a frozen CLIP text encoder [40]:
s =¢(p),s € R™® 3)
where v(-) represents the frozen CLIP text encoder [40],

and s denotes the extracted text embedding of dimension
768.

Path 2: Prompt-Free Scenario: When text prompts or
video text descriptions are unavailable, we generate a small
set of learnable default embeddings matrix [42]:

Sdefaull € RkX768

“)

, Where Sgerau represents the learnable embedding matrix
with k£ embeddings initialized randomly and optimized dur-
ing training, initialized from N (0, 1) and trained end-to-end

to generate representative semantics. Then, we index into
the learnable default matrix Sgefaure in Eq. (4) to pick one
prototype s = % € R™8 row by j = idx(d) €
{0,1, ..., k—1}, where idx(d) is a simple lookup from video
domain d. Regardless with or without prompt generators,
generated videos would maintain coherent global seman-
tic information, although the semantic of each frame has
differences. Therefore, a simple lookup idx(d) from video
domain d can get the global video semantic information to
align multimodal and enhance the performance which can
be proved in Tab. 6.

In both pathways, we project the 768-dimensional text
embeddings up to 1024 dimensions to align with our visual
features. This upward projection preserves the rich informa-
tion captured in the visual pathway and is performed using
a learnable linear transformation:

_ 1024
e=sW,,,ecR

®)

, where W,.,; represents the learnable
projection matrix, and e denotes the resulting 1024-
dimensional text feature. The resulting projected text fea-
tures are then L2-normalized for consistent scaling.

c R1024X 768

6= S 6RO
- b
el

(6)

, where || - ||2 denotes the L2 norm, and & represents the nor-
malized text features. Generated videos with or without text
prompts would maintain the same global semantic embed-
ding é. Therefore, these normalized text features are then
scaled along the temporal dimension to match the number of
frames, resulting in a tensor of shape [T', 1024]. Concretely,
we form:

E=[ée6,... & c RTx102

(M

3.1.3 Gated Consolidation of Text and Visual Features

In both pathways, we merge the normalized visual features
F € RT*1024 with the aligned text features E € RT*1024
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Figure 3. Overview and samples of images from our hyper-realistic fake/real video dataset.

via a learnable gating mechanism:
Z=F+o(g)E )

Here, ¢ is a learnable gating parameter and o(g) =
Heil(,g)is the sigmoid function that constrains in the [0,
1] range, dynamically balancing visual and semantic cues.
This mechanism enables the network to dynamically deter-
mine the importance of semantic (text) features based on
their relevance to fakeness detection. The output or en-
riched feature Z maintain the same dimensions [T’, 1024]

and can capture both visual imprints and semantic context.
3.2. Temporal Modeling and Classification
3.2.1 Transformer Encoder Architecture

After text-visual consolidation, the enriched feature se-
quence Z € RT*1024 s processed by our temporal en-
coder to uncover frame-to-frame relationships. We employ
a Transformer-based encoder consisting of two layers with
eight attention heads per layer. Each Transformer layer im-
plements self-attention through the conventional approach
[46]:

T

Attention(Q, K, V) = softmax( QK

NGA

, where Q, K, and V are query, key, and value matrices

derived through learned projections of the input features,

and di = 1024 is the dimension of the key vectors. The

temporal encoder aggregates frame-level information into a
coherent video representation:

H = TransformerEncoder(Z), H € RT*1924  (10)

AN C))

After using the Transformer Encoder, the extracted embed-
ding Z of T frames of a video will be processed by self-
attention, which assigns different weights to each frame.
Finally, to aggregate these frame features and generate a
single fixed-length representation for the entire video, we
incorporate mean pooling across the temporal dimension:

T
_ 1 1024
h—fE H, heR (11)

t=1

This vector h is expected to encapsulate the consolidated
spatial and semantic imprints across all video frames and
serve as the key input for the classification.

3.2.2 Network Training and Classification

The consolidated video representation h € R'0%4 pooled

from the unknown video is used for a two-class classifica-
tion using a lightweight MLP. This classifier firstly reduces
the dimensionality of the data while extracting the most dis-
criminative features for fake detection:

¥ = Dropout(ReLU(W1h + b;))W3 + by (12)

, where W € R512x1024 . < R512 gnd W, € R2x512)
by € R? are the trainable parameters. The output logits
y € R? represent the model’s prediction for real (class 0)
and fake (class 1) probabilities. We train the entire network
in an end-to-end manner using cross-entropy loss between
y and the ground-truth label. During the inference, we use
softmax to obtain class probabilities and accordingly gen-
erate predicted labels.

4. Experiments
4.1. Dataset Development

To evaluate of our framework’s performance across gen-

erators, we use the KlingAl [22] and SVD-XT [43] as
within-dataset. For unseen generators, we collected the lat-
est diffusion-based models, Pika [38], Luma [31], and Run-
way [41], and the well-known Sora [35]. Therefore, we
develop a balanced dataset of 1,088 video clips (544 fake,
544 real) [1] covering diverse content categories to evaluate
cross-generator generalization capabilities from modern de-
tectors. And the hyper-realsistic video dataset is orignized
in Tab. 1.
Real Video Acquisition: Our real videos, as shown in
Fig. 4, are sourced from three categories: (1) facial content
from the CelebV-Text dataset [52], (2) scenery from the de-
ployed YouTube-8M [2] on MM-Det [42], and (3) activities
from the Panda-70M dataset [&]. This diversity ensures bal-
anced pairing with synthetic samples across content types.



Table 1. Dataset statistics for hyper-realistic video detection.

Dataset Subsct Real Eake Generation Model Version Prompts Prompts/Image Dataset
Type Videos  Videos Approach (Release Date) ~ Available Sources Usage
Training KlingAI 105 105 Text-to-Video (I;(l);?_ é_g) v Panda-70M [8] (Train) Train/Val/Test
Di fﬁslgiagf(;’{fg_’xn 325 325 Image-to-Videos s(‘ggizl;‘%a_izg)o X Open Images-V7 [14] (Train) ~ Train/Val/Test
Pika 33 33 Text-to-Video (252(5%22_'57) X Panda-70M (Test) Test Only
G[ejgfi?:tr(l)r Sora 33 33 Text-to-Video (S2%1;4T;l ;_3;) X Panda-70M (Test) Test Only
Luma 33 33 Text-to-Video (201;;‘?1?1 6 X Panda-70M (Test) Test Only
Runway-i2v 8 8 Image-to-Video (20(;;:?;_‘31) X Open Images-V7 (Test) Test Only
Runway-i&t2v 7 7 Image+Text-to-Video (20(23;3?3‘_‘31) X g;lefr—lclr;f;;(:;?rvo? (EIEZS:—) Test Only
Total 544 544 1088

| MM-Det (YouTube) I

Figure 4. Samples from our captured real video datasets from
Panda-70M [8], CelebV-Text [52], and MM-Det [42].

Text to Video: KlingAl

Figure 5. Illustration for our process to generate the training
dataset KlingAl [22] fake videos from text prompts.

Training sets (Within-Dataset): We create the training
sets for training, validation, and testing from two distinct
generation approaches:

* KlingAlI (Text-to-Video) [22]: 105 fake videos gener-
ated using text prompts from the Panda-70M dataset,
paired with 105 semantically similar real videos, as
shown in Fig. 5.

* SVD-XT (Image-to-Video) [43]: 325 fake videos gen-
erated from Google Open Images V7 dataset [ 14] static
images, paired with 325 corresponding real videos, as
shown in Fig. 6.

Testing Sets (Unseen Generators): To evaluate cross-
model generalization without any fine-tuning, we create
test sets from four sophisticated generators not seen during
training:

oo e R S

B Bacbacbaba.

1024 Width

Figure 6. Illustration for our process to generate the training
dataset SVD-XT [43] fake videos from images.

e Pika [38], Sora [35], Luma [31]: Each contains 33 text-
to-video generated samples paired with 33 real videos,
as shown in Fig. 7.

* Runway [41]: 8 image-to-video samples (Runway-
i2v) and 7 hybrid image+text-to-video samples
(Runway-i+t2v), each paired with real counterparts, as
shown in Fig. 8.

Each fake video across all testing sets was paired with a
semantically similar real video, resulting in a balanced test
collection of 228 videos (114 real, 114 fake).

Content Diversity and Distribution: Our datasets encom-
pass six main content categories with the following approx-
imate distribution: human activities (40%), scenery (19%),
food (12%), sports activities (10%), human face (8%), ve-
hicles (6%), and animals (5%). This diversity helps ensure
our model generalizes across different visual contexts.
Train-Validation-Test Split: For our training subsets
(KlingAl [22] and SVD-XT [43]), we employed a 60:10:30
split for train, validation, and test partitions, respectively,
while maintaining class balance within each partition. This
resulted in approximately 258 videos for training, 43 for
validation, and 129 for testing from these training subsets
alone.

Class Balance and Sampling: We maintained a perfect
1:1 ratio between real and fake videos in both training and
testing sets to ensure unbiased evaluation. Each generator



Table 2. Data preprocessing.

Parameter ‘ Specification
Duration 4 seconds
Resolution 360p (height fixed, width autoadjusted)
Codec H .264 video, AAC audio
Encoding Preset Fast
Aspect Ratio 16:5 standard
Brightness/ Contrast Standardized across all videos

Frame Extraction 8 frames uniformly sampled per video

Text to Video: Sora Text to Video: Luma Text to Video: Pika

"Anewborn baby is
wrapped in a blue blanket

“There are sausages cooking on
agrill, and a person is using
tongs to turn them over.”

*Amanis sittingin a
car and talking to the

camera.” and appears to be crying.”

Figure 7. Example from unseen text-to-video generators (left to
right): Sora [35], Luma [31], Pika [38].

subset (KlingAl [22], SVD-XT [43], Pika [38], Sora [35],
Luma [31], and Runway [41]) has an equal number of real
and fake samples.

Data Preprocessing and Normalization: We standard-
ized all our videos in both classes using FFmpeg with the
specifications in Tab. 2. All videos are standardized to
256 x 256 resolution, center-cropped to 224 x 224, and
normalized using ImageNet statistics(mean=[0.485, 0.456,
0.406], std=[0.229, 0.224, 0.225]). This standardization en-
sures consistent processing across diverse video sources and
eliminates potential artifacts from video compression or res-
olution differences as confounding factors.

Watermark Removal: All videos in our dataset were veri-
fied to be watermark-free to ensure the detector learns from
content patterns rather than watermark artifacts. For Sora
[35] videos, which typically include OpenAl’s watermark in
the bottom-right corner, we apply consistent cropping (120
pixels from the bottom-right) to all videos in Sora’s [35]
fake videos.

4.2. Implementation Details

Model Architecture Specifications: Our framework em-
ploys a 1024-dim CLIP ViT-L/14 backbone [40], a Trans-
former encoder, a projected frozen text encoder, 16 embed-
dings, adaptive fusion, and MLP classification, in Tab. 3. In
our implementation, all feature processing and fusion occur
within a unified 1024-dimensional latent space.

Training Configuration: During the training, we em-
ployed 16 learnable default embeddings to better capture
the diversity of generation characteristics across different
models, as in Tab. 4. We utilized the adaptive strategy to
adjust text-visual gating value and 100% of the available
text prompts for the KlingAl [22] dataset to maximize the

Image to Video: Runway-i2v Image + Text to Video: Runway-i+t2v.

"another blue car is
driving faster than the +
red one.”

Figure 8. Example from unseen image/image&text to video gen-
erator: Runway [41].

Table 3. Our framework architecture specifications.
Component Specification
Visual Backbone CLIP ViT-L/14 (inherited from FatFormer [27])
Feature Dimension 1024
Temporal Encoder Transformer (2 layers, 8 attention heads)
Text Encoder Frozen CLIP Text Encoder
Text Feature Dimension 768 (projected to 1024)
Default Embeddings 16 learnable embeddings (1024-dim each)
Text-Visual Fusion Adaptive gating mechanism
Dataset Normalization Layer normalization per dataset source
Classification Head 2-layer MLP (1024—512—2) with ReLU activation

Table 4. Training hyperparameters.

Parameter Value
Optimizer AdamW
Learning Rate 1x 1074
Weight Decay 1x 1074
Batch Size 8
Epochs 5
Number of Default Embeddings 16

Text-Visual Gating Value
Prompt Availability

Learnable adaptive gating
100% of available prompts

Temporal Model Transformer
Temporal Layers 2
Attention Heads 8

Table 5. Training infrastructure.
Resource | NVIDIA A100-SXM4 GPU (40GB VRAM)
Platform Google Colab Pro+
Trainig Time 22-23 mins for 5 epochs
Inference Time 0.05 seconds per video (8 frames)
Memory Usage 6-8GB GPU memory (batch size 8)
Parallel Processing Single GPU training

semantic information available to the model.

Hardware: Training is conducted on A100-SXM4 GPU
(40GB VRAM) with approximately 23 minutes training
time for 5 epochs in Tab. 5. The efficient training is enabled
by pre-trained backbone initialization.

Evaluation Metrics: We employ cross-generator evalua-
tion, training exclusively on KlingAl and SVD-XT, then
testing on four unseen generators. Performance is measured
using Accuracy (ACC) and Area Under ROC Curve (AUC),
like in [42]. Optimal classification thresholds are deter-
mined per dataset using validation sets (thresholds 0.1-0.9
in 0.05 increments).



Table 6. Performance comparison of video forgery detection.

Note: Best results are in bold. “-” indicates results not reported
in the respective references.
Dataset Subset 2-class supervision
Type FatFormer Ours
Training Kling-t2y 95.24/98.07  95.24/99.29
SVD-XT-i2v  96.92/99.75 97.95/99.70
Pika-t2v 87.88/97.80 95.45/98.35
Unseen Sora-t2v 81.82/94.12  86.36/94.58
Luma-t2v 63.64/80.81 75.76/83.29

Generator o\ nway-i2v  68.75/87.5  75.00/89.06

Runway-i&t2v  85.71/95.92  92.86/100.00
Mean 82.85/93.42  88.37/94.90

Table 7. Performance analysis using video generation approach
(ACC%/AUC%). Note: Best results are in bold.

Generation

Generators FatFormer [27] Ours Improvement
Approach
KlingAl
Textto-Video | o0 82159270 88.20/93.88 +6.05/+1.18
Luma
Image-to-Video RSVD_X.T 82.84/93.63 86.48/94.38 +3.64/+0.75
unway-i2v
Hybrid .
Runway-i&t2v  85.71/95.92 92.86/100.00 +7.15/+4.08
(Image&Text)
Mean All Unseen  77.56/91.23  85.09/93.06 +7.53/+1.83

4.3. Main Experimental Results

Our semantic-assisted framework significantly outper-
forms three recent baselines, i.e., FatFormer [27], us-
ing only videos from unseen generators without prompts.
Results (ACC%/AUC%, Tab. 6) show large margins:
Pika [38]:  95.45%/98.35%; RUNWAY-i&t2v [41]:
92.86%/100%; Sora [35]: 86.36%/94.58%; Luma [31]:
75.76%/83.29%.

Comparison with State-of-the-Art Methods: Our frame-
work demonstrates consistent improvement over previous
state-of-the-art methods across most datasets in Tab. 6. On
KlingAI [22] and SVD-XT [43] training datasets, our ap-
proach achieves comparable or superior performance (Klin-
gAl: 95.45%/99.29%, SVD-XT: 97.95%/99.70%), demon-
strating effective learning of training distributions. The
most significant improvements are observed on unseen gen-
erators, particularly on Pika [38] with a +7.57% accu-
racy improvement over FatFormer [27], demonstrating su-
perior cross-model generalization. Across all generators
(Trainig + Unseen Generator), our framework achieves
88.37%/94.90% Tab. 6, substantially outperforming prior
methods.

Cross-Generator Generalization Analysis: We analyze
performance across different generation approaches to un-
derstand our framework’s robustness in Tab. 7. Our frame-
work achieves 88.20%/93.88%, across text-to-video gen-
erators (KlingAl [22], Pika [38], Sora [35], Luma [31]),
outperforming FatFormer (82.15%/92.70%) by +6.06%
accuracy. This demonstrates the effectiveness of our
text-guided approach for detecting sophisticated text-to-
video content. On image-to-video content (SVD-XT [43],
Runway-i2v [41]), our approach maintains strong perfor-
mance (86.48%/94.38%), showing robust detection of mo-

Table 8. Number of learnable default embeddings.
#. default embeddings ‘ Mean Test (per-subset)

1 86.10/94.05
2 86.10/94.05
4 86.61/93.94
8 86.21/94.83
16 87.61/92.17

tion synthesis artifacts regardless of generation paradigm.
Most notably, on Runway’s [41] hybrid image&text-to-
video content, our framework achieves 92.86%/100.00%,
matching state-of-the-art performance while demonstrating
robustness to complex multimodal generation techniques.
Across all unseen generators, our framework achieves
85.09%/93.06% Tab. 7, substantially outperforming the Fat-
Former [27]. As shown in Tab. 6, all the models obtain
lower performance on the Luma and Runway datasets. The
reason maybe from the domain gap between the past and
current diffusion-based models. These models are trained
on earlier KlingAI and SVD-XT models struggle to gener-
alize to these newer generators. On the other hand, this kind
observation proves the robustness of the Luma and Runway
generators.

4.4. Ablation Study

We conduct five ablation experiments to verify the ef-
fectiveness of key components in our framework. Unless
specified otherwise, we report the Mean Test (per-subset)
ACC%/AUC% in a set of 4 learnable default embedding,
learned gating parameter, and 100% prompt available in-
puts, while using Transformer as the temporal encoder
across test datasets (Pika [38], Sora [35], Luma [31], and
Runway-i&t2v [41]) in this ablation study session.

Larger Number of Learnable Default Embeddings: It
tests how the number of default embeddings (e.g., 1, 2, 4,
8) affects performance. In the implementation, we use 4 de-
fault embeddings. We observe that performance increases
substantially with 16 embeddings, improving accuracy by
+2.80% compared to our baseline 4-embedding configura-
tion, Problem: Inconsistency with Tab. 4 in this ablation
study. The result in Tab. 8 presents the effect of varying
the #. number of these embeddings (1, 2, 4, 8, 16) and
demonstrates that a larger embedding space better captures
the diversity of generation characteristics across different
models. While the minimal differences exist between 1, 2,
and 4 embeddings, suggesting that even a small number of
learnable embeddings provides reasonable performance.

High Text-Influence Gate Works Reasonably Well for
Hybrid Generator: A fixed gate value of 0.75 achieves the
best performance with +1.54% ACC and +0.10% AUC over
our learned approach. Tab. 9 compares our learnable gate
parameter against fixed values in 4 quartiles (0.25, 0.5, 0.75,
1). The result indicates that text features should contribute
significantly (approximately 75%) to the final representa-
tion for optimal detection performance. While our learned
gate approach doesn’t outperform the best fixed value in



Table 9. Gating mechanism analysis.

‘ gate value ‘ Mean Test (per-subset)
0.25 85.36/93.92
fixed 0.5 86.36/93.88
0.75 88.15/94.04
1 87.65/94.12

learned | adjusts during training 86.61/93.94
Table 10. Comparison between Fixed Gating and Learned Gating.
Mean Test (per-subset) Mean Test (per-subset)
fixed 0.75 gating parameter learned gating parameter
85.71/100 92.86/100
75.00/90.63 75.00/89.06

Runway-i&t2v
Runway-i2v

this controlled experiment, it eliminates the need for man-
ual tuning, potentially offering better adaptability to unseen
generators.
Comparison between Fixed Gating and Learned Gat-
ing: To further evaluate our Gate Mechanism, we con-
ducted an extra ablation experiment. The results in Tab. 10
demonstrate that while a fixed high text-influence gate
(0.75) works reasonably well for hybrid generation, the
learned gate significantly improves performance on hybrid
content (+7.15% accuracy) while maintaining similar per-
formance on pure image-to-video content. It suggests our
implemented adaptive approach can better balance the in-
fluence of text and visual features based on the content type.
The learned gate appears to recognize when text infor-
mation is more relevant (for hybrid generations) and adjusts
accordingly, while not overemphasizing text features when
they are less informative (for pure image-to-video content).
However, we believe that this observation about Runway
could be presented as a direction for future work, specifi-
cally investigating how detection methods can be further en-
hanced for hybrid generation techniques where the bound-
ary between real and synthetic content becomes even more
blurred.
Prompt Free Inconsistency Detection: It evaluate perfor-
mance when different percentages of training samples have
prompts available (0%, 25%, 50%, 75%, 100%) to show
how our model leverages available text guidance in Tab. 11.
The best results are achieved at 75% prompt availability,
outperforming both the 0% baseline (+2.46% ACC, +0.34%
AUC) and the 100% configuration (+0.94% ACC, +0.06%
AUCQC). Tab. 11 investigates how varying % percentages (0%
100%) of training samples with text prompts affect perfor-
mance. This suggests that some diversity in feature rep-
resentation, i.e., fixing prompted and default embeddings,
benefits the model by exposing it to both scenarios during
training. This finding validates our dual-path approach to
text feature processing and demonstrates its robustness even
with partial prompt information.

4.5. Summary

We built our framework using a Transformer temporal
encoder trained with 100% prompt-available samples, 16
learnable default embeddings, and an adaptive gating mech-

Table 11. Prompt availability impact.
train samples with prompts (%) ‘ Mean Test (per-subset)

85.09/93.66
25 84.85/93.76
50 85.09/93.66
75 87.55/94.00
100 86.61/93.94

anism. Ablation findings then demonstrate (1)Temporal
modeling: LSTM (+0.79% ACC/+1.00% AUC) can out-
perform Transformer, suggesting sequential processing is
valuable. (2) Embedding size: Moving from 4 to 16 de-
faults boosts ACC by +1.00%, showing larger semantic ca-
pacity aids generalization. (3) Gating: A fixed 0.75 gate
matches or exceeds the learned gate (+1.54% ACC), though
the learned version avoids manual tuning. (4) Prompt mix:
Training with 75% prompts yields the best mean ACC/AUC
(+2.46%/+0.34% over 0%), validating the dual-path design.
These results confirm both our final architectural choices
and the specific effects of each component on cross-model
generalization.

5. Conclusions and Further Work

This paper introduced a novel multimodal framework
for detecting hyper-realistic diffusion-generated fake videos
that addresses two critical challenges: cross-model gener-
alization and multimodal manipulation detection. By ex-
tending the transformer-based forgery detection mechanism
with spatio-temporal modeling and integrating a dual-path
text-guided enrichment module, our framework achieves
robust performance across unseen generators. Our key
innovation lies in learnable default embeddings that pro-
vide semantic context when prompts are unavailable. This
enables practical deployment of our framework in real-
world scenarios where generation prompts are not avail-
able. A comprehensive evaluation on hyperrealist unseen
generators (Pika [38], Sora [35], Luma [31], Runway [41])
demonstrates superior cross-model generalization, achiev-
ing 85.09% mean accuracy with 93.06% AUC in Tab. 7.

Performance on the most challenging generator (Luma
[31]) reaches 75.76% accuracy, indicating room for im-
provement on sophisticated content. Computational cost
remains significant due to the ViT-L/14 backbone, limiting
real-time applications. Enhancing training data diversity,
developing adaptive text-visual fusion mechanisms, and ex-
ploring video-specific pretraining could further improve ro-
bustness and efficiency. The semantic enhancement ap-
proach presented in this paper can also be used to detect
a range of synthesized (fake) biometric images, e.g. fin-
gerprints [1 1] or iris [24], and opens promising directions
for multimodal deepfake detection. The further extension
will also evaluate the performance of this forgery detection
model under adversarial attacks. Any potential of misuse
of our framework can be prevented by deployed under strict
access control like by the law enforce departments.
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